1
|
Dalton MA, D'Souza A, Lv J, Calamante F. New insights into anatomical connectivity along the anterior–posterior axis of the human hippocampus using in vivo quantitative fibre tracking. eLife 2022; 11:76143. [PMID: 36345716 PMCID: PMC9643002 DOI: 10.7554/elife.76143] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Abstract
The hippocampus supports multiple cognitive functions including episodic memory. Recent work has highlighted functional differences along the anterior–posterior axis of the human hippocampus, but the neuroanatomical underpinnings of these differences remain unclear. We leveraged track-density imaging to systematically examine anatomical connectivity between the cortical mantle and the anterior–posterior axis of the in vivo human hippocampus. We first identified the most highly connected cortical areas and detailed the degree to which they preferentially connect along the anterior–posterior axis of the hippocampus. Then, using a tractography pipeline specifically tailored to measure the location and density of streamline endpoints within the hippocampus, we characterised where these cortical areas preferentially connect within the hippocampus. Our results provide new and detailed insights into how specific regions along the anterior–posterior axis of the hippocampus are associated with different cortical inputs/outputs and provide evidence that both gradients and circumscribed areas of dense extrinsic anatomical connectivity exist within the human hippocampus. These findings inform conceptual debates in the field and emphasise the importance of considering the hippocampus as a heterogeneous structure. Overall, our results represent a major advance in our ability to map the anatomical connectivity of the human hippocampus in vivo and inform our understanding of the neural architecture of hippocampal-dependent memory systems in the human brain. The brain allows us to perceive and interact with our environment and to create and recall memories about our day-to-day lives. A sea-horse shaped structure in the brain, called the hippocampus, is critical for translating our perceptions into memories, and it does so in coordination with other brain regions. For example, different regions of the cerebral cortex (the outer layer of the brain) support different aspects of cognition, and pathways of information flow between the cerebral cortex and hippocampus underpin the healthy functioning of memory. Decades of research conducted into the brains of non-human primates show that specific regions of the cerebral cortex anatomically connect with different parts of the hippocampus to support this information flow. These insights form the foundation for existing theoretical models of how networks of neurons in the hippocampus and the cerebral cortex are connected. However, the human cerebral cortex has greatly expanded during our evolution, meaning that patterns of connectivity in the human brain may diverge from those in the brains of non-human primates. Deciphering human brain circuits in greater detail is crucial if we are to gain a better understanding of the structure and operation of the healthy human brain. However, obtaining comprehensive maps of anatomical connections between the hippocampus and cerebral cortex has been hampered by technical limitations. For example, magnetic resonance imaging (MRI), an approach that can be used to study the living human brain, suffers from insufficient image resolution. To overcome these issues, Dalton et al. used an imaging technique called diffusion weighted imaging which is used to study white matter pathways in the brain. They developed a tailored approach to create high-resolution maps showing how the hippocampus anatomically connects with the cerebral cortex in the healthy human brain. Dalton et al. produced detailed maps illustrating which areas of the cerebral cortex have high anatomical connectivity with the hippocampus and how different parts of the hippocampus preferentially connect to different neural circuits in the cortex. For example, the experiments demonstrate that highly connected areas in a cortical region called the temporal cortex connect to very specific, circumscribed regions within the hippocampus. These findings suggest that the hippocampus may consist of different neural circuits, each preferentially linked to defined areas of the cortex which are, in turn, associated with specific aspects of cognition. These observations further our knowledge of hippocampal-dependant memory circuits in the human brain and provide a foundation for the study of memory decline in aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Marshall A Dalton
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney
- Brain and Mind Centre, The University of Sydney
- School of Psychology, Faculty of Science, The University of Sydney
| | - Arkiev D'Souza
- Brain and Mind Centre, The University of Sydney
- Faculty of Medicine and Health Translational Research Collective, The University of Sydney
- Sydney Imaging, University of Sydney
| | - Jinglei Lv
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney
- Brain and Mind Centre, The University of Sydney
| | - Fernando Calamante
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney
- Brain and Mind Centre, The University of Sydney
- Sydney Imaging, University of Sydney
| |
Collapse
|
2
|
Branchi I. Recentering neuroscience on behavior: The interface between brain and environment is a privileged level of control of neural activity. Neurosci Biobehav Rev 2022; 138:104678. [PMID: 35487322 DOI: 10.1016/j.neubiorev.2022.104678] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/08/2023]
Abstract
Despite the huge and constant progress in the molecular and cellular neuroscience fields, our capability to understand brain alterations and treat mental illness is still limited. Therefore, a paradigm shift able to overcome such limitation is warranted. Behavior and the associated mental states are the interface between the central nervous system and the living environment. Since, in any system, the interface is a key regulator of system organization, behavior is proposed here as a unique and privileged level of control and orchestration of brain structure and activity. This view has relevant scientific and clinical implications. First, the study of behavior represents a singular starting point for the investigation of neural activity in an integrated and comprehensive fashion. Second, behavioral changes, accomplished through psychotherapy or environmental interventions, are expected to have the highest impact to specifically reorganize the complexity of the human mind and thus achieve a solid and long-lasting improvement in mental health.
Collapse
Affiliation(s)
- Igor Branchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| |
Collapse
|
3
|
Treder MS, Charest I, Michelmann S, Martín-Buro MC, Roux F, Carceller-Benito F, Ugalde-Canitrot A, Rollings DT, Sawlani V, Chelvarajah R, Wimber M, Hanslmayr S, Staresina BP. The hippocampus as the switchboard between perception and memory. Proc Natl Acad Sci U S A 2021; 118:e2114171118. [PMID: 34880133 PMCID: PMC8685930 DOI: 10.1073/pnas.2114171118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 12/30/2022] Open
Abstract
Adaptive memory recall requires a rapid and flexible switch from external perceptual reminders to internal mnemonic representations. However, owing to the limited temporal or spatial resolution of brain imaging modalities used in isolation, the hippocampal-cortical dynamics supporting this process remain unknown. We thus employed an object-scene cued recall paradigm across two studies, including intracranial electroencephalography (iEEG) and high-density scalp EEG. First, a sustained increase in hippocampal high gamma power (55 to 110 Hz) emerged 500 ms after cue onset and distinguished successful vs. unsuccessful recall. This increase in gamma power for successful recall was followed by a decrease in hippocampal alpha power (8 to 12 Hz). Intriguingly, the hippocampal gamma power increase marked the moment at which extrahippocampal activation patterns shifted from perceptual cue toward mnemonic target representations. In parallel, source-localized EEG alpha power revealed that the recall signal progresses from hippocampus to posterior parietal cortex and then to medial prefrontal cortex. Together, these results identify the hippocampus as the switchboard between perception and memory and elucidate the ensuing hippocampal-cortical dynamics supporting the recall process.
Collapse
Affiliation(s)
- Matthias S Treder
- School of Computer Science and Informatics, Cardiff University, Cardiff CF24 3AA, United Kingdom
| | - Ian Charest
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
- cerebrUM, Département de Psychologie, Université de Montréal, Montreal, QC H2V 259, Canada
| | - Sebastian Michelmann
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
- Department of Psychology, Princeton University, Princeton, NJ 08540
| | - María Carmen Martín-Buro
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology 28223 Madrid, Spain
- Faculty of Health Sciences, King Juan Carlos University 28933 Madrid, Spain
| | - Frédéric Roux
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | - Arturo Ugalde-Canitrot
- Epilepsy Monitoring Unit, Neurology and Clinical Neurophysiology Service, Hospital Universitario La Paz 28046 Madrid, Spain
- School of Medicine, Universidad Francisco de Vitoria 28223 Madrid, Spain
| | - David T Rollings
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Complex Epilepsy and Surgery Service, Neurophysiology Department, Queen Elizabeth Hospital, Birmingham B15 2GW, United Kingdom
| | - Vijay Sawlani
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Complex Epilepsy and Surgery Service, Neuroradiology Department, Queen Elizabeth Hospital, Birmingham B15 2GW, United Kingdom
| | - Ramesh Chelvarajah
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Complex Epilepsy and Surgery Service, Neurosurgery Department, Queen Elizabeth Hospital, Birmingham B15 2GW, United Kingdom
| | - Maria Wimber
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Simon Hanslmayr
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Bernhard P Staresina
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, United Kingdom;
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
| |
Collapse
|
4
|
Passiatore R, Antonucci LA, Bierstedt S, Saranathan M, Bertolino A, Suchan B, Pergola G. How recent learning shapes the brain: Memory-dependent functional reconfiguration of brain circuits. Neuroimage 2021; 245:118636. [PMID: 34637904 DOI: 10.1016/j.neuroimage.2021.118636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/20/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022] Open
Abstract
The process of storing recently encoded episodic mnestic traces so that they are available for subsequent retrieval is accompanied by specific brain functional connectivity (FC) changes. In this fMRI study, we examined the early processing of memories in twenty-eight healthy participants performing an episodic memory task interposed between two resting state sessions. Memory performance was assessed through a forced-choice recognition test after the scanning sessions. We investigated resting state system configuration changes via Independent Component Analysis by cross-modeling baseline resting state spatial maps onto the post-encoding resting state, and post-encoding resting state spatial maps onto baseline. We identified both persistent and plastic components of the overall brain functional configuration between baseline and post-encoding. While FC patterns within executive, default mode, and cerebellar circuits persisted from baseline to post-encoding, FC within the visual circuit changed. A significant session × performance interaction characterized medial temporal lobe and prefrontal cortex FC with the visual circuit, as well as thalamic FC within the executive control system. Findings reveal early-stage FC changes at the system-level subsequent to a learning experience and associated with inter-individual variation in memory performance.
Collapse
Affiliation(s)
- Roberta Passiatore
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, Bari, IT 70124, Italy; Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta GA 30303, United States
| | - Linda A Antonucci
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, Bari, IT 70124, Italy; Department of Education, Psychology and Communication Science, University of Bari Aldo Moro, Bari, IT 70121, Italy
| | - Sabine Bierstedt
- Institute of Cognitive Neuroscience, Clinical Neuropsychology, Ruhr University Bochum, Bochum, DE 44801, Germany
| | - Manojkumar Saranathan
- Department of Medical Imaging, University of Arizona, Tucson AZ 85724, United States
| | - Alessandro Bertolino
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, Bari, IT 70124, Italy
| | - Boris Suchan
- Institute of Cognitive Neuroscience, Clinical Neuropsychology, Ruhr University Bochum, Bochum, DE 44801, Germany
| | - Giulio Pergola
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, Bari, IT 70124, Italy; Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore MD 21205, United States.
| |
Collapse
|
5
|
DeKraker J, Köhler S, Khan AR. Surface-based hippocampal subfield segmentation. Trends Neurosci 2021; 44:856-863. [PMID: 34304910 DOI: 10.1016/j.tins.2021.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 05/25/2021] [Accepted: 06/15/2021] [Indexed: 10/20/2022]
Abstract
Though it is often termed 'subcortical,' the hippocampus is composed of a folded 'archicortical' sheet contiguous with the neocortex. The human hippocampus varies considerably in its internal folding configuration, creating major challenges in interindividual alignment and parcellation into subfields. In this opinion article, we discuss surface-based methods that aim to explicitly model hippocampal folding, similar to methods used in the neocortex, allowing interindividual alignment in an unfolded or flat-mapped 2D space. Such an approach enables detailed morphological characterization, constrains the problem of subfield segmentation, and provides a way to visualize data without occlusions. We argue that, when applied to magnetic resonance imaging (MRI) data, such methods overcome pitfalls of more conventional manual or registration-based subfield segmentation approaches.
Collapse
Affiliation(s)
- Jordan DeKraker
- Brain and Mind Institute, University of Western Ontario, London, ON, Canada; Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
| | - Stefan Köhler
- Brain and Mind Institute, University of Western Ontario, London, ON, Canada; Department of Psychology, University of Western Ontario, London, ON, Canada.
| | - Ali R Khan
- Brain and Mind Institute, University of Western Ontario, London, ON, Canada; Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada; School of Biomedical Engineering, University of Western Ontario, London, ON, Canada; Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
6
|
Snytte J, Elshiekh A, Subramaniapillai S, Manning L, Pasvanis S, Devenyi GA, Olsen RK, Rajah MN. The ratio of posterior–anterior medial temporal lobe volumes predicts source memory performance in healthy young adults. Hippocampus 2020; 30:1209-1227. [DOI: 10.1002/hipo.23251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 02/01/2023]
Affiliation(s)
- Jamie Snytte
- Integrated Program in Neuroscience, Faculty of Medicine McGill University Montreal Quebec Canada
| | - Abdelhalim Elshiekh
- Integrated Program in Neuroscience, Faculty of Medicine McGill University Montreal Quebec Canada
| | | | - Lyssa Manning
- Massachusetts General Hospital Boston Massachusetts USA
| | - Stamatoula Pasvanis
- Cerebral Imaging Centre Douglas Mental Health University Institute Montreal Quebec Canada
| | - Gabriel A. Devenyi
- Cerebral Imaging Centre Douglas Mental Health University Institute Montreal Quebec Canada
- Department of Psychiatry McGill University Montreal Quebec Canada
| | - Rosanna K. Olsen
- Department of Psychology University of Toronto Toronto Ontario Canada
- Rotman Research Institute Baycrest Health Sciences Toronto Ontario Canada
| | - Maria Natasha Rajah
- Cerebral Imaging Centre Douglas Mental Health University Institute Montreal Quebec Canada
- Department of Psychiatry McGill University Montreal Quebec Canada
| |
Collapse
|