1
|
Kittrell HD, Shaikh A, Adintori PA, McCarthy P, Kohli-Seth R, Nadkarni GN, Sakhuja A. Role of artificial intelligence in critical care nutrition support and research. Nutr Clin Pract 2024; 39:1069-1080. [PMID: 39073166 DOI: 10.1002/ncp.11194] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/06/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
Nutrition plays a key role in the comprehensive care of critically ill patients. Determining optimal nutrition strategy, however, remains a subject of intense debate. Artificial intelligence (AI) applications are becoming increasingly common in medicine, and specifically in critical care, driven by the data-rich environment of intensive care units. In this review, we will examine the evidence regarding the application of AI in critical care nutrition. As of now, the use of AI in critical care nutrition is relatively limited, with its primary emphasis on malnutrition screening and tolerance of enteral nutrition. Despite the current scarcity of evidence, the potential for AI for more personalized nutrition management for critically ill patients is substantial. This stems from the ability of AI to integrate multiple data streams reflecting patients' changing needs while addressing inherent heterogeneity. The application of AI in critical care nutrition holds promise for optimizing patient outcomes through tailored and adaptive nutrition interventions. A successful implementation of AI, however, necessitates a multidisciplinary approach, coupled with careful consideration of challenges related to data management, financial aspects, and patient privacy.
Collapse
Affiliation(s)
- Hannah D Kittrell
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Clinical Intelligence Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Data Driven and Digital Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ahmed Shaikh
- Institute for Critical Care Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peter A Adintori
- Food and Nutrition Services Department, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Program in Rehabilitation Sciences, New York University Steinhardt, New York, New York, USA
| | - Paul McCarthy
- Department of Cardiovascular and Thoracic Surgery, Division of Cardiovascular Critical Care, West Virginia University, Morgantown, West Virginia, USA
| | - Roopa Kohli-Seth
- Institute for Critical Care Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Girish N Nadkarni
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Clinical Intelligence Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Data Driven and Digital Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ankit Sakhuja
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Data Driven and Digital Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Critical Care Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|