1
|
Phase Behavior of Ion-Containing Polymers in Polar Solvents: Predictions from a Liquid-State Theory with Local Short-Range Interactions. Polymers (Basel) 2022; 14:polym14204421. [PMID: 36297998 PMCID: PMC9612006 DOI: 10.3390/polym14204421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
The thermodynamic phase behavior of charged polymers is a crucial property underlying their role in biology and various industrial applications. A complete understanding of the phase behaviors of such polymer solutions remains challenging due to the multi-component nature of the system and the delicate interplay among various factors, including the translational entropy of each component, excluded volume interactions, chain connectivity, electrostatic interactions, and other specific interactions. In this work, the phase behavior of partially charged ion-containing polymers in polar solvents is studied by further developing a liquid-state (LS) theory with local shortrange interactions. This work is based on the LS theory developed for fully-charged polyelectrolyte solutions. Specific interactions between charged groups of the polymer and counterions, between neutral segments of the polymer, and between charged segments of the polymer are incorporated into the LS theory by an extra Helmholtz free energy from the perturbed-chain statistical associating fluid theory (PC-SAFT). The influence of the sequence structure of the partially charged polymer is modeled by the number of connections between bonded segments. The effects of chain length, charge fraction, counterion valency, and specific short-range interactions are explored. A computational App for salt-free polymer solutions is developed and presented, which allows easy computation of the binodal curve and critical point by specifying values for the relevant model parameters.
Collapse
|
2
|
Schlenoff JB, Yang M, Digby ZA, Wang Q. Ion Content of Polyelectrolyte Complex Coacervates and the Donnan Equilibrium. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01755] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Joseph B. Schlenoff
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Mo Yang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Zachary A. Digby
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Qifeng Wang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
3
|
Heat effects measured in aqueous solutions of salts of poly(anethole sulfonic acid) upon mixing with alkali-, alkaline-earth-, and tetraalkylammonium chlorides. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.09.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Nayar D, Chakravarty C. Free Energy Landscapes of Alanine Oligopeptides in Rigid-Body and Hybrid Water Models. J Phys Chem B 2015; 119:11106-20. [PMID: 26132437 DOI: 10.1021/acs.jpcb.5b02937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Replica exchange molecular dynamics is used to study the effect of different rigid-body (mTIP3P, TIP4P, SPC/E) and hybrid (H1.56, H3.00) water models on the conformational free energy landscape of the alanine oligopeptides (acAnme and acA5nme), in conjunction with the CHARMM22 force field. The free energy landscape is mapped out as a function of the Ramachandran angles. In addition, various secondary structure metrics, solvation shell properties, and the number of peptide-solvent hydrogen bonds are monitored. Alanine dipeptide is found to have similar free energy landscapes in different solvent models, an insensitivity which may be due to the absence of possibilities for forming i-(i + 4) or i-(i + 3) intrapeptide hydrogen bonds. The pentapeptide, acA5nme, where there are three intrapeptide backbone hydrogen bonds, shows a conformational free energy landscape with a much greater degree of sensitivity to the choice of solvent model, though the three rigid-body water models differ only quantitatively. The pentapeptide prefers nonhelical, non-native PPII and β-sheet populations as the solvent is changed from SPC/E to the less tetrahedral liquid (H1.56) to an LJ-like liquid (H3.00). The pentapeptide conformational order metrics indicate a preference for open, solvent-exposed, non-native structures in hybrid solvent models at all temperatures of study. The possible correlations between the properties of solvent models and secondary structure preferences of alanine oligopeptides are discussed, and the competition between intrapeptide, peptide-solvent, and solvent-solvent hydrogen bonding is shown to be crucial in the relative free energies of different conformers.
Collapse
Affiliation(s)
- Divya Nayar
- Department of Chemistry, Indian Institute of Technology-Delhi , New Delhi 110016, India
| | - Charusita Chakravarty
- Department of Chemistry, Indian Institute of Technology-Delhi , New Delhi 110016, India
| |
Collapse
|
5
|
Jakubowska A. Interactions of univalent counterions with headgroups of monomers and dimers of an anionic surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3293-3300. [PMID: 25714134 DOI: 10.1021/la5049002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Specific ion effects in solution are related to the hydrated ion size and ion hydration, electrostatic interactions, dispersion forces, ion effects on water structure, and ion modification of surface tension. In this study, we tried to identify which factor determines the ion specificity observed. The preference and energy of metal cations binding with the headgroups of dodecylsulfate (DS) monomers and dimers were determined by mass spectrometry. In the gas phase, cation binding to DS dimer headgroups depends strongly on the cation radius. On the other hand, the interactions between DS monomer headgroups and chaotropic ions depend on the cation polarizability, and the binding of kosmotropic cations to DS monomer headgroups strongly depends on the Gibbs free energies of ion hydration. DS dimers are related to surfactants having doubly charged headgroups, and DS monomers are related to surfactants with singly charged headgroups. Our spectrometric study of the strength of counterion binding to free monomers of a surfactant provides insight into surfactant-counterion interactions at micellar interfaces in bulk solution.
Collapse
Affiliation(s)
- Anna Jakubowska
- Department of Physical Chemistry, Adam Mickiewicz University, Umultowska 89 b, 61-614 Poznań, Poland
| |
Collapse
|
6
|
Nanostructuration of soft hydrogels: synthesis and characterization of saccharidic methacrylate gels. Colloid Polym Sci 2011. [DOI: 10.1007/s00396-011-2465-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Dodoo S, Steitz R, Laschewsky A, von Klitzing R. Effect of ionic strength and type of ions on the structure of water swollen polyelectrolyte multilayers. Phys Chem Chem Phys 2011; 13:10318-25. [DOI: 10.1039/c0cp01357a] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Wong JE, Zastrow H, Jaeger W, von Klitzing R. Specific ion versus electrostatic effects on the construction of polyelectrolyte multilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:14061-14070. [PMID: 19705859 DOI: 10.1021/la901673u] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Self-assembled multilayers of a strong polyanion, poly(sodium 4-styrenesulfonate) (PSS), and a strong polycation, poly[(diallyl-dimethyl-ammonium chloride)-stat-(N-methyl-N-vinyl acetamide)] (P(DADMAC-stat-NMVA)), are fabricated on silicon substrates. This article addresses the effect of electrostatics versus ion specificity. Therefore, multilayer formation and growth are investigated as a function of the charge density of the polycation, the type of salt in the polyelectrolyte dipping solution, and its ionic strength. This study focuses on monovalent ions (Li(+), Na(+), K(+), Cs(+), Rb(+), F(-), Cl(-), Br(-), and ClO(3)(-)). Ellipsometry and X-ray reflectometry data indicate that anions have a significantly larger effect on the thickness of the multilayer, but contrary to other studies on ion-specific effects, the influence of the type of cation is not negligible at higher salt concentrations. Larger ions, with smaller hydration shells, are highly polarizable and consequently interact strongly with charged polyelectrolytes, resulting in thicker and rougher multilayers. AFM studies confirm a higher roughness of the multilayer prepared from larger anions. The substrate can mask ion-specific effects over a distance of about 10 nm. Ion-specific effects become important above an ionic strength of 0.1 M in the case of anions and above an ionic strength of 0.25 M for cations. At lower ionic strengths, electrostatic interactions between and within the polyelectrolyte chains are dominating. Reducing the degree of polymer charge down to 75% does not shift this threshold of ionic strength. It is shown that a combination of ionic strength, polymer charge, and type of ion is a suitable tool for tuning the mobility and stability of polyelectrolyte multilayers.
Collapse
Affiliation(s)
- John E Wong
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany.
| | | | | | | |
Collapse
|
9
|
Nucci NV, Vanderkooi JM. Effects of Salts of the Hofmeister Series on the Hydrogen Bond Network of Water. J Mol Liq 2008; 143:160-170. [PMID: 19847287 PMCID: PMC2748947 DOI: 10.1016/j.molliq.2008.07.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The effect of salts on water behavior has been a topic of interest for many years; however, some recent reports have suggested that ions do not influence the hydrogen bonding behavior of water. Using an effective two-state hydrogen bonding model to interpret the temperature excursion infrared response of the O-H stretch of aqueous salt solutions, we show a strong correlation between salt effects on water hydrogen bonding and the Hofmeister order. These data clearly show that salts do have a measurable impact on the equilibrium hydrogen bonding behavior of water and support models which explain Hofmeister effects on the basis of solute charge density.
Collapse
Affiliation(s)
- Nathaniel V. Nucci
- Department of Biochemistry and Biophysics, University of Pennsylvania. 422 Curie Boulevard, Philadelphia, PA 19104, 1*(215)898-8783, fax: 1*(215)573-2085,
| | - Jane M. Vanderkooi
- Department of Biochemistry and Biophysics, University of Pennsylvania. 422 Curie Boulevard, Philadelphia, PA 19104, 1*(215)898-8783, fax: 1*(215)573-2085,
| |
Collapse
|
10
|
Ren J, Xin L, Liu YN, Wang KJ. Copolymerization of Mixed l-α-Arginine with l-α-Glutamic Acid. Macromolecules 2008. [DOI: 10.1021/ma7019286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jie Ren
- Protein & Peptide Pharmaceutical Lab, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Xin
- Protein & Peptide Pharmaceutical Lab, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi-Nan Liu
- Protein & Peptide Pharmaceutical Lab, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kong-Jiang Wang
- Protein & Peptide Pharmaceutical Lab, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
11
|
|
12
|
Warren GL, Patel S. Hydration free energies of monovalent ions in transferable intermolecular potential four point fluctuating charge water: An assessment of simulation methodology and force field performance and transferability. J Chem Phys 2007; 127:064509. [PMID: 17705614 DOI: 10.1063/1.2771550] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hydration free energies of nonpolarizable monovalent atomic ions in transferable intermolecular potential four point fluctuating charge (TIP4P-FQ) are computed using several commonly employed ion-water force fields including two complete model sets recently developed for use with the simple water model with four sites and Drude polarizability and TIP4P water models. A simulation methodology is presented which incorporates a number of finite-system free energy corrections within the context of constant pressure molecular dynamics simulations employing the Ewald method and periodic boundary conditions. The agreement of the computed free energies and solvation structures with previously reported results for these models in finite droplet systems indicates good transferability of ion force fields from these water models to TIP4Q-FQ even when ion polarizability is neglected. To assess the performance of the ion models in TIP4P-FQ, we compare with consensus values for single-ion hydration free energies arising from recently improved cluster-pair estimates and a reevaluation of commonly cited, experimentally derived single-ion hydration free energies; we couple the observed consistency of these energies with a justification of the cluster-pair approximation in assigning single-ion hydration free energies to advocate the use of these consensus energies as a benchmark set in the parametrization of future ion force fields.
Collapse
Affiliation(s)
- G Lee Warren
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
| | | |
Collapse
|
13
|
Bizjak A, Rescic J, Kalyuzhnyi YV, Vlachy V. Theoretical aspects and computer simulations of flexible charged oligomers in salt-free solutions. J Chem Phys 2006; 125:214907. [PMID: 17166049 DOI: 10.1063/1.2401606] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The structural and thermodynamic properties of a model solution containing flexible charged oligomers and an equivalent number of counterions were studied by means of the canonical Monte Carlo simulation and integral equation theory. The oligomers were represented as freely jointed chains of charged hard spheres. In accordance with the primitive model of electrolyte solutions, the counterions were modeled as charged hard spheres and the solvent as a dielectric continuum. Simulations were performed for a set of model parameters, independently varying the chain length and concentration of the oligomers. Structural properties in the form of pair distribution functions were calculated as functions of model parameters. In addition, thermodynamic properties such as the excess energy of solution and the excess chemical potential of counterions were obtained. These properties were correlated with the conformational averages of oligomers as reflected in the end-to-end distances and radii of gyration obtained from the simulations. The relation with the experimental data for heats of dilution and for the activity coefficient is discussed. Finally, theories based on Wertheim's integral equation approach (product reactant Ornstein-Zernike approach) [J. Stat. Phys. 42, 477 (1986)] in the so-called polymer mean spherical and polymer hypernetted chain approximations were tested against the new and existing computer simulations. For the values of parameters examined in this study, the integral equation theory yields semiquantitative agreement with computer simulations.
Collapse
Affiliation(s)
- A Bizjak
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Askerceva 5, SI-1000 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
14
|
Macroions in Solution. ACTA ACUST UNITED AC 2005. [DOI: 10.1007/1-4020-3659-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|