1
|
Anesti O, Papaioannou N, Gabriel C, Karakoltzidis A, Dzhedzheia V, Petridis I, Stratidakis A, Dickinson M, Horvat M, Snoj Tratnik J, Tsatsakis A, Karakitsios S, Sarigiannis DA. An exposome connectivity paradigm for the mechanistic assessment of the effects of prenatal and early life exposure to metals on neurodevelopment. Front Public Health 2023; 10:871218. [PMID: 36699871 PMCID: PMC9869756 DOI: 10.3389/fpubh.2022.871218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023] Open
Abstract
The exposome paradigm through an integrated approach to investigating the impact of perinatal exposure to metals on child neurodevelopment in two cohorts carried out in Slovenia (PHIME cohort) and Greece (HERACLES cohort) respectively, is presented herein. Heavy metals are well-known neurotoxicants with well-established links to impaired neurodevelopment. The links between in utero and early-life exposure to metals, metabolic pathway dysregulation, and neurodevelopmental disorders were drawn through urinary and plasma untargeted metabolomics analysis, followed by the combined application of in silico and biostatistical methods. Heavy metal prenatal and postnatal exposure was evaluated, including parameters indirectly related to exposure and health adversities, such as sociodemographic and anthropometric parameters and dietary factors. The primary outcome of the study was that the identified perturbations related to the TCA cycle are mainly associated with impaired mitochondrial respiration, which is detrimental to cellular homeostasis and functionality; this is further potentiated by the capacity of heavy metals to induce oxidative stress. Insufficient production of energy from the mitochondria during the perinatal period is associated with developmental disorders in children. The HERACLES cohort included more detailed data regarding diet and sociodemographic status of the studied population, allowing the identification of a broader spectrum of effect modifiers, such as the beneficial role of a diet rich in antioxidants such as lycopene and ω-3 fatty acids, the negative effect the consumption of food items such as pork and chicken meat has or the multiple impacts of fish consumption. Beyond diet, several other factors have been proven influential for child neurodevelopment, such as the proximity to pollution sources (e.g., waste treatment site) and the broader living environment, including socioeconomic and demographic characteristics. Overall, our results demonstrate the utility of exposome-wide association studies (EWAS) toward understanding the relationships among the multiple factors that determine human exposure and the underlying biology, reflected as omics markers of effect on neurodevelopment during childhood.
Collapse
Affiliation(s)
- Ourania Anesti
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thessaloniki, Greece,Centre of Toxicology Science and Research, School of Medicine, University of Crete, Heraklion, Greece
| | - Nafsika Papaioannou
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thessaloniki, Greece,Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Catherine Gabriel
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thessaloniki, Greece,Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Achilleas Karakoltzidis
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thessaloniki, Greece,Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vazha Dzhedzheia
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thessaloniki, Greece,Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Petridis
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thessaloniki, Greece,Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonios Stratidakis
- Science, Technology, and Society Department, Istituto Universitario di Studi Superiori (IUSS), University School for Advanced Study, Pavia, Italy
| | | | - Milena Horvat
- Department of Environmental Sciences, Josef Stefan Institute, Ljubljana, Slovenia
| | - Janja Snoj Tratnik
- Department of Environmental Sciences, Josef Stefan Institute, Ljubljana, Slovenia
| | - Aristidis Tsatsakis
- Centre of Toxicology Science and Research, School of Medicine, University of Crete, Heraklion, Greece
| | - Spyros Karakitsios
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thessaloniki, Greece,Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimosthenis A. Sarigiannis
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thessaloniki, Greece,Centre of Toxicology Science and Research, School of Medicine, University of Crete, Heraklion, Greece,Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece,*Correspondence: Dimosthenis A. Sarigiannis
| |
Collapse
|
2
|
Rahman HH, Niemann D, Munson-McGee SH. Urinary metals, arsenic, and polycyclic aromatic hydrocarbon exposure and risk of chronic bronchitis in the US adult population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73480-73491. [PMID: 35624372 DOI: 10.1007/s11356-022-20982-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Metals, arsenic, and polycyclic aromatic hydrocarbons (PAHs) have all been linked to respiratory diseases. Chronic bronchitis, which is a form of chronic obstructive pulmonary disease (COPD), is a major public health concern and source of morbidity and mortality in the US. The purpose of this study was to analyze the correlation of 14 urinary metals (antimony, barium, cadmium, cesium, cobalt, lead, manganese, mercury, molybdenum, strontium, thallium, tin, tungsten, uranium), seven species of arsenic, and seven forms of polycyclic aromatic hydrocarbon (PAH) concentrations and chronic bronchitis in the US population. A cross-sectional analysis using three datasets from the National Health and Nutrition Examination Survey (NHANES) between 2011 and 2016 in adults, aged 20 years and older. Chronic bronchitis was determined using a self-questionnaire from the NHANES dataset. A specialized weighted complex survey design analysis package was used to analyze NHANES data. Multivariate logistic regression models were used to determine the correlation between urinary metals, arsenic, PAHs, and chronic bronchitis. Models were adjusted for lifestyle and demographic factors. A total of 4186 participants were analyzed; 49.8% were female and 40.5% were non-Hispanic White. All seven types of PAHs showed a positive association with chronic bronchitis (1-hydroxynaphthalene odds ratio (OR): 1.559, 95% confidence interval (CI): 1.271-1.912; 2-hydroxynaphthalene OR: 2.498, 95% CI: 1.524-4.095; 3-hydroxyfluorene OR: 2.752, 95% CI: 2.100-3.608; 2-hydroxyfluorene OR: 3.461, 95% CI: 2.438-4.914; 1-hydroxyphenanthrene OR: 2.442, 95% CI: 1.515-3.937; 1-hydroxypyrene OR: 2.828, 95% CI: 1.728-4.629; 2 & 3-hydroxyphenanthrene OR: 3.690, 95% CI: 2.309-5.896). Of the metals, only urinary cadmium showed a statistically significant positive association (OR: 2.435, 95% CI: 1.401-4.235) with chronic bronchitis. No other metals or arsenic were correlated with chronic bronchitis. Seven forms of urinary PAHs, cadmium, and several demographic factors were associated with chronic bronchitis.
Collapse
Affiliation(s)
| | - Danielle Niemann
- Burrell College of Osteopathic Medicine, 3501 Arrowhead Dr, Las Cruces, NM, 88003, USA
| | - Stuart H Munson-McGee
- Data Forward Analytics, LLC, 4973 Black Quartz Road, PrincipalLas Cruces, NM, 88011, USA
| |
Collapse
|
3
|
Sarigiannis DA, Papaioannou N, Handakas E, Anesti O, Polanska K, Hanke W, Salifoglou A, Gabriel C, Karakitsios S. Neurodevelopmental exposome: The effect of in utero co-exposure to heavy metals and phthalates on child neurodevelopment. ENVIRONMENTAL RESEARCH 2021; 197:110949. [PMID: 33716031 DOI: 10.1016/j.envres.2021.110949] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/27/2020] [Accepted: 02/25/2021] [Indexed: 05/22/2023]
Abstract
In this study, the exposome paradigm has been applied on a mother-child cohort adopting an optimised untargeted metabolomics approach for human urine followed by advanced bioinformatics analysis. Exposome-wide association algorithms were used to draw links between in utero co-exposure to metals and phthalates, metabolic pathways deregulation, and clinically observed phenotypes of neurodevelopmental disorders such as problems in linguistic, motor development and cognitive capacity. Children (n = 148) were tested at the first and second year of their life using the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III). Their mothers had been exposed to metals and phthalates during the pregnancy, according to human biomonitoring results from previously performed studies. Untargeted metabolomics analysis of biobanked urine samples from the mothers was performed using a combination of the high throughput analytical methods liquid chromatography-high resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR). Most perturbed metabolic pathways from co-exposure heavy metals and phthalates were pathways related to the tricarboxylic acid cycle (TCA cycle) and oxidative phosphorylation, indicating the possibility of disruption of mitochondrial respiration. Overproduction of reactive oxygen species (ROS); the presence of glutathione peroxidase 3 (GPx3) during pregnancy and presence of glutathione peroxidase 1 (GPx1) in the umbilical cord were linked to verbal development problems. Another finding of the study is that in real life, adverse outcomes occur as a combination of environmental and social factors, all of them acting synergistically towards the deployment of an observed phenotype. Finally, the two-steps association process (exposure to pathways and pathways to adverse outcomes) was able to (a) provide associations that are not evident by directly associating exposure to outcomes and (b) provides additional insides on the mechanisms of environmental disease.
Collapse
Affiliation(s)
- Denis A Sarigiannis
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10thkm Thessaloniki-Thermi Road, 57001, Greece; School for Advanced Study (IUSS), Science, Technology and Society Department, Environmental Health Engineering, Piazza Della Vittoria 15, Pavia, 27100, Italy.
| | - Nafsika Papaioannou
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10thkm Thessaloniki-Thermi Road, 57001, Greece
| | - Evangelos Handakas
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki, 54124, Greece
| | - Ourania Anesti
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10thkm Thessaloniki-Thermi Road, 57001, Greece; School of Medicine, University of Crete, Voutes, Heraklion, 71003, Greece
| | - Kinga Polanska
- Nofer Institute of Occupational Medicine, 91348, Lodz, Poland
| | - Woijcek Hanke
- Nofer Institute of Occupational Medicine, 91348, Lodz, Poland
| | - Athanasios Salifoglou
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Inorganic Chemistry Laboratory, University Campus, Thessaloniki, 54124, Greece
| | - Catherine Gabriel
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10thkm Thessaloniki-Thermi Road, 57001, Greece
| | - Spyros Karakitsios
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10thkm Thessaloniki-Thermi Road, 57001, Greece
| |
Collapse
|
4
|
Papaioannou N, Distel E, de Oliveira E, Gabriel C, Frydas IS, Anesti O, Attignon EA, Odena A, Díaz R, Aggerbeck Μ, Horvat M, Barouki R, Karakitsios S, Sarigiannis DA. Multi-omics analysis reveals that co-exposure to phthalates and metals disturbs urea cycle and choline metabolism. ENVIRONMENTAL RESEARCH 2021; 192:110041. [PMID: 32949613 DOI: 10.1016/j.envres.2020.110041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 05/18/2023]
Abstract
This study aimed to evaluate the response of HepaRG cells after co-exposure to phthalates and heavy metals, using a high-dimensional biology paradigm (HDB). Liver is the main metabolism site for the majority of xenobiotics. For this reason, the HepaRG cell line was used as an in vitro model, and cells were exposed to two characteristic mixtures of phthalates and heavy metals containing phthalates (DEHP, DiNP, BBzP) and metals (lead, methylmercury, total mercury) in a concentration-dependent manner. The applied chemical mixtures were selected as the most abundant pollutants in the REPRO_PL and PHIME cohorts, which were studied using the exposome-wide approach in the frame of the EU project HEALS. These studies investigated the environmental causation of neurodevelopmental disorders in neonates and across Europe. The INTEGRA computational platform was used for the calculation of the effective concentrations of the chemicals in the liver through extrapolation from human biomonitoring data and this dose (and a ten-times higher one) was applied to the hepatocyte model. Multi-omics analysis was performed to reveal the genes, proteins, and metabolites affected by the exposure to these chemical mixtures. By extension, we could detect the perturbed metabolic pathways. The generated data were analyzed using advanced bioinformatic tools following the HEALS connectivity paradigm for multi-omics pathway analysis. Co-mapped transcriptomics and proteomics data showed that co-exposure to phthalates and heavy metals leads to perturbations of the urea cycle due to differential expression levels of arginase-1 and -2, argininosuccinate synthase, carbamoyl-phosphate synthase, ornithine carbamoyltransferase, and argininosuccinate lyase. Joint pathway analysis of proteomics and metabolomics data revealed that the detected proteins and metabolites, choline phosphate cytidylyltransferase A, phospholipase D3, group XIIA secretory phospholipase A2, α-phosphatidylcholine, and the a 1,2-diacyl-sn-glycero-3-phosphocholine, are responsible for the homeostasis of the metabolic pathways phosphatidylcholine biosynthesis I, and phospholipases metabolism. The urea, phosphatidylcholine biosynthesis I and phospholipase metabolic pathways are of particular interest since they have been identified also in human samples from the REPRO_PL and PHIME cohorts using untargeted metabolomics analysis and have been associated with impaired psychomotor development in children at the age of two. In conclusion, this study provides the mechanistic evidence that co-exposure to phthalates and metals disturb biochemical processes related to mitochondrial respiration during critical developmental stages, which are clinically linked to neurodevelopmental perturbations.
Collapse
Affiliation(s)
- Nafsika Papaioannou
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece
| | - Emilie Distel
- INSERM UMR-S 1124, 45 Rue des Saints Pères, 75006, Paris, France; Université de Paris, 45 Rue des Saints Pères, 75006, Paris, France
| | - Eliandre de Oliveira
- Barcelona Science Park, Proteomics Platform, Barcelona Science Park, Barcelona, Spain
| | - Catherine Gabriel
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece
| | - Ilias S Frydas
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece
| | - Ourania Anesti
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece; Medical School, University of Crete, Heraklion, 71003, Greece
| | - Eléonore A Attignon
- INSERM UMR-S 1124, 45 Rue des Saints Pères, 75006, Paris, France; Université de Paris, 45 Rue des Saints Pères, 75006, Paris, France
| | - Antonia Odena
- Barcelona Science Park, Proteomics Platform, Barcelona Science Park, Barcelona, Spain
| | - Ramon Díaz
- Barcelona Science Park, Proteomics Platform, Barcelona Science Park, Barcelona, Spain; Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Μartine Aggerbeck
- INSERM UMR-S 1124, 45 Rue des Saints Pères, 75006, Paris, France; Université de Paris, 45 Rue des Saints Pères, 75006, Paris, France
| | | | - Robert Barouki
- INSERM UMR-S 1124, 45 Rue des Saints Pères, 75006, Paris, France; Université de Paris, 45 Rue des Saints Pères, 75006, Paris, France; Service de Biochimie Métabolomique et Protéomique, Hôpital Universitaire Necker Enfants Malades, AP-HP, 75015, Paris, France
| | - Spyros Karakitsios
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece
| | - Denis A Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece; School for Advanced Study (IUSS), Science, Technology and Society Department, Environmental Health Engineering, Piazza Della Vittoria 15, Pavia, 27100, Italy.
| |
Collapse
|
5
|
Skalny AV, Lima TRR, Ke T, Zhou JC, Bornhorst J, Alekseenko SI, Aaseth J, Anesti O, Sarigiannis DA, Tsatsakis A, Aschner M, Tinkov AA. Toxic metal exposure as a possible risk factor for COVID-19 and other respiratory infectious diseases. Food Chem Toxicol 2020; 146:111809. [PMID: 33069759 PMCID: PMC7563920 DOI: 10.1016/j.fct.2020.111809] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 01/08/2023]
Abstract
Multiple medical, lifestyle, and environmental conditions, including smoking and particulate pollution, have been considered as risk factors for COronaVIrus Disease 2019 (COVID-19) susceptibility and severity. Taking into account the high level of toxic metals in both particulate matter (PM2.5) and tobacco smoke, the objective of this review is to discuss recent data on the role of heavy metal exposure in development of respiratory dysfunction, immunotoxicity, and severity of viral diseases in epidemiological and experimental studies, as to demonstrate the potential crossroads between heavy metal exposure and COVID-19 severity risk. The existing data demonstrate that As, Cd, Hg, and Pb exposure is associated with respiratory dysfunction and respiratory diseases (COPD, bronchitis). These observations corroborate laboratory findings on the role of heavy metal exposure in impaired mucociliary clearance, reduced barrier function, airway inflammation, oxidative stress, and apoptosis. The association between heavy metal exposure and severity of viral diseases, including influenza and respiratory syncytial virus has been also demonstrated. The latter may be considered a consequence of adverse effects of metal exposure on adaptive immunity. Therefore, reduction of toxic metal exposure may be considered as a potential tool for reducing susceptibility and severity of viral diseases affecting the respiratory system, including COVID-19.
Collapse
Affiliation(s)
- Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia.
| | - Thania Rios Rossi Lima
- São Paulo State University - UNESP, Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu, SP, Brazil; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Svetlana I Alekseenko
- I.I. Mechnikov North-Western State Medical University, St. Petersburg, Russia; K.A. Rauhfus Children's City Multidisciplinary Clinical Center for High Medical Technologies, St. Petersburg, Russia
| | - Jan Aaseth
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Ourania Anesti
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, Heraklion, Crete, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thermi, Greece
| | - Dimosthenis A Sarigiannis
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thermi, Greece; University School of Advanced Studies IUSS, Pavia, Italy
| | - Aristides Tsatsakis
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Laboratory of Toxicology, Medical School, University of Crete, Voutes, Heraklion, Crete, Greece
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | |
Collapse
|
6
|
da Rocha Silva JP, Salles FJ, Leroux IN, da Silva Ferreira APS, da Silva AS, Assunção NA, Nardocci AC, Sayuri Sato AP, Barbosa F, Cardoso MRA, Olympio KPK. High blood lead levels are associated with lead concentrations in households and day care centers attended by Brazilian preschool children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 239:681-688. [PMID: 29715687 DOI: 10.1016/j.envpol.2018.04.080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 02/26/2018] [Accepted: 04/18/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND A previous study observed high blood lead levels (BLL) in preschool children attending 50 day care centers (DCC) in São Paulo, Brazil. OBJECTIVE To identify whether lead levels found in both homes and DCC environments are associated with high blood lead levels. METHODS Children attending 4 DCCs, quoted here as NR, VA, PS and PF, were divided into two groups according to BLL: high exposure (HE: ≥13.9 μg/dL; 97.5 percentile of the 2013 year sample) and low exposure (LE: <5 μg/dL). For in situ lead measurements (lead paint mode: mg/cm2 and ROHS mode: μg/g) in the children's households and in the DCC environments, a field portable X-ray-fluorescence analyzer was used. Multiple logistic regressions were performed to control for confounding factors. Odds ratios were adjusted for age, sex, day care center's measured lead, and tobacco. RESULTS In an NR DCC building, 33.8% of the measurements had lead levels >600 μg/g, whereas such levels were observed in 77.1% of NR playground measurements. In VA DCC, 22% and 23% of the measurements in the building and in the playgrounds had levels higher than 600 μg/g, respectively. The percentage of high lead levels in the children's houses of the LE group was 5.9% (95% CI: 4.3-7.6%) and 13.2 (95% CI: 8.3-18.0%) in the HE group. Moreover, a significant association was found between high BLLs and lead levels found both in households and DCCs (p < 0.001). Most of the high lead measurements were found in tiles and playground equipment. CONCLUSIONS Lead exposure estimated from the DCCs, where children spend about 10 h/day, can be as relevant as their household exposure. Therefore, public authorities should render efforts to provide a rigorous surveillance for lead-free painting supplies and for all objects offered to children.
Collapse
Affiliation(s)
- Júlia Prestes da Rocha Silva
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, CEP 01246-904, São Paulo, SP, Brazil.
| | - Fernanda Junqueira Salles
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, CEP 01246-904, São Paulo, SP, Brazil.
| | - Isabelle Nogueira Leroux
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, CEP 01246-904, São Paulo, SP, Brazil.
| | - Ana Paula Sacone da Silva Ferreira
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, CEP 01246-904, São Paulo, SP, Brazil.
| | - Agnes Soares da Silva
- Sustainable Development and Health Equity, Pan American Health Organization, Washington, DC, United States
| | - Nilson Antonio Assunção
- Departamento de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas. Universidade Federal de São Paulo, Diadema, SP, Brazil.
| | - Adelaide Cassia Nardocci
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, CEP 01246-904, São Paulo, SP, Brazil.
| | - Ana Paula Sayuri Sato
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Fernando Barbosa
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Maria Regina Alves Cardoso
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Kelly Polido Kaneshiro Olympio
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, CEP 01246-904, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Pino A, Chiarotti F, Calamandrei G, Gotti A, Karakitsios S, Handakas E, Bocca B, Sarigiannis D, Alimonti A. Human biomonitoring data analysis for metals in an Italian adolescents cohort: An exposome approach. ENVIRONMENTAL RESEARCH 2017; 159:344-354. [PMID: 28841522 DOI: 10.1016/j.envres.2017.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/02/2017] [Accepted: 08/05/2017] [Indexed: 06/07/2023]
Abstract
The first Italian human biomonitoring survey (PROBE - PROgramme for Biomonitoring general population Exposure) considered a reference population of adolescents, aged 13-15 years, living in urban and rural areas and investigated their exposure to metals. The study was expanded up to 453 adolescents living in the same areas of Latium Region (Italy) and blood samples were analyzed for 19 metals (As, Be, Cd, Co, Cr, Hg, Ir, Mn, Mo, Ni, Pb, Pd, Pt, Rh, Sb, Sn, Tl, V, and W) by sector field inductively coupled plasma mass spectrometry. The exposure assessment was contextualized following an exposome approach that considered several determinants related to the subjects, available environmental parameters and geo-coding of residence address. To assess the influence of exposure determinants and modifiers on children biomarkers levels we used two independent methodologies. The first makes use of the so-called Environment-Wide Association Study (EWAS) methodology while the second was based on the application of a Generalized Liner Model (GLM) capturing co-exposures to pairs of key determinants. Based on our analysis, Hg and As were positively associated with dietary pathways (primarily linked to fish and to a lesser extent to milk consumption) while Cr showed a more complex interaction between co-exposure to different dietary pathways (milk and fish) coupled to proximity of residence to industrial activities. In addition to diet, socio-economic status of the mother revealed robust statistical associations with Cd, Ni and W biomonitoring levels in the respective children.
Collapse
Affiliation(s)
- Anna Pino
- Dept. of Environment and Primary Prevention, Italian National Institute for Health, Rome, Italy
| | - Flavia Chiarotti
- Dept. of Cell Biology and Neurosciences, Italian National Institute of Health, Rome, Italy
| | - Gemma Calamandrei
- Dept. of Cell Biology and Neurosciences, Italian National Institute of Health, Rome, Italy
| | - Alberto Gotti
- Environmental Health Engineering, School for Advanced Study, IUSS Pavia, Italy
| | - Spyros Karakitsios
- Environmental Engineering Laboratory, Chemical Engineering Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelos Handakas
- Environmental Engineering Laboratory, Chemical Engineering Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Beatrice Bocca
- Dept. of Environment and Primary Prevention, Italian National Institute for Health, Rome, Italy
| | - Dimosthenis Sarigiannis
- Environmental Health Engineering, School for Advanced Study, IUSS Pavia, Italy; Environmental Engineering Laboratory, Chemical Engineering Department, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Alessandro Alimonti
- Dept. of Environment and Primary Prevention, Italian National Institute for Health, Rome, Italy
| |
Collapse
|
8
|
Iordanidou C, Tsave O, Gabriel C, Hatzidimitriou A, Yavropoulou MP, Mateescu C, Salifoglou A. Synthetic endeavors on cadmium species bearing glycolate and aromatic chelators with structure-specific biotoxic correlations in vitro. J Inorg Biochem 2017; 176:38-52. [PMID: 28846894 DOI: 10.1016/j.jinorgbio.2017.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/16/2017] [Accepted: 07/26/2017] [Indexed: 11/30/2022]
Abstract
Cadmium is a well-known metallotoxin widespread in the environment and easily reaching cellular targets in lower and higher organisms, including humans. The form(s) of that metal ion through which it interacts with biomolecular targets in a cellular milieu are critical in cell survival. Poised to investigate the structure-specific activity of Cd(II) in a cellular environment and delve into the associated biotoxic processes, binary and ternary systems of that metal ion in the presence of the physiological α-hydroxycarboxylic acid glycolic acid and aromatic (N,N')-binders 2,2'-bipyridine (2,2'-bipy) and 4,4'-bipyridine (4,4'-bipy) were examined synthetically in aqueous media and a pH-specific fashion. The arising new materials [Cd(C2H3O3)2]n (1), [Cd(C2H3O3)(C10H8N2)(NO3)]n·nH2O (2), and {[Cd(C2H3O3)(C10H8N2)(H2O)](NO3)}n·2nH2O (3) project coordination polymers, which were physicochemically characterized through elemental analysis, FT-IR, NMR, luminescence and X-ray crystallography. The distinct spectroscopic features of 1-3, with luminescence exemplifying distinct behavior (2,3), further corroborated by crystallographic analysis, lend credence to a structure-specific selection of species employed in ensuing in vitro biological studies. The emerging results in two different cell lines (3T3-L1, Saos-2) reveal a concentration-dependent, structure-specific and cell line-specific toxicity profile of Cd(II), reflecting its coordination composition and formulation, rendering it soluble and bioavailable (1,2). Mechanistic information riding on caspase-dependent investigation unravels that metal ion's specific behavior compromising cell survival and integrity. Employment of ethylenediamine tetraacetic acid (EDTA) a) shows efficient sequestration of Cd(II) away from its toxic reactivity denoting the strength of interactions involved, and b) lends credence to further development of appropriately configured organic binders, selectively providing molecular protection from Cd(II) toxicity.
Collapse
Affiliation(s)
- C Iordanidou
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - O Tsave
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - C Gabriel
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Center for Research of the Structure of Matter, Magnetic Resonance Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - A Hatzidimitriou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - M P Yavropoulou
- Division of Clinical and Molecular Endocrinology, 1st Department of Internal Medicine, AHEPA, University Hospital, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - C Mateescu
- National Institute for Research and Development in Electrochemistry and Condensed Matter (INCEMC), Strada Dr. A. Paunescu Podeanu, nr. 144, Timisoara 300569, Timis, Romania
| | - A Salifoglou
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|