1
|
Liu Y, Yu J, Mou H. BP-diff: a conditional diffusion model for cuffless continuous BP waveform estimation using U-Net. Physiol Meas 2024; 45:105006. [PMID: 39321963 DOI: 10.1088/1361-6579/ad7fcc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Objective.Continuous monitoring of blood pressure (BP) is crucial for daily healthcare. Although invasive methods provide accurate continuous BP measurements, they are not suitable for routine use. Photoplethysmography (PPG), a non-invasive technique that detects changes in blood volume within the microcirculation using light, shows promise for BP measurement. The primary goal of this study is to develop a novel cuffless method based on PPG for accurately estimating continuous BP.Approach.We introduce BP-Diff, an end-to-end method for cuffless continuous BP waveform estimation utilizing a conditional diffusion probability model combined with a U-Net architecture. This approach takes advantage of the stochastic properties of diffusion models and the strong feature representation capabilities of U-Net. It integrates the continuous BP waveform as the initial status and uses the PPG signal and its derivatives as conditions to guide the training and sampling process.Main results.BP-Diff was evaluated using both uncalibrated and calibrated schemes. The results indicate that, when uncalibrated, BP-Diff can accurately track BP dynamics, including peak and valley positions, as well as timing. After calibration, BP-Diff achieved highly accurate BP estimations. The mean absolute error of the estimated BP waveforms, along with the systolic BP, diastolic BP, and mean arterial pressure from the calibrated BP-Diff model, were 2.99 mmHg, 2.6 mmHg, 1.4 mmHg, and 1.44 mmHg, respectively. Consistency tests, including Bland-Altman analysis and Pearson correlation, confirmed its high reliability compared to reference BP. BP-Diff meets the American Association for Medical Instrumentation standards and has achieved a Grade A from the British Hypertension Society.Significance.This study utilizes PPG signals to develop a novel cuffless continuous BP measurement method, demonstrating superiority over existing approaches. The method is suitable for integration into wearable devices, providing a practical solution for continuous BP monitoring in everyday healthcare.
Collapse
Affiliation(s)
- Yinsong Liu
- Department of School of Electronic Engineering, Beijing University of Posts and Telecommunication, Beijing 100876, People's Republic of China
| | - Junsheng Yu
- Department of School of Electronic Engineering, Beijing University of Posts and Telecommunication, Beijing 100876, People's Republic of China
- School of Physics and Electronic Information, Anhui Normal University, Wuhu 241003, People's Republic of China
- School of Intelligence and Digital Engineering, Luoyang Vocational College of Science and Technology, Luoyang 471000, People's Republic of China
| | - Hanlin Mou
- Chinese Academy of Sciences Aerospace Information Research Institute, Beijing 100094, People's Republic of China
| |
Collapse
|
2
|
Tang Q, Tao C, Li X, Hu H, Chu X, Liu S, Zhang L, Su B, Xu J, An H. Data-knowledge co-driven feature based prediction model via photoplethysmography for evaluating blood pressure. Comput Biol Med 2024; 181:109076. [PMID: 39216405 DOI: 10.1016/j.compbiomed.2024.109076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Knowledge feature (KF) with clear physiological significance of photoplethysmography are widely used in predicting blood pressure. However, KF primarily focus on local information of photoplethysmography, which may struggle to capture the overall characteristics. METHODS Firstly, functional data analysis (FDA) was introduced to extract two types of data feature (DF). Furthermore, data-knowledge co-driven feature (DKCF) was proposed by combining FDA and constraints of KF. Finally, random forest, ada boost, gradient boosting, support vector machine and deep neural network were adopted, to compare the abilities of KF, DFs and DKCF in predicting blood pressure with two datasets (A published dataset and a self-collected dataset). RESULTS Under the premise of extracting only 9 features, the average mean absolute errors (MAE) of systolic blood pressure (SBP) and diastolic blood pressure (DBP) obtained by DKCF are both the smallest in dataset 1. In dataset 2, DKCF acquires the smallest MAE in predicting SBP and obtains the second smallest MAE in predicting DBP. CONCLUSIONS The results demonstrate that low-dimensional DKCF of photoplethysmography is closely correlated with blood pressure, which may serve as an important indicator for health assessment.
Collapse
Affiliation(s)
- Qingfeng Tang
- Digital and Intelligent Health Research Center, Anqing Normal University, Anqing 246133, China; School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Chao Tao
- Digital and Intelligent Health Research Center, Anqing Normal University, Anqing 246133, China.
| | - Xin Li
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Huihui Hu
- Digital and Intelligent Health Research Center, Anqing Normal University, Anqing 246133, China.
| | - Xiaoyu Chu
- Digital and Intelligent Health Research Center, Anqing Normal University, Anqing 246133, China.
| | - Shiping Liu
- Digital and Intelligent Health Research Center, Anqing Normal University, Anqing 246133, China.
| | - Liangliang Zhang
- Digital and Intelligent Health Research Center, Anqing Normal University, Anqing 246133, China.
| | - Benyue Su
- Digital and Intelligent Health Research Center, Anqing Normal University, Anqing 246133, China; School of Mathematics and Computer Science, Tongling University, Tongling 244061, China.
| | - Jiatuo Xu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hui An
- Health Management & Physical Examination Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, China.
| |
Collapse
|
3
|
Majzoobi F, Khodabakhshi MB, Jamasb S, Goudarzi S. ConvLSNet: A lightweight architecture based on ConvLSTM model for the classification of pulmonary conditions using multichannel lung sound recordings. Artif Intell Med 2024; 154:102922. [PMID: 38924864 DOI: 10.1016/j.artmed.2024.102922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Characterization of lung sounds (LS) is indispensable for diagnosing respiratory pathology. Although conventional neural networks (NNs) have been widely employed for the automatic diagnosis of lung sounds, deep neural networks can potentially be more useful than conventional NNs by allowing accurate classification without requiring preprocessing and feature extraction. Utilizing the long short-term memory (LSTM) layers to reveal the sequence-based properties of the LS time series, a novel architecture consisting of a cascade of convolutional long short-term memory (ConvLSTM) and LSTM layers, namely ConvLSNet is developed, which permits highly accurate diagnosis of pulmonary disease states. By modeling the multichannel lung sounds through the ConvLSTM layer, the proposed ConvLSNet architecture can concurrently deal with the spatial and temporal properties of the six-channel LS recordings without heavy preprocessing or data transformation. Notably, the proposed model achieves a classification accuracy of 97.4 % based on LS data corresponding to three pulmonary conditions, namely asthma, COPD, and the healthy state. Compared with architectures consisting exclusively of CNN or LSTM layers, as well as those employing a cascade integration of 2DCNN and LSTM layers, the proposed ConvLSNet architecture exhibited the highest classification accuracy, while imposing the lowest computational cost as quantified by the number of parameters, training time, and learning rate.
Collapse
Affiliation(s)
- Faezeh Majzoobi
- Biomedical Engineering Department, Hamedan University of Technology, Hamedan, Iran
| | | | - Shahriar Jamasb
- Biomedical Engineering Department, Hamedan University of Technology, Hamedan, Iran
| | - Sobhan Goudarzi
- Physical Science Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| |
Collapse
|
4
|
Qiu Y, Ma X, Li X, Fan S, Deng Z, Huang X. Non-Contact Blood Pressure Estimation From Radar Signals by a Stacked Deformable Convolution Network. IEEE J Biomed Health Inform 2024; 28:4553-4564. [PMID: 38743528 DOI: 10.1109/jbhi.2024.3400961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This study introduces a contactless blood pressure monitoring approach that combines conventional radar signal processing with novel deep learning architectures. During the preprocessing phase, datasets suitable for synchronization are created by integrating Kalman filtering, multiscale bandpass filters, and a periodic extraction method in the time domain. These data comprise data on chest micro variations, encapsulating a complex array of physiological and biomedical information reflective of cardiac micromotions. The Radar-based Stacked Deformable convolution Network (RSD-Net) integrates channel and spatial self attention mechanisms within a deformable convolutional framework to enhance feature extraction from radar signals. The network architecture systematically employs deformable convolutions for initial deep feature extraction from individual signals. Subsequently, continuous blood pressure estimation is conducted using self attention mechanisms on feature map from single source coupled with multi-feature map channel attention. The performance of model is corroborated via the open-source dataset procured using a non-invasive 24 GHz six-port continuous wave radar system. The dataset, encompassing readings from 30 healthy individuals subjected to diverse conditions including rest, the Valsalva maneuver, apnea, and tilt-table examinations. It serves to substantiate the validity and resilience of the proposed method in the non-contact assessment of continuous blood pressure. Evaluation metrics reveal Pearson correlation coefficients of 0.838 for systolic and 0.797 for diastolic blood pressure predictions. The Mean Error (ME) and Standard Deviation (SD) for systolic and diastolic blood pressure measurements are -0.32 ±6.14 mmHg and -0.20 ±5.50 mmHg, respectively. The ablation study assesses the contribution of different structural components of the RSD-Net, validating their significance in the overall of model performance.
Collapse
|
5
|
Xing X, Hong J, Alastruey J, Long X, Liu H, Dong WF. Robust arterial compliance estimation with Katz's fractal dimension of photoplethysmography. Front Physiol 2024; 15:1398904. [PMID: 38915780 PMCID: PMC11194390 DOI: 10.3389/fphys.2024.1398904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
Arterial compliance (AC) plays a crucial role in vascular aging and cardiovascular disease. The ability to continuously estimate aortic AC or its surrogate, pulse pressure (PP), through wearable devices is highly desirable, given its strong association with daily activities. While the single-site photoplethysmography (PPG)-derived arterial stiffness indices show reasonable correlations with AC, they are susceptible to noise interference, limiting their practical use. To overcome this challenge, our study introduces a noise-resistant indicator of AC: Katz's fractal dimension (KFD) of PPG signals. We showed that KFD integrated the signal complexity arising from compliance changes across a cardiac cycle and vascular structural complexity, thereby decreasing its dependence on individual characteristic points. To assess its capability in measuring AC, we conducted a comprehensive evaluation using both in silico studies with 4374 virtual human data and real-world measurements. In the virtual human studies, KFD demonstrated a strong correlation with AC (r = 0.75), which only experienced a slight decrease to 0.66 at a signal-to-noise ratio of 15dB, surpassing the best PPG-morphology-derived AC measure (r = 0.41) under the same noise condition. In addition, we observed that KFD's sensitivity to AC varied based on the individual's hemodynamic status, which may further enhance the accuracy of AC estimations. These in silico findings were supported by real-world measurements encompassing diverse health conditions. In conclusion, our study suggests that PPG-derived KFD has the potential to continuously and reliably monitor arterial compliance, enabling unobtrusive and wearable assessment of cardiovascular health.
Collapse
Affiliation(s)
- Xiaoman Xing
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jingyuan Hong
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Jordi Alastruey
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Xi Long
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Haipeng Liu
- Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom
| | - Wen-Fei Dong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
6
|
Xing X, Dong WF, Xiao R, Song M, Jiang C. Analysis of the Chaotic Component of Photoplethysmography and Its Association with Hemodynamic Parameters. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1582. [PMID: 38136462 PMCID: PMC10742563 DOI: 10.3390/e25121582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Wearable technologies face challenges due to signal instability, hindering their usage. Thus, it is crucial to comprehend the connection between dynamic patterns in photoplethysmography (PPG) signals and cardiovascular health. In our study, we collected 401 multimodal recordings from two public databases, evaluating hemodynamic conditions like blood pressure (BP), cardiac output (CO), vascular compliance (C), and peripheral resistance (R). Using irregular-resampling auto-spectral analysis (IRASA), we quantified chaotic components in PPG signals and employed different methods to measure the fractal dimension (FD) and entropy. Our findings revealed that in surgery patients, the power of chaotic components increased with vascular stiffness. As the intensity of CO fluctuations increased, there was a notable strengthening in the correlation between most complexity measures of PPG and these parameters. Interestingly, some conventional morphological features displayed a significant decrease in correlation, indicating a shift from a static to dynamic scenario. Healthy subjects exhibited a higher percentage of chaotic components, and the correlation between complexity measures and hemodynamics in this group tended to be more pronounced. Causal analysis showed that hemodynamic fluctuations are main influencers for FD changes, with observed feedback in most cases. In conclusion, understanding chaotic patterns in PPG signals is vital for assessing cardiovascular health, especially in individuals with unstable hemodynamics or during ambulatory testing. These insights can help overcome the challenges faced by wearable technologies and enhance their usage in real-world scenarios.
Collapse
Affiliation(s)
- Xiaoman Xing
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Sciences and Technology of China, Suzhou 215163, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Wen-Fei Dong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Renjie Xiao
- Medical Health Information Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Mingxuan Song
- Suzhou GK Medtech Science and Technology Development (Group) Co., Ltd., Suzhou 215163, China
| | - Chenyu Jiang
- Jinan Guoke Medical Technology Development Co., Ltd., Jinan 250100, China
| |
Collapse
|
7
|
Fuadah YN, Lim KM. Classification of Blood Pressure Levels Based on Photoplethysmogram and Electrocardiogram Signals with a Concatenated Convolutional Neural Network. Diagnostics (Basel) 2022; 12:diagnostics12112886. [PMID: 36428946 PMCID: PMC9689744 DOI: 10.3390/diagnostics12112886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Hypertension is a severe public health issue worldwide that significantly increases the risk of cardiac vascular disease, stroke, brain hemorrhage, and renal dysfunction. Early screening of blood pressure (BP) levels is essential to prevent the dangerous complication associated with hypertension as the leading cause of death. Recent studies have focused on employing photoplethysmograms (PPG) with machine learning to classify BP levels. However, several studies claimed that electrocardiograms (ECG) also strongly correlate with blood pressure. Therefore, we proposed a concatenated convolutional neural network which integrated the features extracted from PPG and ECG signals. This study used the MIMIC III dataset, which provided PPG, ECG, and arterial blood pressure (ABP) signals. A total of 14,298 signal segments were obtained from 221 patients, which were divided into 9150 signals of train data, 2288 signals of validation data, and 2860 signals of test data. In the training process, five-fold cross-validation was applied to select the best model with the highest classification performance. The proposed concatenated CNN architecture using PPG and ECG obtained the highest test accuracy of 94.56-95.15% with a 95% confidence interval in classifying BP levels into hypotension, normotension, prehypertension, hypertension stage 1, and hypertension stage 2. The result shows that the proposed method is a promising solution to categorize BP levels effectively, assisting medical personnel in making a clinical diagnosis.
Collapse
Affiliation(s)
- Yunendah Nur Fuadah
- Computational Medicine Lab, Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
- School of Electrical Engineering, Telkom University, Bandung 40257, Indonesia
| | - Ki Moo Lim
- Computational Medicine Lab, Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
- Computational Medicine Lab, Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
- Correspondence:
| |
Collapse
|