1
|
Dang LH, Hung SH, Le NTN, Chuang WK, Wu JY, Huang TC, Le NQK. Enhancing Nasopharyngeal Carcinoma Survival Prediction: Integrating Pre- and Post-Treatment MRI Radiomics with Clinical Data. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2474-2489. [PMID: 38689151 PMCID: PMC11522233 DOI: 10.1007/s10278-024-01109-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024]
Abstract
Recurrences are frequent in nasopharyngeal carcinoma (NPC) despite high remission rates with treatment, leading to considerable morbidity. This study aimed to develop a prediction model for NPC survival by harnessing both pre- and post-treatment magnetic resonance imaging (MRI) radiomics in conjunction with clinical data, focusing on 3-year progression-free survival (PFS) as the primary outcome. Our comprehensive approach involved retrospective clinical and MRI data collection of 276 eligible NPC patients from three independent hospitals (180 in the training cohort, 46 in the validation cohort, and 50 in the external cohort) who underwent MRI scans twice, once within 2 months prior to treatment and once within 10 months after treatment. From the contrast-enhanced T1-weighted images before and after treatment, 3404 radiomics features were extracted. These features were not only derived from the primary lesion but also from the adjacent lymph nodes surrounding the tumor. We conducted appropriate feature selection pipelines, followed by Cox proportional hazards models for survival analysis. Model evaluation was performed using receiver operating characteristic (ROC) analysis, the Kaplan-Meier method, and nomogram construction. Our study unveiled several crucial predictors of NPC survival, notably highlighting the synergistic combination of pre- and post-treatment data in both clinical and radiomics assessments. Our prediction model demonstrated robust performance, with an accuracy of AUCs of 0.66 (95% CI: 0.536-0.779) in the training cohort, 0.717 (95% CI: 0.536-0.883) in the testing cohort, and 0.827 (95% CI: 0.684-0.948) in validation cohort in prognosticating patient outcomes. Our study presented a novel and effective prediction model for NPC survival, leveraging both pre- and post-treatment clinical data in conjunction with MRI features. Its constructed nomogram provides potentially significant implications for NPC research, offering clinicians a valuable tool for individualized treatment planning and patient counseling.
Collapse
Affiliation(s)
- Luong Huu Dang
- Department of Otolaryngology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Shih-Han Hung
- Department of Otolaryngology, School of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Otolaryngology, Wan Fang Hospital, Taipei, Taiwan
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Nhi Thao Ngoc Le
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei, Taiwan
| | - Wei-Kai Chuang
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jeng-You Wu
- Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ting-Chieh Huang
- Department of Otolaryngology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- AIBioMed Research Group, Taipei Medical University, Taipei, Taiwan.
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Wang CK, Wang TW, Lu CF, Wu YT, Hua MW. Deciphering the Prognostic Efficacy of MRI Radiomics in Nasopharyngeal Carcinoma: A Comprehensive Meta-Analysis. Diagnostics (Basel) 2024; 14:924. [PMID: 38732337 PMCID: PMC11082984 DOI: 10.3390/diagnostics14090924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
This meta-analysis investigates the prognostic value of MRI-based radiomics in nasopharyngeal carcinoma treatment outcomes, specifically focusing on overall survival (OS) variability. The study protocol was registered with INPLASY (INPLASY202420101). Initially, a systematic review identified 15 relevant studies involving 6243 patients through a comprehensive search across PubMed, Embase, and Web of Science, adhering to PRISMA guidelines. The methodological quality was assessed using the Quality in Prognosis Studies (QUIPS) tool and the Radiomics Quality Score (RQS), highlighting a low risk of bias in most domains. Our analysis revealed a significant average concordance index (c-index) of 72% across studies, indicating the potential of radiomics in clinical prognostication. However, moderate heterogeneity was observed, particularly in OS predictions. Subgroup analyses and meta-regression identified validation methods and radiomics software as significant heterogeneity moderators. Notably, the number of features in the prognosis model correlated positively with its performance. These findings suggest radiomics' promising role in enhancing cancer treatment strategies, though the observed heterogeneity and potential biases call for cautious interpretation and standardization in future research.
Collapse
Affiliation(s)
- Chih-Keng Wang
- School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Ting-Wei Wang
- School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Biophotonics, National Yang-Ming Chiao Tung University, 155, Sec. 2, Li-Nong St. Beitou Dist., Taipei 112304, Taiwan
| | - Chia-Fung Lu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang-Ming Chiao Tung University, 155, Sec. 2, Li-Nong St. Beitou Dist., Taipei 112304, Taiwan
| | - Man-Wei Hua
- Department of Otolaryngology-Head and Neck Surgery, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| |
Collapse
|
3
|
Ren CX, Xu GX, Dai DQ, Lin L, Sun Y, Liu QS. Cross-site prognosis prediction for nasopharyngeal carcinoma from incomplete multi-modal data. Med Image Anal 2024; 93:103103. [PMID: 38368752 DOI: 10.1016/j.media.2024.103103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/05/2023] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Accurate prognosis prediction for nasopharyngeal carcinoma based on magnetic resonance (MR) images assists in the guidance of treatment intensity, thus reducing the risk of recurrence and death. To reduce repeated labor and sufficiently explore domain knowledge, aggregating labeled/annotated data from external sites enables us to train an intelligent model for a clinical site with unlabeled data. However, this task suffers from the challenges of incomplete multi-modal examination data fusion and image data heterogeneity among sites. This paper proposes a cross-site survival analysis method for prognosis prediction of nasopharyngeal carcinoma from domain adaptation viewpoint. Utilizing a Cox model as the basic framework, our method equips it with a cross-attention based multi-modal fusion regularization. This regularization model effectively fuses the multi-modal information from multi-parametric MR images and clinical features onto a domain-adaptive space, despite the absence of some modalities. To enhance the feature discrimination, we also extend the contrastive learning technique to censored data cases. Compared with the conventional approaches which directly deploy a trained survival model in a new site, our method achieves superior prognosis prediction performance in cross-site validation experiments. These results highlight the key role of cross-site adaptability of our method and support its value in clinical practice.
Collapse
Affiliation(s)
- Chuan-Xian Ren
- School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China.
| | - Geng-Xin Xu
- School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Dao-Qing Dai
- School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Li Lin
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
| | - Ying Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
| | - Qing-Shan Liu
- School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
4
|
Wang Z, Fang M, Zhang J, Tang L, Zhong L, Li H, Cao R, Zhao X, Liu S, Zhang R, Xie X, Mai H, Qiu S, Tian J, Dong D. Radiomics and Deep Learning in Nasopharyngeal Carcinoma: A Review. IEEE Rev Biomed Eng 2024; 17:118-135. [PMID: 37097799 DOI: 10.1109/rbme.2023.3269776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Nasopharyngeal carcinoma is a common head and neck malignancy with distinct clinical management compared to other types of cancer. Precision risk stratification and tailored therapeutic interventions are crucial to improving the survival outcomes. Artificial intelligence, including radiomics and deep learning, has exhibited considerable efficacy in various clinical tasks for nasopharyngeal carcinoma. These techniques leverage medical images and other clinical data to optimize clinical workflow and ultimately benefit patients. In this review, we provide an overview of the technical aspects and basic workflow of radiomics and deep learning in medical image analysis. We then conduct a detailed review of their applications to seven typical tasks in the clinical diagnosis and treatment of nasopharyngeal carcinoma, covering various aspects of image synthesis, lesion segmentation, diagnosis, and prognosis. The innovation and application effects of cutting-edge research are summarized. Recognizing the heterogeneity of the research field and the existing gap between research and clinical translation, potential avenues for improvement are discussed. We propose that these issues can be gradually addressed by establishing standardized large datasets, exploring the biological characteristics of features, and technological upgrades.
Collapse
|
5
|
Yang C, Chen Y, Zhu L, Wang L, Lin Q. A deep learning MRI-based signature may provide risk-stratification strategies for nasopharyngeal carcinoma. Eur Arch Otorhinolaryngol 2023; 280:5039-5047. [PMID: 37358652 DOI: 10.1007/s00405-023-08084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVE As the prognosis of nasopharyngeal carcinoma (NPC) is influenced by various factors, making it difficult for clinical physicians to predict the outcome, the objective of this study was to develop a deep learning-based signature for risk stratification in NPC patients. METHODS A total of 293 patients were enrolled in the study and divided into training, validation, and testing groups with a ratio of 7:1:2. MRI scans and corresponding clinical information were collected, and the 3-year disease-free survival (DFS) was chosen as the endpoint. The Res-Net18 algorithm was used to develop two deep learning (DL) models and another solely based on clinical characteristics developed by multivariate cox analysis. The performance of both models was evaluated using the area under the curve (AUC) and the concordance index (C-index). Discriminative performance was assessed using Kaplan-Meier survival analysis. RESULTS The deep learning approach identified DL prognostic models. The MRI-based DL model showed significantly better performance compared to the traditional model solely based on clinical characteristics (AUC: 0.8861 vs 0.745, p = 0.04 and C-index: 0.865 vs 0.727, p = 0.03). The survival analysis showed significant survival differences between the risk groups identified by the MRI-based model. CONCLUSION Our study highlights the potential of MRI in predicting the prognosis of NPC through DL algorithm. This approach has the potential to become a novel tool for prognosis prediction and can help physicians to develop more valid treatment strategies in the future.
Collapse
Affiliation(s)
- Chen Yang
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China
| | - Yuan Chen
- Department of Computer Science, Xiamen University, Xiamen, Fujian, China
| | - Luchao Zhu
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China
| | - Liansheng Wang
- Department of Computer Science, Xiamen University, Xiamen, Fujian, China.
| | - Qin Lin
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China.
| |
Collapse
|
6
|
Fujima N, Kamagata K, Ueda D, Fujita S, Fushimi Y, Yanagawa M, Ito R, Tsuboyama T, Kawamura M, Nakaura T, Yamada A, Nozaki T, Fujioka T, Matsui Y, Hirata K, Tatsugami F, Naganawa S. Current State of Artificial Intelligence in Clinical Applications for Head and Neck MR Imaging. Magn Reson Med Sci 2023; 22:401-414. [PMID: 37532584 PMCID: PMC10552661 DOI: 10.2463/mrms.rev.2023-0047] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/09/2023] [Indexed: 08/04/2023] Open
Abstract
Due primarily to the excellent soft tissue contrast depictions provided by MRI, the widespread application of head and neck MRI in clinical practice serves to assess various diseases. Artificial intelligence (AI)-based methodologies, particularly deep learning analyses using convolutional neural networks, have recently gained global recognition and have been extensively investigated in clinical research for their applicability across a range of categories within medical imaging, including head and neck MRI. Analytical approaches using AI have shown potential for addressing the clinical limitations associated with head and neck MRI. In this review, we focus primarily on the technical advancements in deep-learning-based methodologies and their clinical utility within the field of head and neck MRI, encompassing aspects such as image acquisition and reconstruction, lesion segmentation, disease classification and diagnosis, and prognostic prediction for patients presenting with head and neck diseases. We then discuss the limitations of current deep-learning-based approaches and offer insights regarding future challenges in this field.
Collapse
Affiliation(s)
- Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Daiju Ueda
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Osaka, Japan
| | - Shohei Fujita
- Department of Radiology, University of Tokyo, Tokyo, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, Kumamoto, Kumamoto, Japan
| | - Akira Yamada
- Department of Radiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Okayama, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
7
|
Adeoye J, Hui L, Su YX. Data-centric artificial intelligence in oncology: a systematic review assessing data quality in machine learning models for head and neck cancer. JOURNAL OF BIG DATA 2023; 10:28. [DOI: 10.1186/s40537-023-00703-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/23/2023] [Indexed: 01/03/2025]
Abstract
AbstractMachine learning models have been increasingly considered to model head and neck cancer outcomes for improved screening, diagnosis, treatment, and prognostication of the disease. As the concept of data-centric artificial intelligence is still incipient in healthcare systems, little is known about the data quality of the models proposed for clinical utility. This is important as it supports the generalizability of the models and data standardization. Therefore, this study overviews the quality of structured and unstructured data used for machine learning model construction in head and neck cancer. Relevant studies reporting on the use of machine learning models based on structured and unstructured custom datasets between January 2016 and June 2022 were sourced from PubMed, EMBASE, Scopus, and Web of Science electronic databases. Prediction model Risk of Bias Assessment (PROBAST) tool was used to assess the quality of individual studies before comprehensive data quality parameters were assessed according to the type of dataset used for model construction. A total of 159 studies were included in the review; 106 utilized structured datasets while 53 utilized unstructured datasets. Data quality assessments were deliberately performed for 14.2% of structured datasets and 11.3% of unstructured datasets before model construction. Class imbalance and data fairness were the most common limitations in data quality for both types of datasets while outlier detection and lack of representative outcome classes were common in structured and unstructured datasets respectively. Furthermore, this review found that class imbalance reduced the discriminatory performance for models based on structured datasets while higher image resolution and good class overlap resulted in better model performance using unstructured datasets during internal validation. Overall, data quality was infrequently assessed before the construction of ML models in head and neck cancer irrespective of the use of structured or unstructured datasets. To improve model generalizability, the assessments discussed in this study should be introduced during model construction to achieve data-centric intelligent systems for head and neck cancer management.
Collapse
|
8
|
Zan P, Zhong H, Zhao Y, Xu H, Hong R, Ding Q, Yue J. Research on improved intestinal image classification for LARS based on ResNet. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:124101. [PMID: 36586901 DOI: 10.1063/5.0100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
Low anterior rectal resection is an effective way to treat rectal cancer at present, but it is easy to cause low anterior resection syndrome after surgery; so, a comprehensive diagnosis of defecation and pelvic floor function must be carried out. There are few studies on the classification of diagnoses in the field of intestinal diseases. In response to these outstanding problems, this research will focus on the design of the intestinal function diagnosis system and the image processing and classification algorithm of the intestinal wall to verify an efficient fusion method, which can be used to diagnose the intestinal diseases in clinical medicine. The diagnostic system designed in this paper makes up for the singleness of clinical monitoring methods. At the same time, the Res-SVDNet neural network model is used to solve the problems of small intestinal image samples and network overfitting, and achieve efficient fusion diagnosis of intestinal diseases in patients. Different models were used to compare experiments on the constructed datasets to verify the applicability of the Res-SVDNet model in intestinal image classification. The accuracy of the model was 99.54%, which is several percentage points higher than other algorithm models.
Collapse
Affiliation(s)
- Peng Zan
- Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Hua Zhong
- Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Yutong Zhao
- Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Huiyan Xu
- Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Rui Hong
- Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Qiao Ding
- Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Jingwei Yue
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|