Bottauscio O, Arduino A, Chiampi M, Zilberti L. Simplified modeling of implanted medical devices with metallic filamentary closed loops exposed to low or medium frequency magnetic fields.
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023;
229:107316. [PMID:
36566651 DOI:
10.1016/j.cmpb.2022.107316]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND OBJECTIVES
Electric currents are induced in implanted medical devices with metallic filamentary closed loops (e.g., fixation grids, stents) when exposed to time varying magnetic fields, as those generated during certain diagnostic and therapeutic biomedical treatments. A simplified methodology to efficiently compute these currents, to estimate the altered electromagnetic field distribution in the biological tissues and to assess the consequent biological effects is proposed for low or medium frequency fields.
METHODS
The proposed methodology is based on decoupling the handling of the filamentary wire and the anatomical body. To do this, a circuital solution is adopted to study the metallic filamentary implant and this solution is inserted in the electromagnetic field solution involving the biological tissues. The Joule losses computed in the implant are then used as a forcing term for the thermal problem defined by the bioheat Pennes' equation. The methodology is validated against a model problem, where a reference solution is available.
RESULTS
The proposed simplified methodology is proved to be in good agreement with solutions provided by alternative approaches. In particular, errors in the amplitude of the currents induced in the wires result to be always lower than 3%. After the validation, the methodology is applied to check the interactions between the magnetic field generated by different biomedical devices and a skull grid, which represents a complex filamentary wire implant.
CONCLUSIONS
The proposed simplified methodology, suitable to be applied to closed loop wires in the low to intermediate frequency range, is found to be sufficiently accurate and easy to apply in realistic exposure scenarios. This modeling tool allows analyzing different types of small implants, from coronary and biliary duct stents to orthopedic grids, under a variety of exposure scenarios.
Collapse