1
|
Divoux T, Agoritsas E, Aime S, Barentin C, Barrat JL, Benzi R, Berthier L, Bi D, Biroli G, Bonn D, Bourrianne P, Bouzid M, Del Gado E, Delanoë-Ayari H, Farain K, Fielding S, Fuchs M, van der Gucht J, Henkes S, Jalaal M, Joshi YM, Lemaître A, Leheny RL, Manneville S, Martens K, Poon WCK, Popović M, Procaccia I, Ramos L, Richards JA, Rogers S, Rossi S, Sbragaglia M, Tarjus G, Toschi F, Trappe V, Vermant J, Wyart M, Zamponi F, Zare D. Ductile-to-brittle transition and yielding in soft amorphous materials: perspectives and open questions. SOFT MATTER 2024; 20:6868-6888. [PMID: 39028363 DOI: 10.1039/d3sm01740k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Soft amorphous materials are viscoelastic solids ubiquitously found around us, from clays and cementitious pastes to emulsions and physical gels encountered in food or biomedical engineering. Under an external deformation, these materials undergo a noteworthy transition from a solid to a liquid state that reshapes the material microstructure. This yielding transition was the main theme of a workshop held from January 9 to 13, 2023 at the Lorentz Center in Leiden. The manuscript presented here offers a critical perspective on the subject, synthesizing insights from the various brainstorming sessions and informal discussions that unfolded during this week of vibrant exchange of ideas. The result of these exchanges takes the form of a series of open questions that represent outstanding experimental, numerical, and theoretical challenges to be tackled in the near future.
Collapse
Affiliation(s)
- Thibaut Divoux
- ENSL, CNRS, Laboratoire de physique, F-69342 Lyon, France.
| | - Elisabeth Agoritsas
- Department of Quantum Matter Physics (DQMP), University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva, Switzerland
| | - Stefano Aime
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, Paris, France
| | - Catherine Barentin
- Univ. de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Jean-Louis Barrat
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Roberto Benzi
- Department of Physics & INFN, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, Montpellier, France
| | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Giulio Biroli
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Daniel Bonn
- Soft Matter Group, van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Philippe Bourrianne
- PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, Paris, France
| | - Mehdi Bouzid
- Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, F-38000 Grenoble, France
| | - Emanuela Del Gado
- Georgetown University, Department of Physics, Institute for Soft Matter Synthesis and Metrology, Washington, DC, USA
| | - Hélène Delanoë-Ayari
- Univ. de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Kasra Farain
- Soft Matter Group, van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Suzanne Fielding
- Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
| | - Matthias Fuchs
- Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Silke Henkes
- Lorentz Institute, Leiden University, 2300 RA Leiden, The Netherlands
| | - Maziyar Jalaal
- Institute of Physics, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Yogesh M Joshi
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Anaël Lemaître
- Navier, École des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France
| | - Robert L Leheny
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | - Wilson C K Poon
- SUPA and the School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Marko Popović
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str.38, 01187 Dresden, Germany
| | - Itamar Procaccia
- Dept. of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
- Sino-Europe Complex Science Center, School of Mathematics, North University of China, Shanxi, Taiyuan 030051, China
| | - Laurence Ramos
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, Montpellier, France
| | - James A Richards
- SUPA and the School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Simon Rogers
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Saverio Rossi
- LPTMC, CNRS-UMR 7600, Sorbonne Université, 4 Pl. Jussieu, F-75005 Paris, France
| | - Mauro Sbragaglia
- Department of Physics & INFN, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Gilles Tarjus
- LPTMC, CNRS-UMR 7600, Sorbonne Université, 4 Pl. Jussieu, F-75005 Paris, France
| | - Federico Toschi
- Department of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- CNR-IAC, Via dei Taurini 19, 00185 Rome, Italy
| | - Véronique Trappe
- Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg 1700, Switzerland
| | - Jan Vermant
- Department of Materials, ETH Zürich, Vladimir Prelog Weg 5, 8032 Zürich, Switzerland
| | - Matthieu Wyart
- Department of Quantum Matter Physics (DQMP), University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva, Switzerland
| | - Francesco Zamponi
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Davoud Zare
- Fonterra Research and Development Centre, Dairy Farm Road, Fitzherbert, Palmerston North 4442, New Zealand
- Nestlé Institute of Food Sciences, Nestlé Research, Vers Chez les Blancs, Lausanne, Switzerland
| |
Collapse
|
2
|
Semenov A, Baschnagel J. General Relations between Stress Fluctuations and Viscoelasticity in Amorphous Polymer and Glass-Forming Systems. Polymers (Basel) 2024; 16:2336. [PMID: 39204556 PMCID: PMC11359246 DOI: 10.3390/polym16162336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Mechanical stress governs the dynamics of viscoelastic polymer systems and supercooled glass-forming fluids. It was recently established that liquids with long terminal relaxation times are characterized by transiently frozen stress fields, which, moreover, exhibit long-range correlations contributing to the dynamically heterogeneous nature of such systems. Recent studies show that stress correlations and relaxation elastic moduli are intimately related in isotropic viscoelastic systems. However, the origin of these relations (involving spatially resolved material relaxation functions) is non-trivial: some relations are based on the fluctuation-dissipation theorem (FDT), while others involve approximations. Generalizing our recent results on 2D systems, we here rigorously derive three exact FDT relations (already established in our recent investigations and, partially, in classical studies) between spatio-temporal stress correlations and generalized relaxation moduli, and a couple of new exact relations. We also derive several new approximate relations valid in the hydrodynamic regime, taking into account the effects of thermal conductivity and composition fluctuations for arbitrary space dimension. One approximate relation was heuristically obtained in our previous studies and verified using our extended simulation data on two-dimensional (2D) glass-forming systems. As a result, we provide the means to obtain, in any spatial dimension, all stress-correlation functions in terms of relaxation moduli and vice versa. The new approximate relations are tested using simulation data on 2D systems of polydisperse Lennard-Jones particles.
Collapse
Affiliation(s)
- Alexander Semenov
- Institut Charles Sadron, CNRS–UPR 22, University of Strasbourg, 67034 Strasbourg, France
| | | |
Collapse
|
3
|
Dyre JC. Solid-that-Flows Picture of Glass-Forming Liquids. J Phys Chem Lett 2024; 15:1603-1617. [PMID: 38306474 PMCID: PMC10875679 DOI: 10.1021/acs.jpclett.3c03308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/04/2024]
Abstract
This perspective article reviews arguments that glass-forming liquids are different from those of standard liquid-state theory, which typically have a viscosity in the mPa·s range and relaxation times on the order of picoseconds. These numbers grow dramatically and become 1012 - 1015 times larger for liquids cooled toward the glass transition. This translates into a qualitative difference, and below the "solidity length" which is roughly one micron at the glass transition, a glass-forming liquid behaves much like a solid. Recent numerical evidence for the solidity of ultraviscous liquids is reviewed, and experimental consequences are discussed in relation to dynamic heterogeneity, frequency-dependent linear-response functions, and the temperature dependence of the average relaxation time.
Collapse
Affiliation(s)
- Jeppe C Dyre
- "Glass and Time", IMFUFA, Dept. of Sciences, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
4
|
Wiese R, Kroy K, Levis D. Fluid-Glass-Jamming Rheology of Soft Active Brownian Particles. PHYSICAL REVIEW LETTERS 2023; 131:178302. [PMID: 37955492 DOI: 10.1103/physrevlett.131.178302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/13/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023]
Abstract
We numerically study the shear rheology of a binary mixture of soft active Brownian particles, from the fluid to the disordered solid regime. At low shear rates, we find a Newtonian regime, where a Green-Kubo relation with an effective temperature provides the linear viscosity. It is followed by a shear-thinning regime at high shear rates. At high densities, solidification is signaled by the emergence of a finite yield stress. We construct a "fluid-glass-jamming" phase diagram with activity replacing temperature. While both parameters gauge fluctuations, activity also changes the exponent characterizing the decay of the diffusivity close to the glass transition and the shape of the yield stress surface. The dense disordered active solid appears to be mostly dominated by athermal jamming rather than glass rheology.
Collapse
Affiliation(s)
- Roland Wiese
- Institute for Theoretical Physics, Leipzig University, 04103 Leipzig, Germany
| | - Klaus Kroy
- Institute for Theoretical Physics, Leipzig University, 04103 Leipzig, Germany
| | - Demian Levis
- Departement de Física de la Materia Condensada, Facultat de Física, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- University of Barcelona Institute of Complex Systems (UBICS), Facultat de Física, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
5
|
Wittmer JP, Semenov AN, Baschnagel J. Correlations of tensor field components in isotropic systems with an application to stress correlations in elastic bodies. Phys Rev E 2023; 108:015002. [PMID: 37583199 DOI: 10.1103/physreve.108.015002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/28/2023] [Indexed: 08/17/2023]
Abstract
Correlation functions of components of second-order tensor fields in isotropic systems can be reduced to an isotropic fourth-order tensor field characterized by a few invariant correlation functions (ICFs). It is emphasized that components of this field depend in general on the coordinates of the field vector variable and thus on the orientation of the coordinate system. These angular dependencies are distinct from those of ordinary anisotropic systems. As a simple example of the procedure to obtain the ICFs we discuss correlations of time-averaged stresses in isotropic glasses where only one ICF in reciprocal space becomes a finite constant e for large sampling times and small wave vectors. It is shown that e is set by the typical size of the frozen-in stress components normal to the wave vectors, i.e., it is caused by the symmetry breaking of the stress for each independent configuration. Using the presented general mathematical formalism for isotropic tensor fields this finding explains in turn the observed long-range stress correlations in real space. Under additional but rather general assumptions e is shown to be given by a thermodynamic quantity, the equilibrium Young modulus E. We thus relate for certain isotropic amorphous bodies the existence of finite Young or shear moduli to the symmetry breaking of a stress component in reciprocal space.
Collapse
Affiliation(s)
- J P Wittmer
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France
| | - A N Semenov
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France
| | - J Baschnagel
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France
| |
Collapse
|
6
|
Jiang Y, Weeks ER, Bailey NP. Isomorphs in sheared binary Lennard-Jones glass: Transient response. Phys Rev E 2023; 107:014610. [PMID: 36797950 DOI: 10.1103/physreve.107.014610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 01/06/2023] [Indexed: 01/31/2023]
Abstract
We have studied shear deformation of binary Lennard-Jones glasses to investigate the extent to which the transient part of the stress strain curves is invariant when the thermodynamic state point is varied along an isomorph. Shear deformations were carried out on glass samples of varying stability, determined by cooling rate, and at varying strain rates, at state points deep in the glass. Density changes up to and exceeding a factor of two were made. We investigated several different methods for generating isomorphs but none of the previously developed methods could generate sufficiently precise isomorphs given the large density changes and nonequilibrium situation. Instead, the temperatures for these higher densities were chosen to give state points isomorphic to the starting state point by requiring the steady-state flow stress for isomorphic state points to be invariant in reduced units. In contrast to the steady-state flow stress, we find that the peak stress on the stress strain curve is not invariant. The peak stress decreases by a few percent for each ten percent increase in density, although the differences decrease with increasing density. Analysis of strain profiles and nonaffine motion during the transient phase suggests that the root of the changes in peak stress is a varying tendency to form shear bands, with the largest tendency occurring at the lowest densities. We suggest that this reflects the effective steepness of the potential; a higher effective steepness gives a greater tendency to form shear bands.
Collapse
Affiliation(s)
- Yonglun Jiang
- Department of Physics, Emory University, 400 Dowman Drive, Atlanta, Georgia 30322, USA
| | - Eric R Weeks
- Department of Physics, Emory University, 400 Dowman Drive, Atlanta, Georgia 30322, USA
| | - Nicholas P Bailey
- "Glass and Time," IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
7
|
Steffen D, Schneider L, Müller M, Rottler J. Molecular simulations and hydrodynamic theory of nonlocal shear stresscorrelations in supercooled fluids. J Chem Phys 2022; 157:064501. [DOI: 10.1063/5.0098265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A supercooled fluid close to the glass transition develops nonlocal shear stress correlations that anticipate the emergence of elasticity. We performed molecular dynamics simulations of a binary Lennard-Jones mixture at different temperatures and investigated the spatiotemporal autocorrelation function of the shear stressfor different wavevectors, q, from a locally measured and Fourier-transformed stress tensor. Anisotropic correlations are observed at non-zero wavevectors, exhibiting strongly damped oscillations with a characteristic frequency ω(q). A comparison with a recently developed hydrodynamic theory [Maier et al., Phys. Rev. Lett. 119, 265701 (2017)] shows a remarkably good quantitative agreement between the particle-based simulations and the theoretical predictions.
Collapse
Affiliation(s)
- David Steffen
- Georg-August-Universität Göttingen Institut für Theoretische Physik, Germany
| | - Ludwig Schneider
- Institute for Theoretical Physics, Georg-August-Universität Göttingen Fakultät für Physik, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg August University Gottingen Faculty of Physics, Germany
| | - Joerg Rottler
- Department of Physics and Astronomy, University of British Columbia, Canada
| |
Collapse
|
8
|
Molecular Dynamics Study of Star Polymer Melts under Start-up Shear. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2700-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Abstract
Abstract
The review presents current research results for Carbopol-based microgels as yield-stress materials, covering three aspects: chemical, physical and rheological. Such a joint three-aspect study has no analog in the literature. The chemical aspects of Carbopol polymers are presented in terms of a cross-linking polymerization of acrylic acid, their molecular structure, microgel formulation, polyacid dissociation and neutralization, osmotic pressure and associated immense microgel swelling. The physical characterization is focused on models of the shear-induced solid-to-liquid transition of microgels, which are formed of mesoscopic particles typical for soft matter materials. Models that describe interparticle effects are presented to explain the energy states of microgel particles at the mesoscale of scrutiny. Typical representatives of the models utilize attributes of jamming dispersions, micromechanical and polyelectrolyte reactions. Selected relationships that result from the models, such as scaling rules and nondimensional flow characteristics are also presented. The rheological part presents the discussion of problems of yield stress in 2D and 3D deformations, appearance and magnitude of the wall slip. The theory and characteristics of Carbopol microgel deformation in rotational rheometers are presented with graphs for the steady-state measurements, stress-controlled oscillation and two types of transient shear deformation. The review is concluded with suggestions for future research.
Collapse
Affiliation(s)
- Zdzisław Jaworski
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology , Aleja Piastow 42 , 71-065 , Szczecin , Poland
| | - Tadeusz Spychaj
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology , Aleja Piastow 42 , 71-065 , Szczecin , Poland
| | - Anna Story
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology , Aleja Piastow 42 , 71-065 , Szczecin , Poland
| | - Grzegorz Story
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology , Aleja Piastow 42 , 71-065 , Szczecin , Poland
| |
Collapse
|
10
|
Colloidal and polymeric contributions to the yielding of dense microgel suspensions. J Colloid Interface Sci 2021; 587:437-445. [DOI: 10.1016/j.jcis.2020.11.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/06/2020] [Accepted: 11/25/2020] [Indexed: 11/21/2022]
|
11
|
Voigtmann T, Siebenbürger M, Amann CP, Egelhaaf SU, Fritschi S, Krüger M, Laurati M, Mutch KJ, Samwer KH. Rheology of colloidal and metallic glass formers. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04654-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractColloidal hard-sphere suspensions are convenient experimental models to understand soft matter, and also by analogy the structural-relaxation behavior of atomic or small-molecular fluids. We discuss this analogy for the flow and deformation behavior close to the glass transition. Based on a mapping of temperature to effective hard-sphere packing, the stress–strain curves of typical bulk metallic glass formers can be quantitatively compared with those of hard-sphere suspensions. Experiments on colloids give access to the microscopic structure under deformation on a single-particle level, providing insight into the yielding mechanisms that are likely also relevant for metallic glasses. We discuss the influence of higher-order angular signals in connection with non-affine particle rearrangements close to yielding. The results are qualitatively explained on the basis of the mode-coupling theory. We further illustrate the analogy of pre-strain dependence of the linear-elastic moduli using data on PS-PNiPAM suspensions.
Collapse
|
12
|
Bera PK, Kandar AK, Krishnaswamy R, Sood AK. Experimental signatures of a nonequilibrium phase transition near the crossover point of a Langmuir monolayer. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:504004. [PMID: 31491774 DOI: 10.1088/1361-648x/ab4235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We investigate the response of the two-dimensional (2D) continuous non-particulate film of surfactant sorbitan tristearate confined at the air-water interface under oscillatory shear deformation. The time dependence of various rheological parameters show critical-like behavior at a value of strain amplitude close to the crossover point of elastic ([Formula: see text]) and viscous ([Formula: see text]) shear moduli. Imposing oscillatory shear of different strain amplitudes ([Formula: see text]) above and below the crossover strain amplitude ([Formula: see text]) over a large number of cycles, we quantify the temporal dependence of interfacial viscous modulus, phase angle ([Formula: see text]) as well as higher harmonic components of stress. The number of shear cycles ([Formula: see text]) required for these quantities to reach the steady state value diverges near [Formula: see text]. The steady state values of the third harmonic ([Formula: see text]) show order parameter like behavior indicating the importance of higher order harmonics near the nonequilibrium transition. We further show that the energy dissipation per cycle per unit volume has a marked change near [Formula: see text], consistent with continuum level nonequilibrium shear-transformation-zone model of amorphous viscoplasticity.
Collapse
Affiliation(s)
- P K Bera
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India
| | | | | | | |
Collapse
|
13
|
Jiang Y, Weeks ER, Bailey NP. Isomorph invariance of dynamics of sheared glassy systems. Phys Rev E 2019; 100:053005. [PMID: 31869994 DOI: 10.1103/physreve.100.053005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 06/10/2023]
Abstract
We study hidden scale invariance in the glassy phase of the Kob-Andersen binary Lennard-Jones system. After cooling below the glass transition, we generate a so-called isomorph from the fluctuations of potential energy and virial in the NVT ensemble: a set of density, temperature pairs for which structure and dynamics are identical when expressed in appropriate reduced units. To access dynamical features, we shear the system using the SLLOD algorithm coupled with Lees-Edwards boundary conditions and study the statistics of stress fluctuations and the particle displacements transverse to the shearing direction. We find good collapse of the statistical data, showing that isomorph theory works well in this regime. The analysis of stress fluctuations, in particular the distribution of stress changes over a given strain interval, allows us to identify a clear signature of avalanche behavior in the form of an exponential tail on the negative side. This feature is also isomorph invariant. The implications of isomorphs for theories of plasticity are discussed briefly.
Collapse
Affiliation(s)
- Yonglun Jiang
- Department of Physics, Emory University, 400 Dowman Drive, Atlanta, Georgia 30322, USA
| | - Eric R Weeks
- Department of Physics, Emory University, 400 Dowman Drive, Atlanta, Georgia 30322, USA
| | - Nicholas P Bailey
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, 4000 Roskilde, Denmark
| |
Collapse
|
14
|
Saitoh K, Tighe BP. Nonlocal Effects in Inhomogeneous Flows of Soft Athermal Disks. PHYSICAL REVIEW LETTERS 2019; 122:188001. [PMID: 31144889 DOI: 10.1103/physrevlett.122.188001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Indexed: 06/09/2023]
Abstract
We numerically investigate nonlocal effects on inhomogeneous flows of soft athermal disks close to but below their jamming transition. We employ molecular dynamics to simulate Kolmogorov flows, in which a sinusoidal flow profile with fixed wave number is externally imposed, resulting in a spatially inhomogeneous shear rate. We find that the resulting rheology is strongly wave-number-dependent, and that particle migration, while present, is not sufficient to describe the resulting stress profiles within a conventional local model. We show that, instead, stress profiles can be captured with nonlocal constitutive relations that account for gradients to fourth order. Unlike nonlocal flow in yield stress fluids, we find no evidence of a diverging length scale.
Collapse
Affiliation(s)
- Kuniyasu Saitoh
- Research Alliance Center for Mathematical Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Brian P Tighe
- Delft University of Technology, Process and Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
15
|
Sentjabrskaja T, Jacob AR, Egelhaaf SU, Petekidis G, Voigtmann T, Laurati M. Binary colloidal glasses: linear viscoelasticity and its link to the microscopic structure and dynamics. SOFT MATTER 2019; 15:2232-2244. [PMID: 30794267 DOI: 10.1039/c8sm01349g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We study the relation between the microscopic structure and dynamics and the macroscopic rheological response of glass-forming colloidal suspensions, namely binary colloidal hard-sphere mixtures with large size asymmetry (1 : 5) that span a large range of mixture compositions close to the glass transition. The dynamical shear moduli are measured by oscillatory rheology and the structure and dynamics on the single-particle level by confocal microscopy. The data are compared with Brownian Dynamics simulations and predictions from mode-coupling theory based on the Percus-Yevick approximation. Experiments, simulations and theory consistently observe a strong decrease of the intermediate-frequency mechanical moduli combined with faster dynamics at intermediate mixing ratios and hence a non-monotonic dependence of these parameters but a localization of the large particles which decreases monotonically as the fraction of small particles is increased. We find that the Generalized-Stokes Einstein relation applied to the mean square displacements of the two components leads to a reasonable estimate of the shear moduli of the mixtures and hence links the rheological response to the particle dynamics which in turn reflects the microscopic structure.
Collapse
|
16
|
Yamaguchi T. Stress-structure coupling and nonlinear rheology of Lennard-Jones liquid. J Chem Phys 2018; 148:234507. [DOI: 10.1063/1.5026536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Tsuyoshi Yamaguchi
- Graduate School of Engineering, Nagoya University, Furo-cho B2-3 (611), Chikusa, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
17
|
Cerbino R. Quantitative optical microscopy of colloids: The legacy of Jean Perrin. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Fritschi S, Fuchs M. Elastic moduli of a Brownian colloidal glass former. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:024003. [PMID: 29182519 DOI: 10.1088/1361-648x/aa9de4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The static, dynamic and flow-dependent shear moduli of a binary mixture of Brownian hard disks are studied by an event-driven molecular dynamics simulation. Thereby, the emergence of rigidity close to the glass transition encoded in the static shear modulus [Formula: see text] is accessed by three methods. Results from shear stress auto-correlation functions, elastic dispersion relations, and the elastic response to strain deformations upon the start-up of shear flow are compared. This enables one to sample the time-dependent shear modulus [Formula: see text] consistently over several decades in time. By that a very precise specification of the glass transition point and of [Formula: see text] is feasible. Predictions by mode coupling theory of a finite shear modulus at the glass transition, of α-scaling in fluid states close to the transition, and of shear induced decay in yielding glass states are tested and broadly verified.
Collapse
Affiliation(s)
- S Fritschi
- Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|
19
|
Chen K, Wu B, He L, Smith GS, Do C, Huang GR, Zhang G, Wang Y. Strain heterogeneity in sheared colloids revealed by neutron scattering. Phys Chem Chem Phys 2018; 20:6050-6054. [DOI: 10.1039/c7cp07197c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small-angle neutron scattering experiments reveal that the microscopic strain of sheared colloids is highly heterogeneous at the particle level.
Collapse
Affiliation(s)
- Kevin Chen
- Centre for Nanophase Materials Sciences
- Oak Ridge National Laboratory
- Oak Ridge
- USA
| | - Bin Wu
- Neutron Scattering Division
- Oak Ridge National Laboratory
- Oak Ridge
- USA
| | - Lilin He
- Neutron Scattering Division
- Oak Ridge National Laboratory
- Oak Ridge
- USA
| | - Gregory S. Smith
- Neutron Scattering Division
- Oak Ridge National Laboratory
- Oak Ridge
- USA
| | - Changwoo Do
- Neutron Scattering Division
- Oak Ridge National Laboratory
- Oak Ridge
- USA
| | - Guan-Rong Huang
- Physics Division
- National Centre for Theoretical Sciences
- Hsinchu 30013
- Republic of China
- Shull Wollan Centre
| | - Gaibo Zhang
- Neutron Scattering Division
- Oak Ridge National Laboratory
- Oak Ridge
- USA
| | - Yangyang Wang
- Centre for Nanophase Materials Sciences
- Oak Ridge National Laboratory
- Oak Ridge
- USA
| |
Collapse
|
20
|
Relaxation oscillation of borosilicate glasses in supercooled liquid region. Sci Rep 2017; 7:15872. [PMID: 29158539 PMCID: PMC5696471 DOI: 10.1038/s41598-017-16079-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 11/07/2017] [Indexed: 11/20/2022] Open
Abstract
Most supercooled non-polymeric glass-forming melts exhibit a shear thinning phenomenon, i.e., viscosity decreases with increasing the strain rate. On compressing borosilicate glasses at high temperature, however, we discovered an interesting oscillatory viscous flow and identified it as a typical relaxation oscillation caused by the peculiar structure of borosilicate glass. Specifically, the micro-structure of borosilicate glass can be divided into borate network and silicate network. Under loading, deformation is mainly localized in the borate network via a transformation from the three coordinated planar boron to trigonal boron that could serve as a precursor for the subsequent formation of a BO4 tetrahedron, while the surrounding silicate network is acting as a stabilization/relaxation agent. The formation of stress oscillation was further described and explained by a new physics-based constitutive model.
Collapse
|
21
|
Furukawa A. Onset of shear thinning in glassy liquids: Shear-induced small reduction of effective density. Phys Rev E 2017; 95:012613. [PMID: 28208503 DOI: 10.1103/physreve.95.012613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Indexed: 11/06/2022]
Abstract
We propose a simple mechanism for describing the onset of shear thinning in a high-density glassy liquid. In a shear flow, along the compression axis, the overlap between neighboring particles is more enhanced than that at equilibrium, meaning that the "effective" size is reduced along this axis. On the other hand, along the extension axis perpendicular to the compression axis, the average structural configurations are stretched, but it does not indicate the expansion of the "effective" size itself. This asymmetric shear flow effect for particles results in a small reduction of the "effective" density. Because, in glass-forming liquids, the structural relaxation time τ_{α} strongly depends on the density ρ, even a very small reduction of the effective density should lead to a significant decrease of the relaxation time under shear flow. We predict that the crossover shear rate from Newtonian to non-Newtonian flow behaviors is given by γ[over ̇]_{c}=[ρ(∂τ_{α}/∂ρ)]^{-1}, which can be much smaller than 1/τ_{α} near the glass transition point. It is shown that this prediction is consistent with the results of molecular dynamics simulations.
Collapse
Affiliation(s)
- Akira Furukawa
- Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
22
|
Wisitsorasak A, Wolynes PG. Dynamical theory of shear bands in structural glasses. Proc Natl Acad Sci U S A 2017; 114:1287-1292. [PMID: 28108571 PMCID: PMC5307478 DOI: 10.1073/pnas.1620399114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The heterogeneous elastoplastic deformation of structural glasses is explored using the framework of the random first-order transition theory of the glass transition along with an extended mode-coupling theory that includes activated events. The theory involves coupling the continuum elastic theory of strain transport with mobility generation and transport as described in the theory of glass aging and rejuvenation. Fluctuations that arise from the generation and transport of mobility, fictive temperature, and stress are treated explicitly. We examine the nonlinear flow of a glass under deformation at finite strain rate. The interplay among the fluctuating fields leads to the spatially heterogeneous dislocation of the particles in the glass, i.e., the appearance of shear bands of the type observed in metallic glasses deforming under mechanical stress.
Collapse
Affiliation(s)
- Apiwat Wisitsorasak
- Department of Physics, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
- Theoretical and Computational Physics Group, Theoretical and Computational Science Center, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005;
- Department of Physics & Astronomy, Rice University, Houston, TX 77005
- Department of Chemistry, Rice University, Houston, TX 77005
| |
Collapse
|
23
|
Benzi R, Sbragaglia M, Bernaschi M, Succi S, Toschi F. Cooperativity flows and shear-bandings: a statistical field theory approach. SOFT MATTER 2016; 12:514-530. [PMID: 26486875 DOI: 10.1039/c5sm01862e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cooperativity effects have been proposed to explain the non-local rheology in the dynamics of soft jammed systems. Based on the analysis of the free-energy model proposed by L. Bocquet, A. Colin and A. Ajdari, Phys. Rev. Lett., 2009, 103, 036001, we show that cooperativity effects resulting from the non-local nature of the fluidity (inverse viscosity) are intimately related to the emergence of shear-banding configurations. This connection materializes through the onset of inhomogeneous compact solutions (compactons), wherein the fluidity is confined to finite-support subregions of the flow and strictly zero elsewhere. The compacton coexistence with regions of zero fluidity ("non-flowing vacuum") is shown to be stabilized by the presence of mechanical noise, which ultimately shapes up the equilibrium distribution of the fluidity field, the latter acting as an order parameter for the flow-noflow transitions occurring in the material.
Collapse
Affiliation(s)
- R Benzi
- Department of Physics and INFN, University of "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - M Sbragaglia
- Department of Physics and INFN, University of "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - M Bernaschi
- Istituto per le Applicazioni del Calcolo CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - S Succi
- Istituto per le Applicazioni del Calcolo CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - F Toschi
- Istituto per le Applicazioni del Calcolo CNR, Via dei Taurini 19, 00185 Rome, Italy and Department of Physics and Department of Mathematics and Computer Science and J. M. Burgerscentrum, Eindhoven University of Technology, 5600 MB, Eindhoven, Netherlands
| |
Collapse
|
24
|
Priezjev NV. Reversible plastic events during oscillatory deformation of amorphous solids. Phys Rev E 2016; 93:013001. [PMID: 26871146 DOI: 10.1103/physreve.93.013001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Indexed: 06/05/2023]
Abstract
The effect of oscillatory shear strain on nonaffine rearrangements of individual particles in a three-dimensional binary glass is investigated using molecular dynamics simulations. The amorphous material is represented by the Kob-Andersen mixture at the temperature well below the glass transition. We find that during periodic shear deformation of the material, some particles undergo reversible nonaffine displacements with amplitudes that are approximately power-law distributed. Our simulations show that particles with large amplitudes of nonaffine displacement exhibit a collective behavior; namely, they tend to aggregate into relatively compact clusters that become comparable with the system size near the yield strain. Along with reversible displacements there exist a number of irreversible ones. With increasing strain amplitude, the probability of irreversible displacements during one cycle increases, which leads to permanent structural relaxation of the material.
Collapse
Affiliation(s)
- Nikolai V Priezjev
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, Ohio 45435, USA
| |
Collapse
|
25
|
Karmakar S, Dasgupta C, Sastry S. Length scales in glass-forming liquids and related systems: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:016601. [PMID: 26684508 DOI: 10.1088/0034-4885/79/1/016601] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The central problem in the study of glass-forming liquids and other glassy systems is the understanding of the complex structural relaxation and rapid growth of relaxation times seen on approaching the glass transition. A central conceptual question is whether one can identify one or more growing length scale(s) associated with this behavior. Given the diversity of molecular glass-formers and a vast body of experimental, computational and theoretical work addressing glassy behavior, a number of ideas and observations pertaining to growing length scales have been presented over the past few decades, but there is as yet no consensus view on this question. In this review, we will summarize the salient results and the state of our understanding of length scales associated with dynamical slow down. After a review of slow dynamics and the glass transition, pertinent theories of the glass transition will be summarized and a survey of ideas relating to length scales in glassy systems will be presented. A number of studies have focused on the emergence of preferred packing arrangements and discussed their role in glassy dynamics. More recently, a central object of attention has been the study of spatially correlated, heterogeneous dynamics and the associated length scale, studied in computer simulations and theoretical analysis such as inhomogeneous mode coupling theory. A number of static length scales have been proposed and studied recently, such as the mosaic length scale discussed in the random first-order transition theory and the related point-to-set correlation length. We will discuss these, elaborating on key results, along with a critical appraisal of the state of the art. Finally we will discuss length scales in driven soft matter, granular fluids and amorphous solids, and give a brief description of length scales in aging systems. Possible relations of these length scales with those in glass-forming liquids will be discussed.
Collapse
Affiliation(s)
- Smarajit Karmakar
- TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500075, India
| | | | | |
Collapse
|
26
|
Papenkort S, Voigtmann T. Multi-scale lattice Boltzmann and mode-coupling theory calculations of the flow of a glass-forming liquid. J Chem Phys 2015; 143:204502. [PMID: 26627963 DOI: 10.1063/1.4936358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We present a hybrid-lattice Boltzmann (LB) algorithm for calculating the flow of glass-forming fluids that are governed by integral constitutive equations with pronounced nonlinear, non-Markovian dependence of the stresses on the flow history. The LB simulation for the macroscopic flow fields is combined with the mode-coupling theory (MCT) of the glass transition as a microscopic theory, in the framework of the integration-through transients formalism. Using the combined LB-MCT algorithm, pressure-driven planar channel flow is studied for a schematic MCT model neglecting spatial correlations in the microscopic dynamics. The cessation dynamics after removal of the driving pressure gradient shows strong signatures of oscillatory flow both in the macroscopic fields and the microscopic correlation functions.
Collapse
Affiliation(s)
- S Papenkort
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
| | - Th Voigtmann
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
| |
Collapse
|
27
|
Pons A, Amon A, Darnige T, Crassous J, Clément E. Mechanical fluctuations suppress the threshold of soft-glassy solids: The secular drift scenario. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:020201. [PMID: 26382329 DOI: 10.1103/physreve.92.020201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Indexed: 06/05/2023]
Abstract
We propose a dynamical mechanism leading to the fluidization by external mechanical fluctuations of soft-glassy amorphous material driven below the yield stress. The model is based on the combination of memory effect and nonlinearity, leading to an accumulation of tiny effects over a long term. We test this scenario on a granular packing driven mechanically below the Coulomb threshold. We provide evidence for an effective viscous response directly related to small stress modulations in agreement with the theoretical prediction of a generic secular drift. We propose to extend this result more generally to a large class of glassy systems.
Collapse
Affiliation(s)
- Adeline Pons
- PMMH, ESPCI, UMR CNRS 7636; Université Paris 6; and Université Paris 7, 75005 Paris, France
| | - Axelle Amon
- Université Rennes 1, Institut de Physique de Rennes, UMR UR1-CNRS 6251, Bâtiment 11A, Campus de Beaulieu, 35042 Rennes, France
| | - Thierry Darnige
- PMMH, ESPCI, UMR CNRS 7636; Université Paris 6; and Université Paris 7, 75005 Paris, France
| | - Jérôme Crassous
- Université Rennes 1, Institut de Physique de Rennes, UMR UR1-CNRS 6251, Bâtiment 11A, Campus de Beaulieu, 35042 Rennes, France
| | - Eric Clément
- PMMH, ESPCI, UMR CNRS 7636; Université Paris 6; and Université Paris 7, 75005 Paris, France
| |
Collapse
|
28
|
Papenkort S, Voigtmann T. Lattice Boltzmann simulations of a viscoelastic shear-thinning fluid. J Chem Phys 2015; 143:044512. [PMID: 26233150 DOI: 10.1063/1.4927576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a hybrid lattice Boltzmann algorithm for the simulation of flow glass-forming fluids, characterized by slow structural relaxation, at the level of the Navier-Stokes equation. The fluid is described in terms of a nonlinear integral constitutive equation, relating the stress tensor locally to the history of flow. As an application, we present results for an integral nonlinear Maxwell model that combines the effects of (linear) viscoelasticity and (nonlinear) shear thinning. We discuss the transient dynamics of velocities, shear stresses, and normal stress differences in planar pressure-driven channel flow, after switching on (startup) and off (cessation) of the driving pressure. This transient dynamics depends nontrivially on the channel width due to an interplay between hydrodynamic momentum diffusion and slow structural relaxation.
Collapse
Affiliation(s)
- S Papenkort
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
| | - Th Voigtmann
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
| |
Collapse
|