1
|
Wu J, Yao Y, Zhang G, Li X, Peng B. Difficult Airway Assessment Based on Multi-View Metric Learning. Bioengineering (Basel) 2024; 11:703. [PMID: 39061785 PMCID: PMC11274261 DOI: 10.3390/bioengineering11070703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The preoperative assessment of difficult airways is of great significance in the practice of anesthesia intubation. In recent years, although a large number of difficult airway recognition algorithms have been investigated, defects such as low recognition accuracy and poor recognition reliability still exist. In this paper, we propose a Dual-Path Multi-View Fusion Network (DMF-Net) based on multi-view metric learning, which aims to predict difficult airways through multi-view facial images of patients. DMF-Net adopts a dual-path structure to extract features by grouping the frontal and lateral images of the patients. Meanwhile, a Multi-Scale Feature Fusion Module and a Hybrid Co-Attention Module are designed to improve the feature representation ability of the model. Consistency loss and complementarity loss are utilized fully for the complementarity and consistency of information between multi-view data. Combined with Focal Loss, information bias is effectively avoided. Experimental validation illustrates the effectiveness of the proposed method, with the accuracy, specificity, sensitivity, and F1 score reaching 77.92%, 75.62%, 82.50%, and 71.35%, respectively. Compared with methods such as clinical bedside screening tests and existing artificial intelligence-based methods, our method is more accurate and reliable and can provide a reliable auxiliary tool for clinical healthcare personnel to effectively improve the accuracy and reliability of preoperative difficult airway assessments. The proposed network can help to identify and assess the risk of difficult airways in patients before surgery and reduce the incidence of postoperative complications.
Collapse
Affiliation(s)
- Jinze Wu
- School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu 611756, China; (J.W.); (X.L.)
| | - Yuan Yao
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu 610044, China;
| | - Guangchao Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610044, China;
| | - Xiaofan Li
- School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu 611756, China; (J.W.); (X.L.)
| | - Bo Peng
- School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu 611756, China; (J.W.); (X.L.)
| |
Collapse
|
2
|
Moulaei K, Afrash MR, Parvin M, Shadnia S, Rahimi M, Mostafazadeh B, Evini PET, Sabet B, Vahabi SM, Soheili A, Fathy M, Kazemi A, Khani S, Mortazavi SM, Hosseini SM. Explainable artificial intelligence (XAI) for predicting the need for intubation in methanol-poisoned patients: a study comparing deep and machine learning models. Sci Rep 2024; 14:15751. [PMID: 38977750 PMCID: PMC11231277 DOI: 10.1038/s41598-024-66481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
The need for intubation in methanol-poisoned patients, if not predicted in time, can lead to irreparable complications and even death. Artificial intelligence (AI) techniques like machine learning (ML) and deep learning (DL) greatly aid in accurately predicting intubation needs for methanol-poisoned patients. So, our study aims to assess Explainable Artificial Intelligence (XAI) for predicting intubation necessity in methanol-poisoned patients, comparing deep learning and machine learning models. This study analyzed a dataset of 897 patient records from Loghman Hakim Hospital in Tehran, Iran, encompassing cases of methanol poisoning, including those requiring intubation (202 cases) and those not requiring it (695 cases). Eight established ML (SVM, XGB, DT, RF) and DL (DNN, FNN, LSTM, CNN) models were used. Techniques such as tenfold cross-validation and hyperparameter tuning were applied to prevent overfitting. The study also focused on interpretability through SHAP and LIME methods. Model performance was evaluated based on accuracy, specificity, sensitivity, F1-score, and ROC curve metrics. Among DL models, LSTM showed superior performance in accuracy (94.0%), sensitivity (99.0%), specificity (94.0%), and F1-score (97.0%). CNN led in ROC with 78.0%. For ML models, RF excelled in accuracy (97.0%) and specificity (100%), followed by XGB with sensitivity (99.37%), F1-score (98.27%), and ROC (96.08%). Overall, RF and XGB outperformed other models, with accuracy (97.0%) and specificity (100%) for RF, and sensitivity (99.37%), F1-score (98.27%), and ROC (96.08%) for XGB. ML models surpassed DL models across all metrics, with accuracies from 93.0% to 97.0% for DL and 93.0% to 99.0% for ML. Sensitivities ranged from 98.0% to 99.37% for DL and 93.0% to 99.0% for ML. DL models achieved specificities from 78.0% to 94.0%, while ML models ranged from 93.0% to 100%. F1-scores for DL were between 93.0% and 97.0%, and for ML between 96.0% and 98.27%. DL models scored ROC between 68.0% and 78.0%, while ML models ranged from 84.0% to 96.08%. Key features for predicting intubation necessity include GCS at admission, ICU admission, age, longer folic acid therapy duration, elevated BUN and AST levels, VBG_HCO3 at initial record, and hemodialysis presence. This study as the showcases XAI's effectiveness in predicting intubation necessity in methanol-poisoned patients. ML models, particularly RF and XGB, outperform DL counterparts, underscoring their potential for clinical decision-making.
Collapse
Affiliation(s)
- Khadijeh Moulaei
- Department of Health Information Technology, School of Paramedical, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohammad Reza Afrash
- Deparment of Artificial Intelligence, Smart University of Medical Sciences, Tehran, Iran
| | - Mohammad Parvin
- Department of Industrial and Systems Engineering, Auburn University, Auburn, AL, USA
| | - Shahin Shadnia
- Toxicological Research Center, Excellence Center of Clinical Toxicology, Department of Clinical Toxicology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Rahimi
- Toxicological Research Center, Excellence Center of Clinical Toxicology, Department of Clinical Toxicology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Mostafazadeh
- Toxicological Research Center, Excellence Center of Clinical Toxicology, Department of Clinical Toxicology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Peyman Erfan Talab Evini
- Toxicological Research Center, Excellence Center of Clinical Toxicology, Department of Clinical Toxicology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Sabet
- Deparment of Artificial Intelligence, Smart University of Medical Sciences, Tehran, Iran
- Department of Surgery, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirali Soheili
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mobin Fathy
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arya Kazemi
- Students Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Khani
- Students Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Mortazavi
- Students Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayed Masoud Hosseini
- Toxicological Research Center, Excellence Center of Clinical Toxicology, Department of Clinical Toxicology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|