1
|
Zhang Y, Zhang G, Li B, Wu L. Non-Stop Switching Separation of Superfine Solid/Liquid Dispersed Phases in Oil and Water Systems Using Polymer-Assisted Framework Fiber Membranes. SMALL METHODS 2023; 7:e2201455. [PMID: 36908003 DOI: 10.1002/smtd.202201455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/20/2023] [Indexed: 06/09/2023]
Abstract
Fabricating filtration membranes with wide applicability and high efficiency is always a challenge in the precise separation of small colloidal particles under mild conditions. For this purpose, a strategy mixing supramolecular framework fiber with polymer is adopted. The fibrous assembly in the gel state provides uniform nanopores for both channel and interception and controlled wettability for lyophilic/lyophobic switching. The used polymer fills the gaps between fiber assemblies and improves the mechanical property. The composite membrane shows both under-oil superhydrophobic and underwater superoleophobic nature, which allows the conversions via in situ modulation of joystick solvents. Based on surface wetting and size-sieving, ultrafine hard nanoparticles dispersing in both hydrophobic organic solvents and water are selectively sieved. In addition, on-demand separation of water-in-oil and oil-in-water microemulsions without and with surfactants as systems containing soft droplets are realized. The smallest cut-off size of ≈3 nm is achieved for both hard and soft emulsions, while separation efficiency maintains during sustained in situ reversible switches.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Guohua Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
2
|
Artificial neural network-based predictions of surface electrocoalescence of water droplets in hydrocarbon media. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Antibacterial Activity of Silver Nanoflake (SNF)-Blended Polysulfone Ultrafiltration Membrane. Polymers (Basel) 2022; 14:polym14173600. [PMID: 36080676 PMCID: PMC9459915 DOI: 10.3390/polym14173600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 02/07/2023] Open
Abstract
The aim of this research was to study the possibility of using silver nanoflakes (SNFs) as an antibacterial agent in polysulfone (PSF) membranes. SNFs at different concentrations (0.1, 0.2, 0.3 and 0.4 wt.%) were added to a PSF membrane dope solution. To investigate the effect of SNFs on membrane performance and properties, the water contact angle, protein separation, average pore size and molecular weight cutoffs were measured, and water flux and antibacterial tests were conducted. The antimicrobial activities of the SNFs were investigated using Escherichia coli taken from river water. The results showed that PSF membranes blended with 0.1 wt.% SNFs have contact angles of 55°, which is less than that of the pristine PSF membrane (81°), exhibiting the highest pure water flux. Molecular weight cutoff values of the blended membranes indicated that the presence of SNFs does not lead to enlargement of the membrane pore size. The rejection of protein (egg albumin) was improved with the addition of 0.1 wt.% SNFs. The SNFs showed antimicrobial activity against Escherichia coli, where the killing rate was dependent on the SNF concentration in the membranes. The identified bacterial colonies that appeared on the membranes decreased with increasing SNF concentration. PSF membranes blended with SNF, to a great degree, possess quality performance across several indicators, showing great potential to be employed as water filtration membranes.
Collapse
|
4
|
Lokanathan M, Wimalarathne S, Bahadur V. Influence of surfactant on electrowetting-induced surface electrocoalescence of water droplets in hydrocarbon media. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Tong Y, Chen J, Ding W, Shi L, Li W. Fabrication of a Superhydrophilic and Underwater Superoleophobic Membrane via One-Step Strategy for High-Efficiency Semicoking Wastewater Separation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yujia Tong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jinbo Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wenlong Ding
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lijian Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weixing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
6
|
Sun X, Wang X, Li J, Huang L, Sun H, Hao Y, Bai L, Pan J, Gao X. Enhanced oil–water separation via superhydrophobic electrospun carbon fiber membrane decorated with Ni nanoclusters. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Wang F, Liu K, Xi Y, Li Z. One-step electrospinning PCL/ph-LPSQ nanofibrous membrane with excellent self-cleaning and oil-water separation performance. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
8
|
Su Y, Fan T, Bai H, Guan H, Ning X, Yu M, Long Y. Bioinspired superhydrophobic and superlipophilic nanofiber membrane with pine needle-like structure for efficient gravity-driven oil/water separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119098] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Lu Y, Cao Y, Jia Y, Dai C, Wang P. Ultralight, Strong and Renewable Hybrid Carbon Nanotubes Film for Oil-Water Emulsions Separation. MEMBRANES 2020; 11:membranes11010001. [PMID: 33374900 PMCID: PMC7821942 DOI: 10.3390/membranes11010001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022]
Abstract
A novel ultralight superhydrophobic-superoleophilic hybrid Carbon Nanotubes (CNTs) film with double-layer structures is fabricated by using vacuum filtration method. The CNTs film can separate various surfactant-stabilized water-in-oil emulsions with a separation efficiency higher than 99.3%. Moreover, the hybrid films can be regenerated through a simple and rapid combustion process within 2 s. In addition, the CNTs film still retains good hydrophobic properties under the conditions of physical abrasion, and strong acidic and alkaline solutions, which shows the excellent durability. The hybrid CNTs film is ultralight, stable, and easily stored and reused. The outstanding features of the obtained CNTs films we present here may find many important applications in various fields like oil purification and wastewater treatment.
Collapse
Affiliation(s)
- Yamei Lu
- Department of Chemistry, School of Science Beijing Jiaotong University, Beijing 100044, China;
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China; (Y.C.); (Y.J.)
| | - Yingze Cao
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China; (Y.C.); (Y.J.)
| | - Yi Jia
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China; (Y.C.); (Y.J.)
| | - Chunai Dai
- Department of Chemistry, School of Science Beijing Jiaotong University, Beijing 100044, China;
- Correspondence: (C.D.); (P.W.)
| | - Pengfei Wang
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China; (Y.C.); (Y.J.)
- Correspondence: (C.D.); (P.W.)
| |
Collapse
|
10
|
Wang M, Xu Z, Guo Y, Hou Y, Li P, Niu QJ. Engineering a superwettable polyolefin membrane for highly efficient oil/water separation with excellent self-cleaning and photo-catalysis degradation property. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118409] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Zhu W, Huang W, Zhou W, Qiu Z, Wang Z, Li H, Wang Y, Li J, Xie Y. Sustainable and antibacterial sandwich-like Ag-Pulp/CNF composite paper for oil/water separation. Carbohydr Polym 2020; 245:116587. [DOI: 10.1016/j.carbpol.2020.116587] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/24/2020] [Accepted: 06/04/2020] [Indexed: 01/14/2023]
|
12
|
Guha IF, Varanasi KK. Low-Voltage Surface Electrocoalescence Enabled by High-K Dielectrics and Surfactant Bilayers for Oil-Water Separation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34812-34818. [PMID: 31449381 DOI: 10.1021/acsami.9b01477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Processes for separating oil-water mixtures are critical to operations in energy and water. However, existing separation methods pose efficiency limitations as well as environmental and safety challenges. Here, we present a low-voltage surface electrocoalescence approach that triggers coalescence of surfactant-stabilized emulsions by combining high-K dielectrics with surfactant bilayers. In this system, the high-K dielectric reduces the electrocoalescence voltage, while the surfactant bilayer functions as a self-healing, high capacitance film that prevents pinning of droplets on the dielectric surface. This high capacitance system maximizes the electric field between neighboring droplets, exerting high electrostatic pressure that overcomes the disjoining pressure between droplets, thereby enabling rapid electrocoalescence. We demonstrate electrocoalescence of surfactant-stabilized microscale droplets of saline water in oil using single volts. We expect our results may find application in the energy sector, wastewater treatment, and purification industries.
Collapse
Affiliation(s)
- Ingrid F Guha
- Electrical Engineering and Computer Science Department , Massachusetts Institute of Technology , 77 Massachusetts Avenue, 35-135 , Cambridge , Massachusetts 02139 , United States
| | - Kripa K Varanasi
- Department of Mechanical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue, 35-209 , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
13
|
Chen C, Weng D, Mahmood A, Chen S, Wang J. Separation Mechanism and Construction of Surfaces with Special Wettability for Oil/Water Separation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11006-11027. [PMID: 30811172 DOI: 10.1021/acsami.9b01293] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Oil leakage and the discharge of oil/water mixtures by domestic and industrial consumers have caused not only severe environmental pollution and a threat to all species in the ecosystem but also a huge waste of precious resources. Therefore, the separation of oil/water mixtures, especially stable emulsion, has become an urgent global issue. Recently, materials containing a special wettability feature for oil and water have drawn immense attention because of their potential applications for oil/water separation application. In this paper, we systematically summarize the fundamental theories, separation mechanism, design strategies, and recent developments in materials with special wettability for separating stratified and emulsified oil/water mixtures. The related wetting theories that unveil the physical underlying mechanism of the oil/water separation mechanism are proposed, and the practical design criteria for oil/water separation materials are provided. Guided by the fundamental design criteria, various porous materials with special wettability characteristics, including those which are superhydrophilic/underwater superoleophobic, superhydrophobic/superoleophilic, and superhydrophilic/in-air superoleophobic, are systemically analyzed. These superwetting materials are widely employed to separate oil/water mixtures: from stratified oil/water to emulsified ones. In addition, the materials that implement the demulsification of emulsified oil/water mixtures via the ingenious design of the multiscale surface morphology and construction of special wettability are also discussed. In each section, we introduce the design ideas, base materials, preparation methods, and representative works in detail. Finally, the conclusions and challenges for the oil/water separation research field are discussed in depth.
Collapse
Affiliation(s)
- Chaolang Chen
- Sate Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , P. R. China
| | - Ding Weng
- Sate Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , P. R. China
| | - Awais Mahmood
- Sate Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , P. R. China
| | - Shuai Chen
- Sate Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , P. R. China
| | - Jiadao Wang
- Sate Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , P. R. China
| |
Collapse
|
14
|
|