1
|
Gochev GG, Campbell RA, Schneck E, Zawala J, Warszynski P. Exploring proteins at soft interfaces and in thin liquid films - From classical methods to advanced applications of reflectometry. Adv Colloid Interface Sci 2024; 329:103187. [PMID: 38788307 DOI: 10.1016/j.cis.2024.103187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024]
Abstract
The history of the topic of proteins at soft interfaces dates back to the 19th century, and until the present day, it has continuously attracted great scientific interest. A multitude of experimental methods and theoretical approaches have been developed to serve the research progress in this large domain of colloid and interface science, including the area of soft colloids such as foams and emulsions. From classical methods like surface tension adsorption isotherms, surface pressure-area measurements for spread layers, and surface rheology probing the dynamics of adsorption, nowadays, advanced surface-sensitive techniques based on spectroscopy, microscopy, and the reflection of light, X-rays and neutrons at liquid/fluid interfaces offers important complementary sources of information. Apart from the fundamental characteristics of protein adsorption layers, i.e., surface tension and surface excess, the nanoscale structure of such layers and the interfacial protein conformations and morphologies are of pivotal importance for extending the depth of understanding on the topic. In this review article, we provide an extensive overview of the application of three methods, namely, ellipsometry, X-ray reflectometry and neutron reflectometry, for adsorption and structural studies on proteins at water/air and water/oil interfaces. The main attention is placed on the development of experimental approaches and on a discussion of the relevant achievements in terms of notable experimental results. We have attempted to cover the whole history of protein studies with these techniques, and thus, we believe the review should serve as a valuable reference to fuel ideas for a wide spectrum of researchers in different scientific fields where proteins at soft interface may be of relevance.
Collapse
Affiliation(s)
- Georgi G Gochev
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30239 Krakow, Poland; Institute of Physical Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | - Richard A Campbell
- Division of Pharmacy and Optometry, University of Manchester, M13 9PT Manchester, UK
| | - Emanuel Schneck
- Physics Department, Technical University Darmstadt, 64289 Darmstadt, Germany
| | - Jan Zawala
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30239 Krakow, Poland
| | - Piotr Warszynski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30239 Krakow, Poland
| |
Collapse
|
2
|
Wu R, Matta M, Paulsen BD, Rivnay J. Operando Characterization of Organic Mixed Ionic/Electronic Conducting Materials. Chem Rev 2022; 122:4493-4551. [PMID: 35026108 DOI: 10.1021/acs.chemrev.1c00597] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Operando characterization plays an important role in revealing the structure-property relationships of organic mixed ionic/electronic conductors (OMIECs), enabling the direct observation of dynamic changes during device operation and thus guiding the development of new materials. This review focuses on the application of different operando characterization techniques in the study of OMIECs, highlighting the time-dependent and bias-dependent structure, composition, and morphology information extracted from these techniques. We first illustrate the needs, requirements, and challenges of operando characterization then provide an overview of relevant experimental techniques, including spectroscopy, scattering, microbalance, microprobe, and electron microscopy. We also compare different in silico methods and discuss the interplay of these computational methods with experimental techniques. Finally, we provide an outlook on the future development of operando for OMIEC-based devices and look toward multimodal operando techniques for more comprehensive and accurate description of OMIECs.
Collapse
Affiliation(s)
- Ruiheng Wu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Micaela Matta
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Bryan D Paulsen
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
3
|
Scoppola E, Gochev GG, Drnec J, Pithan L, Novikov D, Schneck E. Investigating the Conformation of Surface-Adsorbed Proteins with Standing-Wave X-ray Fluorescence. Biomacromolecules 2021; 22:5195-5203. [PMID: 34813296 DOI: 10.1021/acs.biomac.1c01136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein adsorption to surfaces is at the heart of numerous technological and bioanalytical applications, but sometimes, it is also associated with medical risks. To deepen our insights into processes involving layers of surface-adsorbed proteins, high-resolution structural information is essential. Here, we use standing-wave X-ray fluorescence (SWXF) in combination with an optimized liquid-cell setup to investigate the underwater conformation of the random-coiled phosphoprotein β-casein adsorbed to hydrophilic and hydrophobized solid surfaces. The orientation of the protein, as determined through the distributions of sulfur and phosphorus, is found to be sensitive to the chemical nature of the substrate. While no preferred orientations are observed on hydrophobized surfaces, on hydrophilic Al oxide, β-casein is adsorbed as a diblock copolymer with the phosphorylated domain I attached to the surface. Our results demonstrate that targeting biologically relevant chemical elements with SWXF enables a detailed investigation of biomolecular layers under near-physiological conditions.
Collapse
Affiliation(s)
- Ernesto Scoppola
- Biomaterials Department, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Georgi G Gochev
- Biomaterials Department, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany.,Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Krakow, Poland
| | - Jakub Drnec
- European Synchrotron Radiation Facility (ESRF), 38000 Grenoble, France
| | - Linus Pithan
- European Synchrotron Radiation Facility (ESRF), 38000 Grenoble, France
| | - Dmitri Novikov
- Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg, Germany
| | - Emanuel Schneck
- Biomaterials Department, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany.,Physics Department, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
4
|
Stoev K, Sakurai K. Recent Progresses in Nanometer Scale Analysis of Buried Layers and Interfaces in Thin Films by X-rays and Neutrons. ANAL SCI 2020; 36:901-922. [PMID: 32147630 DOI: 10.2116/analsci.19r010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the early 1960s, scientists achieved the breakthroughs in the fields of solid surfaces and artificial layered structures. The advancement of surface science has been supported by the advent of ultra-high vacuum technologies, newly discovered and established scanning probe microscopy with atomic resolution, as well as some other advanced surface-sensitive spectroscopy and microscopy. On the other hand, it has been well recognized that a number of functions are related to the structures of the interfaces, which are the thin planes connecting different materials, most likely by layering thin films. Despite the scientific significance, so far, research on such buried layers and interfaces has been limited, because the probing depth of almost all existing sophisticated analytical methods is limited to the top surface. The present article describes the recent progress in the nanometer scale analysis of buried layers and interfaces, particularly by using X-rays and neutrons. The methods are essentially promising to non-destructively probe such buried structures in thin films. The latest scientific research has been reviewed, and includes applications to bio-chemical, organic, electronic, magnetic, spintronic, self-organizing and complicated systems as well as buried liquid-liquid and solid-liquid interfaces. Some emerging analytical techniques and instruments, which provide new attractive features such as imaging and real time analysis, are also discussed.
Collapse
|
5
|
Franco-Cañellas A, Duhm S, Gerlach A, Schreiber F. Binding and electronic level alignment of π-conjugated systems on metals. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2020; 83:066501. [PMID: 32101802 DOI: 10.1088/1361-6633/ab7a42] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We review the binding and energy level alignment of π-conjugated systems on metals, a field which during the last two decades has seen tremendous progress both in terms of experimental characterization as well as in the depth of theoretical understanding. Precise measurements of vertical adsorption distances and the electronic structure together with ab initio calculations have shown that most of the molecular systems have to be considered as intermediate cases between weak physisorption and strong chemisorption. In this regime, the subtle interplay of different effects such as covalent bonding, charge transfer, electrostatic and van der Waals interactions yields a complex situation with different adsorption mechanisms. In order to establish a better understanding of the binding and the electronic level alignment of π-conjugated molecules on metals, we provide an up-to-date overview of the literature, explain the fundamental concepts as well as the experimental techniques and discuss typical case studies. Thereby, we relate the geometric with the electronic structure in a consistent picture and cover the entire range from weak to strong coupling.
Collapse
Affiliation(s)
- Antoni Franco-Cañellas
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
6
|
Reflectometry Reveals Accumulation of Surfactant Impurities at Bare Oil/Water Interfaces. Molecules 2019; 24:molecules24224113. [PMID: 31739471 PMCID: PMC6891303 DOI: 10.3390/molecules24224113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/06/2019] [Accepted: 11/09/2019] [Indexed: 12/04/2022] Open
Abstract
Bare interfaces between water and hydrophobic media like air or oil are of fundamental scientific interest and of great relevance for numerous applications. A number of observations involving water/hydrophobic interfaces have, however, eluded a consensus mechanistic interpretation so far. Recent theoretical studies ascribe these phenomena to an interfacial accumulation of charged surfactant impurities in water. In the present work, we show that identifying surfactant accumulation with X-ray reflectometry (XRR) or neutron reflectometry (NR) is challenging under conventional contrast configurations because interfacial surfactant layers are then hardly visible. On the other hand, both XRR and NR become more sensitive to surfactant accumulation when a suitable scattering length contrast is generated by using fluorinated oil. With this approach, significant interfacial accumulation of surfactant impurities at the bare oil/water interface is observed in experiments involving standard cleaning procedures. These results suggest that surfactant impurities may be a limiting factor for the investigation of fundamental phenomena involving water/hydrophobic interfaces.
Collapse
|
7
|
Brezesinski G, Schneck E. Investigating Ions at Amphiphilic Monolayers with X-ray Fluorescence. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8531-8542. [PMID: 30835476 PMCID: PMC6727669 DOI: 10.1021/acs.langmuir.9b00191] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Amphiphilic monolayers formed at the soft air/liquid interface are easy-to-handle and versatile model systems for material and life sciences. Helmuth Möhwald was one of the pioneers in this field. Over the last few decades, total-reflection X-ray fluorescence (TRXF) has become an important analytical tool for the investigation of monolayer interactions with ions. Here, the theoretical background of TRXF is described, and practical aspects are discussed. The experimentally determined fluorescence intensity from the adsorbed ions can be interpreted quantitatively either by a calibration procedure utilizing monolayers with known charge density or by calibration with respect to the bare aqueous surface. Both calibration approaches yield quantitatively consistent results within <10% accuracy. Some examples demonstrating the power of TRXF for the study of ion adsorption to charged and noncharged monolayers as well as for the characterization of the physicochemical properties of novel cationic lipids used for improved gene delivery are given.
Collapse
Affiliation(s)
- Gerald Brezesinski
- Max Planck Institute of
Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Emanuel Schneck
- Max Planck Institute of
Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
8
|
Stefaniu C, Latza VM, Gutowski O, Fontaine P, Brezesinski G, Schneck E. Headgroup-Ordered Monolayers of Uncharged Glycolipids Exhibit Selective Interactions with Ions. J Phys Chem Lett 2019; 10:1684-1690. [PMID: 30908061 PMCID: PMC6727371 DOI: 10.1021/acs.jpclett.8b03865] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/25/2019] [Indexed: 05/22/2023]
Abstract
Selective interactions of ions with charge-neutral saccharides can have far-reaching consequences in biological and wet-technological contexts but have so far been observed only indirectly. Here, we directly quantify by total-reflection X-ray fluorescence the preferential accumulation of ions near uncharged saccharide surfaces in the form of glycolipid Langmuir monolayers at air/water interfaces exhibiting different levels of structural ordering. Selective interactions with ions from the aqueous subphase are observed for monolayers featuring crystalline ordering of the saccharide headgroups, as determined by grazing-incidence X-ray diffraction. The attracted ion species depend on the structural motifs displayed by the ordered saccharide layer. Our results may constitute a basis to understand the salt-specific swelling of wood materials and various phenomena in membrane biophysics.
Collapse
Affiliation(s)
- Cristina Stefaniu
- Departments
of Biomaterials and Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Victoria M. Latza
- Departments
of Biomaterials and Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Olof Gutowski
- Deutsches
Elektronen-Synchrotron (DESY), 22607 Hamburg, Germany
| | | | - Gerald Brezesinski
- Departments
of Biomaterials and Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Emanuel Schneck
- Departments
of Biomaterials and Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- E-mail: . Phone: +49-331567-9404. Fax: +49-331567-9402
| |
Collapse
|
9
|
Combining scattering and computer simulation for the study of biomolecular soft interfaces. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Ben Jabrallah S, Malloggi F, Belloni L, Girard L, Novikov D, Mocuta C, Thiaudière D, Daillant J. Electrolytes at interfaces: accessing the first nanometers using X-ray standing waves. Phys Chem Chem Phys 2016; 19:167-174. [PMID: 27929155 DOI: 10.1039/c6cp06888j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ion-surface interactions are of high practical importance in a wide range of technological, environmental and biological problems. In particular, they ultimately control the electric double layer structure, hence the interaction between particles in aqueous solutions. Despite numerous achievements, progress in their understanding is still limited by the lack of experimental determination of the surface composition with appropriate resolution. Tackling this challenge, we have developed a method based on X-ray standing waves coupled to nano-confinement which allows the determination of ion concentrations at a solid-solution interface with a sub-nm resolution. We have investigated mixtures of KCl/CsCl and KCl/KI in 0.1 mM to 10 mM concentrations on silica surfaces and obtained quantitative information on the partition of ions between bulk and Stern layer as well as their distribution in the Stern layer. Regarding partition of potassium ions, our results are in agreement with a recent AFM study. We show that in a mixture of KCl and KI, chloride ions exhibit a higher surface propensity than iodide ions, having a higher concentration within the Stern layer and being on average closer to the surface by ≈1-2 Å, in contrast to the solution water interface. Confronting such data with molecular simulations will lead to a precise understanding of ionic distributions at aqueous interfaces.
Collapse
Affiliation(s)
- Soumaya Ben Jabrallah
- Laboratoire Interdisciplinaire sur l'Organisation Nanométrique et Supramoléculaire, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif sur Yvette Cedex, France.
| | - Florent Malloggi
- Laboratoire Interdisciplinaire sur l'Organisation Nanométrique et Supramoléculaire, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif sur Yvette Cedex, France.
| | - Luc Belloni
- Laboratoire Interdisciplinaire sur l'Organisation Nanométrique et Supramoléculaire, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif sur Yvette Cedex, France.
| | - Luc Girard
- ICSM UMR 5257 - CEA/CNRS/UM/ENSCM, Site de Marcoule, Bâtiment 426 BP 17171 F-30207 Bagnols sur Cèze Cedex, France
| | - Dmitri Novikov
- Deutsches Elektronensynchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Cristian Mocuta
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - Dominique Thiaudière
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - Jean Daillant
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| |
Collapse
|
11
|
Witala M, Konovalov O, Nygård K. Relative adsorption excess of ions in binary solvents determined by grazing-incidence X-ray fluorescence. J Colloid Interface Sci 2016; 484:249-253. [PMID: 27619384 DOI: 10.1016/j.jcis.2016.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 11/30/2022]
Abstract
We demonstrate a model-independent method for experimental determination of the relative surface excess of inorganic ions in binary liquid mixtures, based on grazing-incidence X-ray fluorescence. For this purpose, we probe the ion density profiles in a mixture of water and 2,6-dimethylpyridine containing a hydrophilic salt, potassium chloride. Thereby we demonstrate that the proposed method quantifies in a direct manner the difference between cation and anion excess adsorption in binary solvents with a resolution of one excess ion per 200nm2 or better.
Collapse
Affiliation(s)
- Monika Witala
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-41296 Gothenburg, Sweden
| | - Oleg Konovalov
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Kim Nygård
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-41296 Gothenburg, Sweden.
| |
Collapse
|
12
|
Atom-scale depth localization of biologically important chemical elements in molecular layers. Proc Natl Acad Sci U S A 2016; 113:9521-6. [PMID: 27503887 DOI: 10.1073/pnas.1603898113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In nature, biomolecules are often organized as functional thin layers in interfacial architectures, the most prominent examples being biological membranes. Biomolecular layers play also important roles in context with biotechnological surfaces, for instance, when they are the result of adsorption processes. For the understanding of many biological or biotechnologically relevant phenomena, detailed structural insight into the involved biomolecular layers is required. Here, we use standing-wave X-ray fluorescence (SWXF) to localize chemical elements in solid-supported lipid and protein layers with near-Ångstrom precision. The technique complements traditional specular reflectometry experiments that merely yield the layers' global density profiles. While earlier work mostly focused on relatively heavy elements, typically metal ions, we show that it is also possible to determine the position of the comparatively light elements S and P, which are found in the most abundant classes of biomolecules and are therefore particularly important. With that, we overcome the need of artificial heavy atom labels, the main obstacle to a broader application of high-resolution SWXF in the fields of biology and soft matter. This work may thus constitute the basis for the label-free, element-specific structural investigation of complex biomolecular layers and biological surfaces.
Collapse
|