1
|
Wang G, Yang B, Qu X, Guo J, Luo Y, Xu X, Wu F, Fan X, Hou Y, Tian S, Huang S, Xian J. Fully automated segmentation and volumetric measurement of ocular adnexal lymphoma by deep learning-based self-configuring nnU-net on multi-sequence MRI: a multi-center study. Neuroradiology 2024; 66:1781-1791. [PMID: 39014270 PMCID: PMC11424727 DOI: 10.1007/s00234-024-03429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE To evaluate nnU-net's performance in automatically segmenting and volumetrically measuring ocular adnexal lymphoma (OAL) on multi-sequence MRI. METHODS We collected T1-weighted (T1), T2-weighted and T1-weighted contrast-enhanced images with/without fat saturation (T2_FS/T2_nFS, T1c_FS/T1c_nFS) of OAL from four institutions. Two radiologists manually annotated lesions as the ground truth using ITK-SNAP. A deep learning framework, nnU-net, was developed and trained using two models. Model 1 was trained on T1, T2, and T1c, while Model 2 was trained exclusively on T1 and T2. A 5-fold cross-validation was utilized in the training process. Segmentation performance was evaluated using the Dice similarity coefficient (DSC), sensitivity, and positive prediction value (PPV). Volumetric assessment was performed using Bland-Altman plots and Lin's concordance correlation coefficient (CCC). RESULTS A total of 147 patients from one center were selected as training set and 33 patients from three centers were regarded as test set. For both Model 1 and 2, nnU-net demonstrated outstanding segmentation performance on T2_FS with DSC of 0.80-0.82, PPV of 84.5-86.1%, and sensitivity of 77.6-81.2%, respectively. Model 2 failed to detect 19 cases of T1c, whereas the DSC, PPV, and sensitivity for T1_nFS were 0.59, 91.2%, and 51.4%, respectively. Bland-Altman plots revealed minor tumor volume differences with 0.22-1.24 cm3 between nnU-net prediction and ground truth on T2_FS. The CCC were 0.96 and 0.93 in Model 1 and 2 for T2_FS images, respectively. CONCLUSION The nnU-net offered excellent performance in automated segmentation and volumetric assessment in MRI of OAL, particularly on T2_FS images.
Collapse
Affiliation(s)
- Guorong Wang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, No.1 DongJiaoMinXiang Street, DongCheng District, Beijing, 100730, China
| | - Bingbing Yang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, No.1 DongJiaoMinXiang Street, DongCheng District, Beijing, 100730, China
| | - Xiaoxia Qu
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, No.1 DongJiaoMinXiang Street, DongCheng District, Beijing, 100730, China
| | - Jian Guo
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, No.1 DongJiaoMinXiang Street, DongCheng District, Beijing, 100730, China
| | - Yongheng Luo
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoquan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feiyun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoxue Fan
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Hou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | | | | | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, No.1 DongJiaoMinXiang Street, DongCheng District, Beijing, 100730, China.
| |
Collapse
|
2
|
Wahid KA, Kaffey ZY, Farris DP, Humbert-Vidan L, Moreno AC, Rasmussen M, Ren J, Naser MA, Netherton TJ, Korreman S, Balakrishnan G, Fuller CD, Fuentes D, Dohopolski MJ. Artificial intelligence uncertainty quantification in radiotherapy applications - A scoping review. Radiother Oncol 2024; 201:110542. [PMID: 39299574 DOI: 10.1016/j.radonc.2024.110542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/18/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND/PURPOSE The use of artificial intelligence (AI) in radiotherapy (RT) is expanding rapidly. However, there exists a notable lack of clinician trust in AI models, underscoring the need for effective uncertainty quantification (UQ) methods. The purpose of this study was to scope existing literature related to UQ in RT, identify areas of improvement, and determine future directions. METHODS We followed the PRISMA-ScR scoping review reporting guidelines. We utilized the population (human cancer patients), concept (utilization of AI UQ), context (radiotherapy applications) framework to structure our search and screening process. We conducted a systematic search spanning seven databases, supplemented by manual curation, up to January 2024. Our search yielded a total of 8980 articles for initial review. Manuscript screening and data extraction was performed in Covidence. Data extraction categories included general study characteristics, RT characteristics, AI characteristics, and UQ characteristics. RESULTS We identified 56 articles published from 2015 to 2024. 10 domains of RT applications were represented; most studies evaluated auto-contouring (50 %), followed by image-synthesis (13 %), and multiple applications simultaneously (11 %). 12 disease sites were represented, with head and neck cancer being the most common disease site independent of application space (32 %). Imaging data was used in 91 % of studies, while only 13 % incorporated RT dose information. Most studies focused on failure detection as the main application of UQ (60 %), with Monte Carlo dropout being the most commonly implemented UQ method (32 %) followed by ensembling (16 %). 55 % of studies did not share code or datasets. CONCLUSION Our review revealed a lack of diversity in UQ for RT applications beyond auto-contouring. Moreover, we identified a clear need to study additional UQ methods, such as conformal prediction. Our results may incentivize the development of guidelines for reporting and implementation of UQ in RT.
Collapse
Affiliation(s)
- Kareem A Wahid
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zaphanlene Y Kaffey
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David P Farris
- Research Medical Library, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laia Humbert-Vidan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amy C Moreno
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jintao Ren
- Department of Oncology, Aarhus University Hospital, Denmark
| | - Mohamed A Naser
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tucker J Netherton
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stine Korreman
- Department of Oncology, Aarhus University Hospital, Denmark
| | | | - Clifton D Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Fuentes
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Michael J Dohopolski
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Zwijnen AW, Watzema L, Ridwan Y, van Der Pluijm I, Smal I, Essers J. Self-adaptive deep learning-based segmentation for universal and functional clinical and preclinical CT image analysis. Comput Biol Med 2024; 179:108853. [PMID: 39013341 DOI: 10.1016/j.compbiomed.2024.108853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Methods to monitor cardiac functioning non-invasively can accelerate preclinical and clinical research into novel treatment options for heart failure. However, manual image analysis of cardiac substructures is resource-intensive and error-prone. While automated methods exist for clinical CT images, translating these to preclinical μCT data is challenging. We employed deep learning to automate the extraction of quantitative data from both CT and μCT images. METHODS We collected a public dataset of cardiac CT images of human patients, as well as acquired μCT images of wild-type and accelerated aging mice. The left ventricle, myocardium, and right ventricle were manually segmented in the μCT training set. After template-based heart detection, two separate segmentation neural networks were trained using the nnU-Net framework. RESULTS The mean Dice score of the CT segmentation results (0.925 ± 0.019, n = 40) was superior to those achieved by state-of-the-art algorithms. Automated and manual segmentations of the μCT training set were nearly identical. The estimated median Dice score (0.940) of the test set results was comparable to existing methods. The automated volume metrics were similar to manual expert observations. In aging mice, ejection fractions had significantly decreased, and myocardial volume increased by age 24 weeks. CONCLUSIONS With further optimization, automated data extraction expands the application of (μ)CT imaging, while reducing subjectivity and workload. The proposed method efficiently measures the left and right ventricular ejection fraction and myocardial mass. With uniform translation between image types, cardiac functioning in diastolic and systolic phases can be monitored in both animals and humans.
Collapse
Affiliation(s)
- Anne-Wietje Zwijnen
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Yanto Ridwan
- AMIE Core Facility, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ingrid van Der Pluijm
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ihor Smal
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Radiotherapy, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
4
|
Machura B, Kucharski D, Bozek O, Eksner B, Kokoszka B, Pekala T, Radom M, Strzelczak M, Zarudzki L, Gutiérrez-Becker B, Krason A, Tessier J, Nalepa J. Deep learning ensembles for detecting brain metastases in longitudinal multi-modal MRI studies. Comput Med Imaging Graph 2024; 116:102401. [PMID: 38795690 DOI: 10.1016/j.compmedimag.2024.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
Metastatic brain cancer is a condition characterized by the migration of cancer cells to the brain from extracranial sites. Notably, metastatic brain tumors surpass primary brain tumors in prevalence by a significant factor, they exhibit an aggressive growth potential and have the capacity to spread across diverse cerebral locations simultaneously. Magnetic resonance imaging (MRI) scans of individuals afflicted with metastatic brain tumors unveil a wide spectrum of characteristics. These lesions vary in size and quantity, spanning from tiny nodules to substantial masses captured within MRI. Patients may present with a limited number of lesions or an extensive burden of hundreds of them. Moreover, longitudinal studies may depict surgical resection cavities, as well as areas of necrosis or edema. Thus, the manual analysis of such MRI scans is difficult, user-dependent and cost-inefficient, and - importantly - it lacks reproducibility. We address these challenges and propose a pipeline for detecting and analyzing brain metastases in longitudinal studies, which benefits from an ensemble of various deep learning architectures originally designed for different downstream tasks (detection and segmentation). The experiments, performed over 275 multi-modal MRI scans of 87 patients acquired in 53 sites, coupled with rigorously validated manual annotations, revealed that our pipeline, built upon open-source tools to ensure its reproducibility, offers high-quality detection, and allows for precisely tracking the disease progression. To objectively quantify the generalizability of models, we introduce a new data stratification approach that accommodates the heterogeneity of the dataset and is used to elaborate training-test splits in a data-robust manner, alongside a new set of quality metrics to objectively assess algorithms. Our system provides a fully automatic and quantitative approach that may support physicians in a laborious process of disease progression tracking and evaluation of treatment efficacy.
Collapse
Affiliation(s)
| | - Damian Kucharski
- Graylight Imaging, Gliwice, Poland; Silesian University of Technology, Gliwice, Poland.
| | - Oskar Bozek
- Department of Radiodiagnostics and Invasive Radiology, School of Medicine in Katowice, Medical University of Silesia in Katowice, Katowice, Poland.
| | - Bartosz Eksner
- Department of Radiology and Nuclear Medicine, ZSM Chorzów, Chorzów, Poland.
| | - Bartosz Kokoszka
- Department of Radiodiagnostics and Invasive Radiology, School of Medicine in Katowice, Medical University of Silesia in Katowice, Katowice, Poland.
| | - Tomasz Pekala
- Department of Radiodiagnostics, Interventional Radiology and Nuclear Medicine, University Clinical Centre, Katowice, Poland.
| | - Mateusz Radom
- Department of Radiology and Diagnostic Imaging, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland.
| | - Marek Strzelczak
- Department of Radiology and Diagnostic Imaging, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland.
| | - Lukasz Zarudzki
- Department of Radiology and Diagnostic Imaging, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland.
| | - Benjamín Gutiérrez-Becker
- Roche Pharma Research and Early Development, Informatics, Roche Innovation Center Basel, Basel, Switzerland.
| | - Agata Krason
- Roche Pharma Research and Early Development, Early Clinical Development Oncology, Roche Innovation Center Basel, Basel, Switzerland.
| | - Jean Tessier
- Roche Pharma Research and Early Development, Early Clinical Development Oncology, Roche Innovation Center Basel, Basel, Switzerland.
| | - Jakub Nalepa
- Graylight Imaging, Gliwice, Poland; Silesian University of Technology, Gliwice, Poland.
| |
Collapse
|
5
|
Li S, Wang H, Meng Y, Zhang C, Song Z. Multi-organ segmentation: a progressive exploration of learning paradigms under scarce annotation. Phys Med Biol 2024; 69:11TR01. [PMID: 38479023 DOI: 10.1088/1361-6560/ad33b5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 03/13/2024] [Indexed: 05/21/2024]
Abstract
Precise delineation of multiple organs or abnormal regions in the human body from medical images plays an essential role in computer-aided diagnosis, surgical simulation, image-guided interventions, and especially in radiotherapy treatment planning. Thus, it is of great significance to explore automatic segmentation approaches, among which deep learning-based approaches have evolved rapidly and witnessed remarkable progress in multi-organ segmentation. However, obtaining an appropriately sized and fine-grained annotated dataset of multiple organs is extremely hard and expensive. Such scarce annotation limits the development of high-performance multi-organ segmentation models but promotes many annotation-efficient learning paradigms. Among these, studies on transfer learning leveraging external datasets, semi-supervised learning including unannotated datasets and partially-supervised learning integrating partially-labeled datasets have led the dominant way to break such dilemmas in multi-organ segmentation. We first review the fully supervised method, then present a comprehensive and systematic elaboration of the 3 abovementioned learning paradigms in the context of multi-organ segmentation from both technical and methodological perspectives, and finally summarize their challenges and future trends.
Collapse
Affiliation(s)
- Shiman Li
- Digital Medical Research Center, School of Basic Medical Science, Fudan University, Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention, Shanghai 200032, People's Republic of China
| | - Haoran Wang
- Digital Medical Research Center, School of Basic Medical Science, Fudan University, Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention, Shanghai 200032, People's Republic of China
| | - Yucong Meng
- Digital Medical Research Center, School of Basic Medical Science, Fudan University, Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention, Shanghai 200032, People's Republic of China
| | - Chenxi Zhang
- Digital Medical Research Center, School of Basic Medical Science, Fudan University, Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention, Shanghai 200032, People's Republic of China
| | - Zhijian Song
- Digital Medical Research Center, School of Basic Medical Science, Fudan University, Shanghai Key Lab of Medical Image Computing and Computer Assisted Intervention, Shanghai 200032, People's Republic of China
| |
Collapse
|
6
|
Wahid KA, Kaffey ZY, Farris DP, Humbert-Vidan L, Moreno AC, Rasmussen M, Ren J, Naser MA, Netherton TJ, Korreman S, Balakrishnan G, Fuller CD, Fuentes D, Dohopolski MJ. Artificial Intelligence Uncertainty Quantification in Radiotherapy Applications - A Scoping Review. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.13.24307226. [PMID: 38798581 PMCID: PMC11118597 DOI: 10.1101/2024.05.13.24307226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background/purpose The use of artificial intelligence (AI) in radiotherapy (RT) is expanding rapidly. However, there exists a notable lack of clinician trust in AI models, underscoring the need for effective uncertainty quantification (UQ) methods. The purpose of this study was to scope existing literature related to UQ in RT, identify areas of improvement, and determine future directions. Methods We followed the PRISMA-ScR scoping review reporting guidelines. We utilized the population (human cancer patients), concept (utilization of AI UQ), context (radiotherapy applications) framework to structure our search and screening process. We conducted a systematic search spanning seven databases, supplemented by manual curation, up to January 2024. Our search yielded a total of 8980 articles for initial review. Manuscript screening and data extraction was performed in Covidence. Data extraction categories included general study characteristics, RT characteristics, AI characteristics, and UQ characteristics. Results We identified 56 articles published from 2015-2024. 10 domains of RT applications were represented; most studies evaluated auto-contouring (50%), followed by image-synthesis (13%), and multiple applications simultaneously (11%). 12 disease sites were represented, with head and neck cancer being the most common disease site independent of application space (32%). Imaging data was used in 91% of studies, while only 13% incorporated RT dose information. Most studies focused on failure detection as the main application of UQ (60%), with Monte Carlo dropout being the most commonly implemented UQ method (32%) followed by ensembling (16%). 55% of studies did not share code or datasets. Conclusion Our review revealed a lack of diversity in UQ for RT applications beyond auto-contouring. Moreover, there was a clear need to study additional UQ methods, such as conformal prediction. Our results may incentivize the development of guidelines for reporting and implementation of UQ in RT.
Collapse
Affiliation(s)
- Kareem A. Wahid
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zaphanlene Y. Kaffey
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David P. Farris
- Research Medical Library, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Laia Humbert-Vidan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Amy C. Moreno
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Jintao Ren
- Department of Oncology, Aarhus University Hospital, Denmark
| | - Mohamed A. Naser
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tucker J. Netherton
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stine Korreman
- Department of Oncology, Aarhus University Hospital, Denmark
| | | | - Clifton D. Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David Fuentes
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael J. Dohopolski
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
7
|
Jiao R, Zhang Y, Ding L, Xue B, Zhang J, Cai R, Jin C. Learning with limited annotations: A survey on deep semi-supervised learning for medical image segmentation. Comput Biol Med 2024; 169:107840. [PMID: 38157773 DOI: 10.1016/j.compbiomed.2023.107840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/30/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
Medical image segmentation is a fundamental and critical step in many image-guided clinical approaches. Recent success of deep learning-based segmentation methods usually relies on a large amount of labeled data, which is particularly difficult and costly to obtain, especially in the medical imaging domain where only experts can provide reliable and accurate annotations. Semi-supervised learning has emerged as an appealing strategy and been widely applied to medical image segmentation tasks to train deep models with limited annotations. In this paper, we present a comprehensive review of recently proposed semi-supervised learning methods for medical image segmentation and summarize both the technical novelties and empirical results. Furthermore, we analyze and discuss the limitations and several unsolved problems of existing approaches. We hope this review can inspire the research community to explore solutions to this challenge and further advance the field of medical image segmentation.
Collapse
Affiliation(s)
- Rushi Jiao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Engineering Medicine, Beihang University, Beijing, 100191, China; Shanghai Artificial Intelligence Laboratory, Shanghai, 200232, China.
| | - Yichi Zhang
- School of Data Science, Fudan University, Shanghai, 200433, China; Artificial Intelligence Innovation and Incubation Institute, Fudan University, Shanghai, 200433, China.
| | - Le Ding
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
| | - Bingsen Xue
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Artificial Intelligence Laboratory, Shanghai, 200232, China.
| | - Jicong Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China; Hefei Innovation Research Institute, Beihang University, Hefei, 230012, China.
| | - Rong Cai
- School of Engineering Medicine, Beihang University, Beijing, 100191, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang University, Beijing, 100191, China.
| | - Cheng Jin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Artificial Intelligence Laboratory, Shanghai, 200232, China; Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China.
| |
Collapse
|
8
|
Wan L, Jiang Y, Zhu X, Wu H, Zhao W. Quantitative assessment of adaptive radiotherapy for prostate cancer using deep learning: Bladder dose as a decision criterion. Med Phys 2023; 50:6479-6489. [PMID: 37696263 DOI: 10.1002/mp.16710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/02/2023] [Accepted: 08/19/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Adaptive radiotherapy (ART) can incorporate anatomical variations in a reoptimized treatment plan for fractionated radiotherapy. An automatic solution to objectively determine whether ART should be performed immediately after the daily image acquisition is highly desirable. PURPOSE We investigate a quantitative criterion for whether ART should be performed in prostate cancer radiotherapy by synthesizing pseudo-CT (sCT) images and evaluating dosimetric impact on treatment planning using deep learning approaches. METHOD AND MATERIALS Planning CT (pCT) and daily cone-beam CT (CBCT) data sets of 74 patients are used to train (60 patients) and evaluate (14 patients) a cycle adversarial generative network (CycleGAN) that performs the task of synthesizing high-quality sCT from daily CBCT. Automatic delineation (AD) of the bladder is performed on the sCT using the U-net. The combination of sCT and AD allows us to perform dose calculations based on the up-to-date bladder anatomy to determine whether the original treatment plan (ori-plan) is still applicable. For positive cases that the patients' anatomical changes and the associated dose calculations warrant re-planning, we made rapid plan revisions (re-plan) based on the ori-plan. RESULTS The mean absolute error within the region-of-interests (i.e., body, bladder, fat, muscle) between the sCT and pCT are 41.2, 25.1, 26.5, and 29.0HU, respectively. Taking the calculated results of pCT doses as the standard, for PTV, the gamma passing rates of sCT doses at 1 mm/1%, 2 mm/2% are 87.92%, 98.78%, respectively. The Dice coefficients of the AD-contours are 0.93 on pCT and 0.91 on sCT. According to the result of dose calculation, we found when the bladder volume underwent a substantial change (79.7%), the bladder dose is still within the safe limit, suggesting it is insufficient to solely use the bladder volume change as a criterion to determine whether adaptive treatment needs to be done. After AD-contours of the bladder using sCT, there are two cases whose bladder doseD mean > 4000 cGy ${{\mathrm{D}}}_{{\mathrm{mean}}} > 4000{\mathrm{\ cGy}}$ . For the two cases, we perform re-planning to reduce the bladder dose toD mean = 3841 cGy ${{\mathrm{D}}}_{{\mathrm{mean}}} = 3841{\mathrm{\ cGy}}$ ,D mean = 3580 cGy ${{\mathrm{D}}}_{{\mathrm{mean}}} = 3580{\mathrm{\ cGy\ }}$ under the condition that the PTV meets the prescribed dose. CONCLUSION We provide a dose accurate adaptive workflow for prostate cancer patients by using deep learning approaches, and implement ART that adapts to bladder dose. Of note, the specific replanning criterion for whether ART needs to be performed can adapt to different centers' choices based on their experience and daily observations.
Collapse
Affiliation(s)
- Luping Wan
- School of Physics, Beihang University, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, China
- Zhongfa Aviation Institute, Beihang University, Hangzhou, China
| | - Yin Jiang
- School of Physics, Beihang University, Beijing, China
- Zhongfa Aviation Institute, Beihang University, Hangzhou, China
| | - Xianggao Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Hao Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Wei Zhao
- School of Physics, Beihang University, Beijing, China
- Zhongfa Aviation Institute, Beihang University, Hangzhou, China
| |
Collapse
|
9
|
Zhang F, Wang Q, Lu N, Chen D, Jiang H, Yang A, Yu Y, Wang Y. Applying a novel two-step deep learning network to improve the automatic delineation of esophagus in non-small cell lung cancer radiotherapy. Front Oncol 2023; 13:1174530. [PMID: 37534258 PMCID: PMC10391539 DOI: 10.3389/fonc.2023.1174530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/22/2023] [Indexed: 08/04/2023] Open
Abstract
Purpose To introduce a model for automatic segmentation of thoracic organs at risk (OARs), especially the esophagus, in non-small cell lung cancer radiotherapy, using a novel two-step deep learning network. Materials and methods A total of 59 lung cancer patients' CT images were enrolled, of which 39 patients were randomly selected as the training set, 8 patients as the validation set, and 12 patients as the testing set. The automatic segmentations of the six OARs including the esophagus were carried out. In addition, two sets of treatment plans were made on the basis of the manually delineated tumor and OARs (Plan1) as well as the manually delineated tumor and the automatically delineated OARs (Plan2). The Dice similarity coefficient (DSC), 95% Hausdorff distance (HD95), and average surface distance (ASD) of the proposed model were compared with those of U-Net as a benchmark. Next, two groups of plans were also compared according to the dose-volume histogram parameters. Results The DSC, HD95, and ASD of the proposed model were better than those of U-Net, while the two groups of plans were almost the same. The highest mean DSC of the proposed method was 0.94 for the left lung, and the lowest HD95 and ASD were 3.78 and 1.16 mm for the trachea, respectively. Moreover, the DSC reached 0.73 for the esophagus. Conclusions The two-step segmentation method can accurately segment the OARs of lung cancer. The mean DSC of the esophagus realized preliminary clinical significance (>0.70). Choosing different deep learning networks based on different characteristics of organs offers a new option for automatic segmentation in radiotherapy.
Collapse
Affiliation(s)
- Fuli Zhang
- Radiation Oncology Department, The Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Qiusheng Wang
- School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
| | - Na Lu
- Radiation Oncology Department, The Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Diandian Chen
- Radiation Oncology Department, The Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Huayong Jiang
- Radiation Oncology Department, The Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Anning Yang
- School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
| | - Yanjun Yu
- Radiation Oncology Department, The Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yadi Wang
- Radiation Oncology Department, The Seventh Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
10
|
Zhang F, Zheng Y, Wu J, Yang X, Che X. Multi-rater label fusion based on an information bottleneck for fundus image segmentation. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
11
|
Zhu Y, Chen L, Lu W, Gong Y, Wang X. The application of the nnU-Net-based automatic segmentation model in assisting carotid artery stenosis and carotid atherosclerotic plaque evaluation. Front Physiol 2022; 13:1057800. [PMID: 36561211 PMCID: PMC9763590 DOI: 10.3389/fphys.2022.1057800] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Objective: No new U-net (nnU-Net) is a newly-developed deep learning neural network, whose advantages in medical image segmentation have been noticed recently. This study aimed to investigate the value of the nnU-Net-based model for computed tomography angiography (CTA) imaging in assisting the evaluation of carotid artery stenosis (CAS) and atherosclerotic plaque. Methods: This study retrospectively enrolled 93 CAS-suspected patients who underwent head and neck CTA examination, then randomly divided them into the training set (N = 70) and the validation set (N = 23) in a 3:1 ratio. The radiologist-marked images in the training set were used for the development of the nnU-Net model, which was subsequently tested in the validation set. Results: In the training set, the nnU-Net had already displayed a good performance for CAS diagnosis and atherosclerotic plaque segmentation. Then, its utility was further confirmed in the validation set: the Dice similarity coefficient value of the nnU-Net model in segmenting background, blood vessels, calcification plaques, and dark spots reached 0.975, 0.974 0.795, and 0.498, accordingly. Besides, the nnU-Net model displayed a good consistency with physicians in assessing CAS (Kappa = 0.893), stenosis degree (Kappa = 0.930), the number of calcification plaque (Kappa = 0.922), non-calcification (Kappa = 0.768) and mixed plaque (Kappa = 0.793), as well as the max thickness of calcification plaque (intraclass correlation coefficient = 0.972). Additionally, the evaluation time of the nnU-Net model was shortened compared with the physicians (27.3 ± 4.4 s vs. 296.8 ± 81.1 s, p < 0.001). Conclusion: The automatic segmentation model based on nnU-Net shows good accuracy, reliability, and efficiency in assisting CTA to evaluate CAS and carotid atherosclerotic plaques.
Collapse
Affiliation(s)
- Ying Zhu
- First Clinical Medical College, Soochow University, Suzhou, China
| | - Liwei Chen
- Department of Radiology, School of Medicine, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjie Lu
- Department of Radiology, School of Medicine, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yongjun Gong
- Department of Radiology, School of Medicine, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Yongjun Gong, ; Ximing Wang,
| | - Ximing Wang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China,*Correspondence: Yongjun Gong, ; Ximing Wang,
| |
Collapse
|
12
|
Li C, Mao Y, Guo Y, Li J, Wang Y. Multi-Dimensional Cascaded Net with Uncertain Probability Reduction for Abdominal Multi-Organ Segmentation in CT Sequences. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106887. [PMID: 35597204 DOI: 10.1016/j.cmpb.2022.106887] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Deep learning abdominal multi-organ segmentation provides preoperative guidance for abdominal surgery. However, due to the large volume of 3D CT sequences, the existing methods cannot balance complete semantic features and high-resolution detail information, which leads to uncertain, rough, and inaccurate segmentation, especially in small and irregular organs. In this paper, we propose a two-stage algorithm named multi-dimensional cascaded net (MDCNet) to solve the above problems and segment multi-organs in CT images, including the spleen, kidney, gallbladder, esophagus, liver, stomach, pancreas, and duodenum. METHODS MDCNet combines the powerful semantic encoder ability of a 3D net and the rich high-resolution information of a 2.5D net. In stage1, a prior-guided shallow-layer-enhanced 3D location net extracts entire semantic features from a downsampled CT volume to perform rough segmentation. Additionally, we use circular inference and parameter Dice loss to alleviate uncertain boundary. The inputs of stage2 are high-resolution slices, which are obtained by the original image and coarse segmentation of stage1. Stage2 offsets the details lost during downsampling, resulting in smooth and accurate refined contours. The 2.5D net from the axial, coronal, and sagittal views also compensates for the missing spatial information of a single view. RESULTS The experiments on the two datasets both obtained the best performance, particularly a higher Dice on small gallbladders and irregular duodenums, which reached 0.85±0.12 and 0.77±0.07 respectively, increasing by 0.02 and 0.03 compared to the state-of-the-art method. CONCLUSION Our method can extract all semantic and high-resolution detail information from a large-volume CT image. It reduces the boundary uncertainty while yielding smoother segmentation edges, indicating good clinical application prospects.
Collapse
Affiliation(s)
- Chengkang Li
- School of Information Science and Technology of Fudan University, Shanghai 200433, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai 200032, China
| | - Yishen Mao
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Yi Guo
- School of Information Science and Technology of Fudan University, Shanghai 200433, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai 200032, China.
| | - Ji Li
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| | - Yuanyuan Wang
- School of Information Science and Technology of Fudan University, Shanghai 200433, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai 200032, China.
| |
Collapse
|