1
|
Wang J, Cao Y, Wan J, Zhang M, Li Y, Wang Y, Song D, Zhang T, Wang J. pH-Responsive Graphene Oxide-Based 2D/3D Composite for Enhancing Anti-Corrosion Properties of Epoxy Coating. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:323. [PMID: 38392696 PMCID: PMC10893030 DOI: 10.3390/nano14040323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
The functionalized graphene oxide (GO)-based composites as fillers added into organic coatings are desired for realizing the longstanding corrosion protection of carbon steel. Here, the pH-responsive two-dimensional/three-dimensional (2D/3D) GO-based composite (ZIF-90-AAP/GO) was developed by environmentally friendly corrosion inhibitor 4-aminoantipyrine (AAP) anchored on the in situ growth of zeolite imidazolate framework-90 (ZIF-90) on the GO surface (ZIF-90/GO) through the Schiff base reaction. The active filler (ZIF-90-AAP/GO) was incorporated into an epoxy coating (EP) to obtain a high-performance self-healing coating on the surface of carbon steel. ZIF-90-AAP can greatly improve dispersion and compatibility of GO in EP. The low-frequency impedance modulus of ZIF-90-AAP/GO-EP can still reach up to 1.35 × 1010 Ω⋅cm2 after 40 days, which is about three orders of magnitude higher than that of the EP containing GO (GO-EP) relying on its passive and active corrosion protection. Meanwhile, ZIF-90-AAP/GO-EP exhibits excellent self-healing performance. The self-healing rate of ZIF-90-AAP/GO changes from negative to positive after 24 h, which results from the effective corrosion inhibition activity of ZIF-90-AAP for carbon steel based on the pH-triggered controlled release of AAP. The developed pH-responsive 2D/3D GO-based composite coating is very attractive for the corrosion protection of carbon steel.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanli Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; (J.W.); (Y.C.); (J.W.); (M.Z.); (Y.L.); (D.S.); (T.Z.); (J.W.)
| | | | | | | |
Collapse
|
2
|
Dessi C, Melis N, Desogus F, Pilia L, Ricciu R, Grosso M. Rheology of Conductive High Reactivity Carbonaceous Material (HRCM)-Based Ink Suspensions: Dependence on Concentration and Temperature. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:21. [PMID: 36615931 PMCID: PMC9824156 DOI: 10.3390/nano13010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The present case study reports a shear rheological characterization in the temperature domain of inks and pastes loaded with conductive High Reactivity Carbonaceous Material (HRCM) consisting mainly of few-layers graphene sheets. The combined effect of filler concentration and applied shear rate is investigated in terms of the shear viscosity response as a function of testing temperature. The non-Newtonian features of shear flow ramps at constant temperature are reported to depend on both the HRCM load and the testing temperature. Moreover, temperature ramps at a constant shear rate reveal a different viscosity-temperature dependence from what is observed in shear flow ramps while maintaining the same filler concentration. An apparent departure from the well-known Vogel-Fulcher-Tamman relationship as a function of the applied shear rate is also reported.
Collapse
Affiliation(s)
- Claudia Dessi
- Clermont Auvergne INP, ICCF, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Nicola Melis
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, 09123 Cagliari, Italy
| | - Francesco Desogus
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, 09123 Cagliari, Italy
| | - Luca Pilia
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, 09123 Cagliari, Italy
| | - Roberto Ricciu
- Department of Environmental Civil Engineering and Architecture, University of Cagliari, 09123 Cagliari, Italy
| | - Massimiliano Grosso
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, 09123 Cagliari, Italy
| |
Collapse
|
3
|
Barwich S, Möbius ME. The elastic response of graphene oxide gels as a crumpling phenomenon. SOFT MATTER 2022; 18:8223-8228. [PMID: 36317477 DOI: 10.1039/d2sm00918h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The broad spectrum of chemical and electronic properties of 2D nanomaterials makes them attractive in a wide range of applications, especially in the context of printed electronics. Therefore, understanding the rheological properties of nanosheet suspensions is crucial for many additive manufacturing techniques. Here, we study the viscoelastic properties of aqueous suspensions of graphene oxide nanosheets. We show that in the gel phase, the magnitude of the elastic response and its scaling with volume fraction is independent of the lateral size of the particles and the interaction strength between them. We explain this behavior by modelling the elasticity of these gels as a crumpling phenomenon where the magnitude of the response is determined by the bending stiffness and thickness of the sheets. Due to their low bending stiffness these nanosheets crumple upon deformation and may therefore be considered soft colloids. Furthermore, we provide an explanation why the yield strain decreases with packing fraction for these gels.
Collapse
Affiliation(s)
- Sebastian Barwich
- School of Physics, AMBER and CRANN Research Centres, Trinity College Dublin, Dublin 2, Ireland.
| | - Matthias E Möbius
- School of Physics, AMBER and CRANN Research Centres, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
4
|
Simulations of Graphene Oxide Dispersions as Discotic Nematic Liquid Crystals in Couette Flow Using Ericksen-Leslie (EL) Theory. FLUIDS 2022. [DOI: 10.3390/fluids7030103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The objective of this study was to simulate the flow of graphene oxide (GO) dispersions, a discotic nematic liquid crystal (DNLC), using the Ericksen-Leslie (EL) theory. GO aqueous suspension, as a lubricant, effectively reduces the friction between solid surfaces. The geometry considered in this study was two cylinders with a small gap size, which is the preliminary geometry for journal bearings. The Leslie viscosity coefficients calculated in our previous study were used to calculate the stress tensor in the EL theory. The behavior of GO dispersions in the concentration range of 15 mg/mL to 30 mg/mL, shown in our recent experiments to be in the nematic phase, was investigated to obtain the orientation and the viscosity profile. The viscosities of GO dispersions obtained from numerical simulations were compared with those from our recent experimental study, and we observed that the values are within the range of experimental uncertainty. In addition, the alignment angles of GO dispersions at different concentrations were calculated numerically using EL theory and compared with the respective theoretical values, which were within 1% error. The anchoring angles corresponding to viscosity values closest to the experimental results were between 114 and 118 degrees. Moreover, a sensitivity analysis was performed to determine the effects of different ratios of the elasticity coefficients in EL theory. Using this procedure, the same study could be extended for other DNLCs in different geometries.
Collapse
|
5
|
Gyarmati B, Farah S, Farkas A, Sáfrán G, Voelker-Pop LM, László K. Long-Term Aging of Concentrated Aqueous Graphene Oxide Suspensions Seen by Rheology and Raman Spectroscopy. NANOMATERIALS 2022; 12:nano12060916. [PMID: 35335729 PMCID: PMC8950440 DOI: 10.3390/nano12060916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 11/26/2022]
Abstract
Today, graphene oxide (GO) has gained well-deserved recognition, with its applications continuing to increase. Much of the processing of GO-based devices occurs in a dispersed form, which explains the commercialization of GO suspensions. Aging of these suspensions can, however, affect the shelf life and thus their application potential. Aging of GO preparations is often acknowledged, but no longer-term systematic study has been reported on the alteration of GO suspensions. This paper investigates high-concentration (10 mg/mL) aqueous GO suspensions over a 2-year time scale. In addition to steady shear tests, the dynamic behavior of the suspensions was studied in more detail by transient shear and frequency sweep measurements. Both the viscosity and the dynamic moduli increased with age, particularly within the first year. The results of the complementary Raman spectroscopic studies indicate that the change in the rheological behavior with aging results from a slow oxidation process occurring in the highly acidic aqueous medium during the relatively long-term storage. The (over)oxidized layers peel off spontaneously or are removed by high shear stress, resulting in increased viscosity, as it was corroborated by XRD and XPS.
Collapse
Affiliation(s)
- Benjámin Gyarmati
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary; (B.G.); (S.F.)
| | - Shereen Farah
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary; (B.G.); (S.F.)
| | - Attila Farkas
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary;
| | - György Sáfrán
- Research Institute for Technical Physics and Materials Science, Eötvös Loránd Research Network, Konkoly Thege M. út 29-33, H-1121 Budapest, Hungary;
| | | | - Krisztina László
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary; (B.G.); (S.F.)
- Correspondence: ; Tel.: +36-14631893
| |
Collapse
|
6
|
López-Diaz D, Merchán MD, Velázquez MM. The behavior of graphene oxide trapped at the air water interface. Adv Colloid Interface Sci 2020; 286:102312. [PMID: 33166724 DOI: 10.1016/j.cis.2020.102312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/02/2023]
Abstract
Graphene oxide is a derivate of graphene obtained by oxidation of graphite and other carbonaceous materials. The more accepted structure consists in carbonyl and carboxyl groups located at the edge of the graphene network and hydroxyl and epoxy groups attached to the basal plane. The percentage of O-groups depends on the synthesis route and the material used as carbon source. In addition, highly oxidized fragments, called oxidative debris, OD, are produced during the oxidation process. These fragments are adsorbed onto the graphene oxide network and can be removed by alkaline washing. The purified material has lower O/C ratio than graphene oxide and its properties are also quite different. Due to its structure, graphene oxide can be adsorbed at the air-water interface of the aqueous solution by diffusion, Gibbs monolayers, or by spreading on a clean water subphase resulting in a Langmuir film. This review is intended to provide information on the importance of controlling the chemical composition, structure, size, and oxidative debris, on the manufacture of graphene oxide films. To this end the review shows the influence of the synthesis route and the starting material on the structure of graphene oxide and analyzes several examples of the behavior and properties of films prepared with different types of graphene oxides. The great variability of behaviors of graphene oxide films caused by the different structure of this material provides a great opportunity to fine-tune the properties of films according to the needs of different applications.
Collapse
|
7
|
Fang WZ, Peng L, Liu YJ, Wang F, Xu Z, Gao C. A Review on Graphene Oxide Two-dimensional Macromolecules: from Single Molecules to Macro-assembly. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-021-2515-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Choi Y, Kim SS, Kim JH, Kang J, Choi E, Choi SE, Kim JP, Kwon O, Kim DW. Graphene Oxide Nanoribbon Hydrogel: Viscoelastic Behavior and Use as a Molecular Separation Membrane. ACS NANO 2020; 14:12195-12202. [PMID: 32885959 DOI: 10.1021/acsnano.0c05902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The preparation of carbon materials based hydrogels and their viscoelastic properties are essential for their broad application and scale-up. However, existing studies are mainly focused on graphene derivatives and carbon nanotubes, and the behavior of graphene nanoribbon (GNR), a narrow strip of graphene, remains elusive. Herein, we demonstrate the concentration-driven gelation of oxidized GNR (graphene oxide nanoribbon, GONR) in aqueous solvents. Exfoliated individual GONRs sequentially assemble into strings (∼1 mg/mL), nanoplates (∼20 mg/mL), and a macroporous scaffold (50 mg/mL) with increasing concentration. The GONR hydrogels exhibit viscoelastic shear-thinning behavior and can be shear-coated to form large-area GONR films on substrates. The entangled and stacked structure of the GONR film contributed to outstanding nanofiltration performance under high pressure, cross-flow, and long-term filtration, while the precise molecular separation with 100% rejection rate was maintained for sub-nanometer molecules.
Collapse
Affiliation(s)
- Yunkyu Choi
- Department of Chemical and Biomolecular Engineering, YONSEI University, Yonsei-ro 50, Seodaemun-gu, Seoul, (03722), Republic of Korea
| | - Sung-Soo Kim
- Carbon Composite Materials Research Center, Korea Institute of Science and Technology, 92 Chudong-ro Bongdong-eup, Wanju-gun, Jeollabuk-do 55324, Republic of Korea
| | - Ji Hoon Kim
- Department of Chemical and Biomolecular Engineering, YONSEI University, Yonsei-ro 50, Seodaemun-gu, Seoul, (03722), Republic of Korea
| | - Junhyeok Kang
- Department of Chemical and Biomolecular Engineering, YONSEI University, Yonsei-ro 50, Seodaemun-gu, Seoul, (03722), Republic of Korea
| | - Eunji Choi
- Department of Chemical and Biomolecular Engineering, YONSEI University, Yonsei-ro 50, Seodaemun-gu, Seoul, (03722), Republic of Korea
| | - Seung Eun Choi
- Department of Chemical and Biomolecular Engineering, YONSEI University, Yonsei-ro 50, Seodaemun-gu, Seoul, (03722), Republic of Korea
| | - Jeong Pil Kim
- Department of Chemical and Biomolecular Engineering, YONSEI University, Yonsei-ro 50, Seodaemun-gu, Seoul, (03722), Republic of Korea
| | - Ohchan Kwon
- Department of Chemical and Biomolecular Engineering, YONSEI University, Yonsei-ro 50, Seodaemun-gu, Seoul, (03722), Republic of Korea
| | - Dae Woo Kim
- Department of Chemical and Biomolecular Engineering, YONSEI University, Yonsei-ro 50, Seodaemun-gu, Seoul, (03722), Republic of Korea
| |
Collapse
|
9
|
Hoor YQ, Au PI, Mubarak N, Khalid M, Jagadish P, Walvekar R, Abdullah E. Surface force arising from Adsorbed graphene oxide in kaolinite suspensions. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Influence of Oxidation Degree of Graphene Oxide on the Shear Rheology of Poly(ethylene glycol) Suspensions. FLUIDS 2020. [DOI: 10.3390/fluids5020041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This work studies the influence of the concentration and oxidation degree on the rheological behavior of graphene oxide (GO) nanosheets dispersed on polyethylene glycol (PEG). The rheological characterization was fulfilled in shear flow through rotational rheometry measurements, in steady, transient and oscillatory regimes. Graphene oxide was prepared by chemical exfoliation of graphite using the modified Hummers method. The morphological and structural characteristics originating from the synthesis were analyzed by X-ray diffraction, Raman spectroscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, and atomic force microscopy. It is shown that higher oxidation times increase the functional groups, which leads to a higher dispersion and exfoliation of GO sheets in the PEG. Moreover, the addition of GO in a PEG solution results in significant growth of the suspension viscosity, and a change of the fluid behavior from Newtonian to pseudoplastic. This effect is related to the concentration and oxidation level of the obtained GO particles. The results obtained aim to contribute towards the understanding of the interactions between the GO and the polymeric liquid matrix, and their influence on the suspension rheological behavior.
Collapse
|
11
|
Klotz AR, Soh BW, Doyle PS. Equilibrium structure and deformation response of 2D kinetoplast sheets. Proc Natl Acad Sci U S A 2020; 117:121-127. [PMID: 31811027 PMCID: PMC6955370 DOI: 10.1073/pnas.1911088116] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The considerable interest in two-dimensional (2D) materials and complex molecular topologies calls for a robust experimental system for single-molecule studies. In this work, we study the equilibrium properties and deformation response of a complex DNA structure called a kinetoplast, a 2D network of thousands of linked rings akin to molecular chainmail. Examined in good solvent conditions, kinetoplasts appear as a wrinkled hemispherical sheet. The conformation of each kinetoplast is dictated by its network topology, giving it a unique shape, which undergoes small-amplitude thermal fluctuations at subsecond timescales, with a wide separation between fluctuation and diffusion timescales. They deform elastically when weakly confined and swell to their equilibrium dimensions when the confinement is released. We hope that, in the same way that linear DNA became a canonical model system on the first investigations of its polymer-like behavior, kinetoplasts can serve that role for 2D and catenated polymer systems.
Collapse
Affiliation(s)
- Alexander R Klotz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142
- Department of Physics and Astronomy, California State University, Long Beach, CA 90840
| | - Beatrice W Soh
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Patrick S Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142;
| |
Collapse
|
12
|
Rehman TU, Shah LA. Rheological Investigation of GO Doped p(APTMACl) Composite Hydrogel. ACTA ACUST UNITED AC 2019. [DOI: 10.1515/zpch-2019-1416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The aim of the present work is an approach towards the exploration of comprehension of rheological work on polymer composites synthesized by ex-situ dispersion of graphene oxide (GO) in poly(3-acrylamidopropyl trimethyl ammonium chloride (APTMACl) cationic hydrogel template. FTIR was carried out for confirmation of polymer synthesis and existence of GO in hydrogel network. The rheological investigation via frequency sweep curve (shear measurement) and oscillatory sweep (dynamic mechanical analysis) at different temperature 20, 25, 30, 35, 40 and 45 °C was performed. The storage (G′) and loss (G′′) moduli as a function of angular frequency, yield stress, tangent loss, damping factor and retention property were also studied to confirm the visco-elastomeric nature of the GO@p(APTMACl) composite and their semi solid response at different range of temperature. Various rheological models like Bingham model, modified Bingham model and Ostwald’s power law were applied. The temperature dependency was further tested via Arrhenius-Frenkel-Eyring equation. The sample showed best fitting in the modified Bingham model, which justified the pseudo plastic semi solid behavior of GO@p(APTMACl) composite within the linear visco-elastic region (LVER). All the properties from rheological study show best mechanical property and make the composite hydrogel good for drug delivery and for other environmental applications.
Collapse
Affiliation(s)
- Tanzil Ur Rehman
- Polymer Laboratory , National Centre of Excellence in Physical Chemistry University of Peshawar , Peshawar 25120 , Pakistan
| | - Luqman Ali Shah
- Polymer Laboratory , National Centre of Excellence in Physical Chemistry University of Peshawar , Peshawar 25120 , Pakistan , Tel: +(9291)9216766, Fax: +(9291)9216671, e-mail:
| |
Collapse
|
13
|
Jeon I, Park GH, Wang P, Li J, Hunter IW, Swager TM. Dynamic Fluid-Like Graphene with Ultralow Frictional Molecular Bearing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903195. [PMID: 31496001 DOI: 10.1002/adma.201903195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/18/2019] [Indexed: 06/10/2023]
Abstract
Fluid-like sliding graphenes but with solid-like out-of-plane compressive rigidity offer unique opportunities for achieving unusual physical and chemical properties for next-generation interfacial technologies. Of particular interest in the present study are graphenes with specific chemical functionalization that can predictably promote adhesion and wetting to substrate and ultralow frictional sliding structures. Lubricity between stainless steel (SS) and diamond-like carbon (DLC) is experimentally demonstrated with densely functionalized graphenes displaying dynamic intersheet bonds that mechanically transform into stable tribolayers. The macroscopic lubricity evolves through the formation of a thin film of an interconnected graphene matrix that provides a coefficient of friction (COF) of 0.01. Mechanical sliding generates complex folded graphene structures wherein equilibrated covalent chemical linkages impart rigidity and stability to the films examined in macroscopic friction tests. This new approach to frictional reduction has broad implications for manufacturing, transportation, and aerospace.
Collapse
Affiliation(s)
- Intak Jeon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Gee Hoon Park
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Pan Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ju Li
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ian W Hunter
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
14
|
Huang YX, Huang HX. Rheological behavior of well-dispersed polypropylene/halloysite nanotube composites prepared by water-assisted mixing extrusion. IRANIAN POLYMER JOURNAL 2019. [DOI: 10.1007/s13726-019-00742-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Cao Y, Hassan M, Cheng Y, Chen Z, Wang M, Zhang X, Haider Z, Zhao G. Multifunctional Photo- and Magnetoresponsive Graphene Oxide-Fe 3O 4 Nanocomposite-Alginate Hydrogel Platform for Ice Recrystallization Inhibition. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12379-12388. [PMID: 30865418 DOI: 10.1021/acsami.9b02887] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Tuning ice recrystallization (IR) has attracted tremendous interest in fundamental research and a variety of practical applications, including food and pharmaceutical engineering, fabrication of anti-icing coating and porous materials, and cryopreservation of biological cells and tissues. Although great efforts have been devoted to modulation of IR for better microstructure control of various materials, it still remains a challenge, especially in cryopreservation, where insufficient suppression of IR during warming is fatal to the cells. Herein, we report an all-in-one platform, combining the external physical fields and the functional materials for both active and passive suppression of IR, where the photo- and magnetothermal dual-modal heating of GO-Fe3O4 nanocomposites (NCs) can be used to suppress IR with both enhanced global warming and microscale thermal disturbance. Moreover, the materials alginate hydrogels and GO-Fe3O4 NCs can act as IR inhibitors for further suppression of the IR effect. As a typical application, we show that this GO-Fe3O4 nanocomposite-alginate hydrogel platform can successfully enable low-cryoprotectant, high-quality vitrification of stem cell-laden hydrogels. We believe that the versatile ice recrystallization inhibition platform will have a profound influence on cryopreservation and tremendously facilitate stem cell-based medicine to meet its ever-increasing demand in clinical settings.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Electronic Science and Technology , University of Science and Technology of China , Hefei 230027 , Anhui , China
| | - Muhammad Hassan
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Yue Cheng
- Department of Electronic Science and Technology , University of Science and Technology of China , Hefei 230027 , Anhui , China
| | - Zhongrong Chen
- Department of Electronic Science and Technology , University of Science and Technology of China , Hefei 230027 , Anhui , China
| | - Meng Wang
- Department of Electronic Science and Technology , University of Science and Technology of China , Hefei 230027 , Anhui , China
| | - Xiaozhang Zhang
- Department of Electronic Science and Technology , University of Science and Technology of China , Hefei 230027 , Anhui , China
| | - Zeeshan Haider
- Department of Electronic Science and Technology , University of Science and Technology of China , Hefei 230027 , Anhui , China
| | - Gang Zhao
- Department of Electronic Science and Technology , University of Science and Technology of China , Hefei 230027 , Anhui , China
| |
Collapse
|
16
|
Wagner N. Editorial Overview: Nanotechnology. Curr Opin Chem Eng 2017. [DOI: 10.1016/j.coche.2017.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|