1
|
Muraleedharan A, Acharya S, Kumar R. Recent Updates on Diverse Nanoparticles and Nanostructures in Therapeutic and Diagnostic Applications with Special Focus on Smart Protein Nanoparticles: A Review. ACS OMEGA 2024; 9:42613-42629. [PMID: 39464472 PMCID: PMC11500139 DOI: 10.1021/acsomega.4c05037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024]
Abstract
Nanomedicine enables advanced therapeutics, diagnostics, and predictive analysis, enhancing treatment outcomes and patient care. The choices and development of high-quality organic nanoparticles with relatively lower toxicity are important for achieving advanced medical goals. Among organic molecules, proteins have been prospected as smart candidates to revolutionize nanomedicine due to their inherent fascinating features. The advent of protein nanoarchitectures, which explore the biomolecular corona, offers new insights into their efficient tissue penetration and therapeutic potential. This review examines various animal- and plant-based protein nanoparticles, highlighting their source, activity, products, and unique biomedical applications in regenerative medicine, targeted therapies, gene and drug delivery, antimicrobial activity, bioimaging, immunological adjuvants, etc. It provides an extensive discussion on recent applications of protein nanoparticles across diverse biomedical fields as well as the evolving landscape of other nanoproducts and nanodevices for sensitive medical procedures. Furthermore, this review introduces different preparation technologies of protein nanoparticles, emphasizing how their design and construction significantly influence loading capacity, stability, and targeting effects. Additionally, we delve into the construction of different user-friendly multifunctional modular bioarchitectures by the assembly of protein nanoparticles (PNPs), marking a significant breakthrough in therapies. This review also considers the challenges of synthetic nanomaterials and the emergence of natural alternatives, which provides insights into protein nanoparticle research.
Collapse
Affiliation(s)
- Anju Muraleedharan
- Department
of Bioscience and Engineering, National
Institute of Technology Calicut, Kozhikode, Kerala, India, 673601
| | - Sarbari Acharya
- Department
of Life Science, School of Applied Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India, 751024
| | - Ravindra Kumar
- Department
of Bioscience and Engineering, National
Institute of Technology Calicut, Kozhikode, Kerala, India, 673601
| |
Collapse
|
2
|
Dehghankhold M, Sadat Abolmaali S, Nezafat N, Mohammad Tamaddon A. Peptide nanovaccine in melanoma immunotherapy. Int Immunopharmacol 2024; 129:111543. [PMID: 38301413 DOI: 10.1016/j.intimp.2024.111543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Melanoma is an especially fatal neoplasm resistant to traditional treatment. The advancement of novel therapeutical approaches has gained attention in recent years by shedding light on the molecular mechanisms of melanoma tumorigenesis and their powerful interplay with the immune system. The presence of many mutations in melanoma cells results in the production of a varied array of antigens. These antigens can be recognized by the immune system, thereby enabling it to distinguish between tumors and healthy cells. In the context of peptide cancer vaccines, generally, they are designed based on tumor antigens that stimulate immunity through antigen-presenting cells (APCs). As naked peptides often have low potential in eliciting a desirable immune reaction, immunization with such compounds usually necessitates adjuvants and nanocarriers. Actually, nanoparticles (NPs) can provide a robust immune response to peptide-based melanoma vaccines. They improve the directing of peptide vaccines to APCs and induce the secretion of cytokines to get maximum immune response. This review provides an overview of the current knowledge of the utilization of nanotechnology in peptide vaccines emphasizing melanoma, as well as highlights the significance of physicochemical properties in determining the fate of these nanovaccines in vivo, including their drainage to lymph nodes, cellular uptake, and influence on immune responses.
Collapse
Affiliation(s)
- Mahvash Dehghankhold
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Computational vaccine and Drug Design Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Fernández R, Carreño A, Mendoza R, Benito A, Ferrer-Miralles N, Céspedes MV, Corchero JL. Escherichia coli as a New Platform for the Fast Production of Vault-like Nanoparticles: An Optimized Protocol. Int J Mol Sci 2022; 23:ijms232415543. [PMID: 36555185 PMCID: PMC9778704 DOI: 10.3390/ijms232415543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Vaults are protein nanoparticles that are found in almost all eukaryotic cells but are absent in prokaryotic ones. Due to their properties (nanometric size, biodegradability, biocompatibility, and lack of immunogenicity), vaults show enormous potential as a bio-inspired, self-assembled drug-delivery system (DDS). Vault architecture is directed by self-assembly of the "major vault protein" (MVP), the main component of this nanoparticle. Recombinant expression (in different eukaryotic systems) of the MVP resulted in the formation of nanoparticles that were indistinguishable from native vaults. Nowadays, recombinant vaults for different applications are routinely produced in insect cells and purified by successive ultracentrifugations, which are both tedious and time-consuming strategies. To offer cost-efficient and faster protocols for nanoparticle production, we propose the production of vault-like nanoparticles in Escherichia coli cells, which are still one of the most widely used prokaryotic cell factories for recombinant protein production. The strategy proposed allowed for the spontaneous encapsulation of the engineered cargo protein within the self-assembled vault-like nanoparticles by simply mixing the clarified lysates of the producing cells. Combined with well-established affinity chromatography purification methods, our approach contains faster, cost-efficient procedures for biofabrication in a well-known microbial cell factory and the purification of "ready-to-use" loaded protein nanoparticles, thereby opening the way to faster and easier engineering and production of vault-based DDSs.
Collapse
Affiliation(s)
- Roger Fernández
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Aida Carreño
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Rosa Mendoza
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Bellaterra, 08193 Barcelona, Spain
| | - Antoni Benito
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Universitat de Girona, 17003 Girona, Spain
- Institut d’Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), 17190 Salt, Spain
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - María Virtudes Céspedes
- Grup d’Oncologia Ginecològica i Peritoneal, Institut d’Investigacions Biomédiques Sant Pau, Hospital de Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Correspondence: (M.V.C.); (J.L.C.); Tel.: +34-93-2919000 (ext. 1427) (M.V.C.); +34-93-5812148 (J.L.C.)
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Correspondence: (M.V.C.); (J.L.C.); Tel.: +34-93-2919000 (ext. 1427) (M.V.C.); +34-93-5812148 (J.L.C.)
| |
Collapse
|
4
|
Habibi N, Mauser A, Ko Y, Lahann J. Protein Nanoparticles: Uniting the Power of Proteins with Engineering Design Approaches. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104012. [PMID: 35077010 PMCID: PMC8922121 DOI: 10.1002/advs.202104012] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/12/2021] [Indexed: 05/16/2023]
Abstract
Protein nanoparticles, PNPs, have played a long-standing role in food and industrial applications. More recently, their potential in nanomedicine has been more widely pursued. This review summarizes recent trends related to the preparation, application, and chemical construction of nanoparticles that use proteins as major building blocks. A particular focus has been given to emerging trends related to applications in nanomedicine, an area of research where PNPs are poised for major breakthroughs as drug delivery carriers, particle-based therapeutics or for non-viral gene therapy.
Collapse
Affiliation(s)
- Nahal Habibi
- Biointerfaces InstituteDepartment of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Ava Mauser
- Biointerfaces InstituteDepartment of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Yeongun Ko
- Biointerfaces InstituteDepartment of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Joerg Lahann
- Biointerfaces InstituteDepartments of Chemical EngineeringMaterial Science and EngineeringBiomedical Engineeringand Macromolecular Science and EngineeringUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
5
|
Lieser RM, Hartzell EJ, Yur D, Sullivan MO, Chen W. EGFR Ligand Clustering on E2 Bionanoparticles for Targeted Delivery of Chemotherapeutics to Breast Cancer Cells. Bioconjug Chem 2022; 33:452-462. [PMID: 35167278 DOI: 10.1021/acs.bioconjchem.1c00579] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Naturally occurring protein nanocages are promising drug carriers because of their uniform size and biocompatibility. Engineering efforts have enhanced the delivery properties of nanocages, but cell specificity and high drug loading remain major challenges. Herein, we fused the SpyTag peptide to the surface of engineered E2 nanocages to enable tunable nanocage decoration and effective E2 cell targeting using a variety of SpyCatcher (SC) fusion proteins. Additionally, the core of the E2 nanocage incorporated four phenylalanine mutations previously shown to allow hydrophobic loading of doxorubicin and pH-responsive release in acidic environments. We functionalized the surface of the nanocage with a highly cell-specific epidermal growth factor receptor (EGFR)-targeting protein conjugate, 4GE11-mCherry-SC, developed previously in our laboratories by employing unnatural amino acid (UAA) protein engineering chemistries. Herein, we demonstrated the benefits of this engineered protein nanocage construct for efficient drug loading, with a straightforward method for removal of the unloaded drug through elastin-like polypeptide-mediated inverse transition cycling. Additionally, we demonstrated approximately 3-fold higher doxorubicin internalization in inflammatory breast cancer cells compared to healthy breast epithelial cells, leading to targeted cell death at concentrations below the IC50 of free doxorubicin. Collectively, these results demonstrated the versatility of our UAA-based EGFR-targeting protein construct to deliver a variety of cargoes efficiently, including engineered E2 nanocages capable of site-specific functionalization and doxorubicin loading.
Collapse
Affiliation(s)
- Rachel M Lieser
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Emily J Hartzell
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Daniel Yur
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|
6
|
Sun Q, Raeeszadeh-Sarmazdeh M, Tsai SL, Chen W. Strategies for Multienzyme Assemblies. Methods Mol Biol 2022; 2487:113-131. [PMID: 35687232 DOI: 10.1007/978-1-0716-2269-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Proteins are not designed to be standalone entities and must coordinate their collective action for optimum performance. Nature has developed through evolution the ability to co-localize the functional partners of a cascade enzymatic reaction in order to ensure efficient exchange of intermediates. Inspired by these natural designs, synthetic scaffolds have been created to enhance the overall biological pathway performance. In this chapter, we describe several DNA- and protein-based scaffold approaches to assemble artificial enzyme cascades for a wide range of applications. We highlight the key benefits and drawbacks of these approaches to provide insights on how to choose the appropriate scaffold for different cascade systems.
Collapse
Affiliation(s)
- Qing Sun
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | | | - Shen-Long Tsai
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
7
|
Yur D, Lieser RM, Sullivan MO, Chen W. Engineering bionanoparticles for improved biosensing and bioimaging. Curr Opin Biotechnol 2021; 71:41-48. [PMID: 34157601 DOI: 10.1016/j.copbio.2021.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/10/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
The importance of bioimaging and biosensing has been clear with the onset of the COVID-19 pandemic. In addition to viral detection, detection of tumors, glucose levels, and microbes is necessary for improved disease treatment and prevention. Bionanoparticles, such as extracellular vesicles and protein nanoparticles, are ideal platforms for biosensing and bioimaging applications because of their propensity for high density surface functionalization and large loading capacity. Scaffolding large numbers of sensing modules and detection modules onto bionanoparticles allows for enhanced analyte affinity and specificity as well as signal amplification for highly sensitive detection even at low analyte concentrations. Here we demonstrate the potential of bionanoparticles for bioimaging and biosensing by highlighting recent examples in literature that utilize protein nanoparticles and extracellular vesicles to generate highly sensitive detection devices with impressive signal amplification.
Collapse
Affiliation(s)
- Daniel Yur
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716 United States
| | - Rachel M Lieser
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716 United States
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716 United States.
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716 United States.
| |
Collapse
|
8
|
Borlan R, Focsan M, Maniu D, Astilean S. Interventional NIR Fluorescence Imaging of Cancer: Review on Next Generation of Dye-Loaded Protein-Based Nanoparticles for Real-Time Feedback During Cancer Surgery. Int J Nanomedicine 2021; 16:2147-2171. [PMID: 33746512 PMCID: PMC7966856 DOI: 10.2147/ijn.s295234] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
The use of fluorescence imaging technique for visualization, resection and treatment of cancerous tissue, attained plenty of interest once the promise of whole body and deep tissue near-infrared (NIR) imaging emerged. Why is NIR so desired? Contrast agents with optical properties in the NIR spectral range offer an upgrade for the diagnosis and treatment of cancer, by dint of the deep tissue penetration of light in the NIR region of the electromagnetic spectrum, also known as the optical window in biological tissue. Thus, the development of a new generation of NIR emitting and absorbing contrast agents able to overcome the shortcomings of the basic free dye administration is absolutely essential. Several examples of nanoparticles (NPs) have been successfully implemented as carriers for NIR dye molecules to the tumour site owing to their prolonged blood circulation time and enhanced accumulation within the tumour, as well as their increased fluorescence signal relative to free fluorophore emission and active targeting of cancerous cells. Due to their versatile structure, good biocompatibility and capability to efficiently load dyes and bioconjugate with diverse cancer-targeting ligands, the research area of developing protein-based NPs encapsulated or conjugated with NIR dyes is highly promising but still in its infancy. The current review aims to provide an up-to-date overview on the biocompatibility, specific targeting and versatility offered by protein-based NPs loaded with different classes of NIR dyes as next-generation fluorescent agents. Moreover, this study brings to light the newest and most relevant advances involving the state-of-the-art NIR fluorescent agents for the real-time interventional NIR fluorescence imaging of cancer in clinical trials.
Collapse
Affiliation(s)
- Raluca Borlan
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania.,Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Dana Maniu
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Simion Astilean
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania.,Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| |
Collapse
|
9
|
Hartzell EJ, Lieser RM, Sullivan MO, Chen W. Modular Hepatitis B Virus-like Particle Platform for Biosensing and Drug Delivery. ACS NANO 2020; 14:12642-12651. [PMID: 32924431 DOI: 10.1021/acsnano.9b08756] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The hepatitis B virus-like particle (HBV VLP) is an attractive protein nanoparticle platform due to the availability of 240 modification sites for engineering purposes. Although direct protein insertion into the surface loop has been demonstrated, this decoration strategy is restricted by the size of the inserted protein moieties. Meanwhile, larger proteins can be decorated using chemical conjugations; yet these approaches perturb the integrity of more delicate proteins and can unfavorably orient the proteins, impairing active surface display. Herein, we aim to create a robust and highly modular method to produce smart HBV-based nanodevices by using the SpyCatcher/SpyTag system, which allows a wide range of peptides and proteins to be conjugated directly and simply onto the modified HBV capsids in a controlled and biocompatible manner. Our technology allows the modular surface modification of HBV VLPs with multiple components, which provides signal amplification, increased targeting avidity, and high therapeutic payload incorporation. We have achieved a yield of over 200 mg/L for these engineered HBV VLPs and demonstrated the flexibility of this platform in both biosensing and drug delivery applications. The ability to decorate over 200 nanoluciferases per VLP improved detection signal by over 1500-fold, such that low nanomolar levels of thrombin could be detected by the naked eye. Meanwhile, a dimeric prodrug-activating enzyme was loaded without cross-linking particles by coexpressing orthogonally labeled monomers. This along with a epidermal growth factor receptor-binding peptide enabled tunable uptake of HBV VLPs into inflammatory breast cancer cells, leading to efficient suicide enzyme delivery and cell killing.
Collapse
Affiliation(s)
- Emily J Hartzell
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Rachel M Lieser
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
10
|
Erfani A, Seaberg J, Aichele CP, Ramsey JD. Interactions between Biomolecules and Zwitterionic Moieties: A Review. Biomacromolecules 2020; 21:2557-2573. [DOI: 10.1021/acs.biomac.0c00497] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Amir Erfani
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Joshua Seaberg
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Clint Philip Aichele
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Joshua D. Ramsey
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
11
|
|
12
|
Berckman EA, Hartzell EJ, Mitkas AA, Sun Q, Chen W. Biological Assembly of Modular Protein Building Blocks as Sensing, Delivery, and Therapeutic Agents. Annu Rev Chem Biomol Eng 2020; 11:35-62. [PMID: 32155350 DOI: 10.1146/annurev-chembioeng-101519-121526] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nature has evolved a wide range of strategies to create self-assembled protein nanostructures with structurally defined architectures that serve a myriad of highly specialized biological functions. With the advent of biological tools for site-specific protein modifications and de novo protein design, a wide range of customized protein nanocarriers have been created using both natural and synthetic biological building blocks to mimic these native designs for targeted biomedical applications. In this review, different design frameworks and synthetic decoration strategies for achieving these functional protein nanostructures are summarized. Key attributes of these designer protein nanostructures, their unique functions, and their impact on biosensing and therapeutic applications are discussed.
Collapse
Affiliation(s)
- Emily A Berckman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA; .,Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Emily J Hartzell
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA;
| | - Alexander A Mitkas
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA;
| | - Qing Sun
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA;
| |
Collapse
|
13
|
Wong JX, Ogura K, Chen S, Rehm BHA. Bioengineered Polyhydroxyalkanoates as Immobilized Enzyme Scaffolds for Industrial Applications. Front Bioeng Biotechnol 2020; 8:156. [PMID: 32195237 PMCID: PMC7064635 DOI: 10.3389/fbioe.2020.00156] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Enzymes function as biocatalysts and are extensively exploited in industrial applications. Immobilization of enzymes using support materials has been shown to improve enzyme properties, including stability and functionality in extreme conditions and recyclability in biocatalytic processing. This review focuses on the recent advances utilizing the design space of in vivo self-assembled polyhydroxyalkanoate (PHA) particles as biocatalyst immobilization scaffolds. Self-assembly of biologically active enzyme-coated PHA particles is a one-step in vivo production process, which avoids the costly and laborious in vitro chemical cross-linking of purified enzymes to separately produced support materials. The homogeneous orientation of enzymes densely coating PHA particles enhances the accessibility of catalytic sites, improving enzyme function. The PHA particle technology has been developed into a remarkable scaffolding platform for the design of cost-effective designer biocatalysts amenable toward robust industrial bioprocessing. In this review, the PHA particle technology will be compared to other biological supramolecular assembly-based technologies suitable for in vivo enzyme immobilization. Recent progress in the fabrication of biological particulate scaffolds using enzymes of industrial interest will be summarized. Additionally, we outline innovative approaches to overcome limitations of in vivo assembled PHA particles to enable fine-tuned immobilization of multiple enzymes to enhance performance in multi-step cascade reactions, such as those used in continuous flow bioprocessing.
Collapse
Affiliation(s)
- Jin Xiang Wong
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- MacDiarmid Institute of Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington, New Zealand
| | - Kampachiro Ogura
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Shuxiong Chen
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
- Menzies Health Institute Queensland (MHIQ), Griffith University, Gold Coast Campus, Southport, QLD, Australia
| |
Collapse
|
14
|
Klein WP, Thomsen RP, Turner KB, Walper SA, Vranish J, Kjems J, Ancona MG, Medintz IL. Enhanced Catalysis from Multienzyme Cascades Assembled on a DNA Origami Triangle. ACS NANO 2019; 13:13677-13689. [PMID: 31751123 DOI: 10.1021/acsnano.9b05746] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Developing reliable methods of constructing cell-free multienzyme biocatalytic systems is a milestone goal of synthetic biology. It would enable overcoming the limitations of current cell-based systems, which suffer from the presence of competing pathways, toxicity, and inefficient access to extracellular reactants and removal of products. DNA nanostructures have been suggested as ideal scaffolds for assembling sequential enzymatic cascades in close enough proximity to potentially allow for exploiting of channeling effects; however, initial demonstrations have provided somewhat contradictory results toward confirming this phenomenon. In this work, a three-enzyme sequential cascade was realized by site-specifically immobilizing DNA-conjugated amylase, maltase, and glucokinase on a self-assembled DNA origami triangle. The kinetics of seven different enzyme configurations were evaluated experimentally and compared to simulations of optimized activity. A 30-fold increase in the pathway's kinetic activity was observed for enzymes assembled to the DNA. Detailed kinetic analysis suggests that this catalytic enhancement originated from increased enzyme stability and a localized DNA surface affinity or hydration layer effect and not from a directed enzyme-to-enzyme channeling mechanism. Nevertheless, the approach used to construct this pathway still shows promise toward improving other more elaborate multienzymatic cascades and could potentially allow for the custom synthesis of complex (bio)molecules that cannot be realized with conventional organic chemistry approaches.
Collapse
Affiliation(s)
- William P Klein
- National Research Council , Washington , D.C. 20001 , United States
| | - Rasmus P Thomsen
- Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics , Aarhus University , 8000 Aarhus , Denmark
| | | | - Scott A Walper
- National Research Council , Washington , D.C. 20001 , United States
| | - James Vranish
- Ave Maria University , Ave Maria , Florida 34142 , United States
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics , Aarhus University , 8000 Aarhus , Denmark
| | | | - Igor L Medintz
- National Research Council , Washington , D.C. 20001 , United States
| |
Collapse
|
15
|
Zak AJ, Hill BD, Rizvi SM, Smith MR, Yang M, Wen F. Enhancing the Yield and Quality of Influenza Virus-like Particles (VLPs) Produced in Insect Cells by Inhibiting Cytopathic Effects of Matrix Protein M2. ACS Synth Biol 2019; 8:2303-2314. [PMID: 31487465 DOI: 10.1021/acssynbio.9b00111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To provide broader protection and eliminate the need for annual update of influenza vaccines, biomolecular engineering of influenza virus-like particles (VLPs) to display more conserved influenza proteins such as the matrix protein M2 has been explored. However, achieving high surface density of full-length M2 in influenza VLPs has been left unrealized. In this study, we show that the ion channel activity of M2 induces significant cytopathic effects in Spodoptera frugiperda (Sf9) insect cells when expressed using M2-encoding baculovirus. These effects include altered Sf9 cell morphology and reduced baculovirus replication, resulting in impaired influenza protein expression and thus VLP production. On the basis of the function of M2, we hypothesized that blocking its ion channel activity could potentially relieve these cytopathic effects, and thus restore influenza protein expression to improve VLP production. The use of the M2 inhibitor amantadine indeed improves Sf9 cellular expression not only of M2 (∼3-fold), but also of hemagglutinin (HA) (∼7-fold) and of matrix protein M1 (∼3-fold) when coexpressed to produce influenza VLPs. This increased cellular expression of all three influenza proteins further leads to ∼2-fold greater VLP yield. More importantly, the quality of the resulting influenza VLPs is significantly improved, as demonstrated by the ∼2-fold, ∼50-fold, and ∼2-fold increase in the antigen density to approximately 53 HA, 48 M1, and 156 M2 per influenza VLP, respectively. Taken together, this study represents a novel approach to enable the efficient incorporation of full-length M2 while enhancing both the yield and quality of influenza VLPs produced by Sf9 cells.
Collapse
Affiliation(s)
- Andrew J. Zak
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brett D. Hill
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Syed M. Rizvi
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mason R. Smith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Madeleine Yang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fei Wen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
16
|
Bulutoglu B, Macazo FC, Bale J, King N, Baker D, Minteer SD, Banta S. Multimerization of an Alcohol Dehydrogenase by Fusion to a Designed Self-Assembling Protein Results in Enhanced Bioelectrocatalytic Operational Stability. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20022-20028. [PMID: 31066271 DOI: 10.1021/acsami.9b04256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Proteins designed for supramolecular assembly provide a simple means to immobilize and organize enzymes for biotechnology applications. We have genetically fused the thermostable alcohol dehydrogenase D (AdhD) from Pyrococcus furiosus to a computationally designed cage-forming protein (O3-33). The trimeric form of the O3-33-AdhD fusion protein was most active in solution. The immobilization of the fusion protein on bioelectrodes leads to a doubling of the electrochemical operational stability as compared to the unfused control proteins. Thus, the fusion of enzymes to the designed self-assembling domains offers a simple strategy to increase the stability in biocatalytic systems.
Collapse
Affiliation(s)
- Beyza Bulutoglu
- Department of Chemical Engineering , Columbia University , New York , New York 10027 , United States
| | - Florika C Macazo
- Department of Chemistry , The University of Utah , Salt Lake City , Utah 84112 , United States
| | | | | | | | - Shelley D Minteer
- Department of Chemistry , The University of Utah , Salt Lake City , Utah 84112 , United States
| | - Scott Banta
- Department of Chemical Engineering , Columbia University , New York , New York 10027 , United States
| |
Collapse
|
17
|
Plant virus-based materials for biomedical applications: Trends and prospects. Adv Drug Deliv Rev 2019; 145:96-118. [PMID: 30176280 DOI: 10.1016/j.addr.2018.08.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/06/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022]
Abstract
Nanomaterials composed of plant viral components are finding their way into medical technology and health care, as they offer singular properties. Precisely shaped, tailored virus nanoparticles (VNPs) with multivalent protein surfaces are efficiently loaded with functional compounds such as contrast agents and drugs, and serve as carrier templates and targeting vehicles displaying e.g. peptides and synthetic molecules. Multiple modifications enable uses including vaccination, biosensing, tissue engineering, intravital delivery and theranostics. Novel concepts exploit self-organization capacities of viral building blocks into hierarchical 2D and 3D structures, and their conversion into biocompatible, biodegradable units. High yields of VNPs and proteins can be harvested from plants after a few days so that various products have reached or are close to commercialization. The article delineates potentials and limitations of biomedical plant VNP uses, integrating perspectives of chemistry, biomaterials sciences, molecular plant virology and process engineering.
Collapse
|
18
|
Cristie‐David AS, Koldewey P, Meinen BA, Bardwell JCA, Marsh ENG. Elaborating a coiled-coil-assembled octahedral protein cage with additional protein domains. Protein Sci 2018; 27:1893-1900. [PMID: 30113093 PMCID: PMC6201728 DOI: 10.1002/pro.3497] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 01/28/2023]
Abstract
De novo design of protein nano-cages has potential applications in medicine, synthetic biology, and materials science. We recently developed a modular, symmetry-based strategy for protein assembly in which short, coiled-coil sequences mediate the assembly of a protein building block into a cage. The geometry of the cage is specified by the combination of rotational symmetries associated with the coiled-coil and protein building block. We have used this approach to design well-defined octahedral and tetrahedral cages. Here, we show that the cages can be further elaborated and functionalized by the addition of another protein domain to the free end of the coiled-coil: in this case by fusing maltose-binding protein to an octahedral protein cage to produce a structure with a designed molecular weight of ~1.8 MDa. Importantly, the addition of the maltose binding protein domain dramatically improved the efficiency of assembly, resulting in ~ 60-fold greater yield of purified protein compared to the original cage design. This study shows the potential of using small, coiled-coil motifs as off-the-shelf components to design MDa-sized protein cages to which additional structural or functional elements can be added in a modular manner.
Collapse
Affiliation(s)
| | - Philipp Koldewey
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborMichigan48109
| | - Ben A. Meinen
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborMichigan48109
| | - James C. A. Bardwell
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborMichigan48109
- Department of Biological ChemistryUniversity of MichiganAnn ArborMichigan48109
- Howard Hughes Medical InstituteChevy ChaseMaryland
| | - E. Neil G. Marsh
- Department of ChemistryUniversity of MichiganAnn ArborMichigan48109
| |
Collapse
|
19
|
Diaz D, Care A, Sunna A. Bioengineering Strategies for Protein-Based Nanoparticles. Genes (Basel) 2018; 9:E370. [PMID: 30041491 PMCID: PMC6071185 DOI: 10.3390/genes9070370] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022] Open
Abstract
In recent years, the practical application of protein-based nanoparticles (PNPs) has expanded rapidly into areas like drug delivery, vaccine development, and biocatalysis. PNPs possess unique features that make them attractive as potential platforms for a variety of nanobiotechnological applications. They self-assemble from multiple protein subunits into hollow monodisperse structures; they are highly stable, biocompatible, and biodegradable; and their external components and encapsulation properties can be readily manipulated by chemical or genetic strategies. Moreover, their complex and perfect symmetry have motivated researchers to mimic their properties in order to create de novo protein assemblies. This review focuses on recent advances in the bioengineering and bioconjugation of PNPs and the implementation of synthetic biology concepts to exploit and enhance PNP's intrinsic properties and to impart them with novel functionalities.
Collapse
Affiliation(s)
- Dennis Diaz
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Andrew Care
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia.
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia.
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
20
|
Colino CI, Millán CG, Lanao JM. Nanoparticles for Signaling in Biodiagnosis and Treatment of Infectious Diseases. Int J Mol Sci 2018; 19:E1627. [PMID: 29857492 PMCID: PMC6032068 DOI: 10.3390/ijms19061627] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 01/09/2023] Open
Abstract
Advances in nanoparticle-based systems constitute a promising research area with important implications for the treatment of bacterial infections, especially against multidrug resistant strains and bacterial biofilms. Nanosystems may be useful for the diagnosis and treatment of viral and fungal infections. Commercial diagnostic tests based on nanosystems are currently available. Different methodologies based on nanoparticles (NPs) have been developed to detect specific agents or to distinguish between Gram-positive and Gram-negative microorganisms. Also, biosensors based on nanoparticles have been applied in viral detection to improve available analytical techniques. Several point-of-care (POC) assays have been proposed that can offer results faster, easier and at lower cost than conventional techniques and can even be used in remote regions for viral diagnosis. Nanoparticles functionalized with specific molecules may modulate pharmacokinetic targeting recognition and increase anti-infective efficacy. Quorum sensing is a stimuli-response chemical communication process correlated with population density that bacteria use to regulate biofilm formation. Disabling it is an emerging approach for combating its pathogenicity. Natural or synthetic inhibitors may act as antibiofilm agents and be useful for treating multi-drug resistant bacteria. Nanostructured materials that interfere with signal molecules involved in biofilm growth have been developed for the control of infections associated with biofilm-associated infections.
Collapse
Affiliation(s)
- Clara I Colino
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain.
- The Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain.
| | - Carmen Gutiérrez Millán
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain.
- The Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain.
| | - José M Lanao
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain.
- The Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|