1
|
Luo S, Xiong S, Li X, Hu X, Ye J, Liu C. Impact of starch-lipid complexes on oil absorption of starch and its mechanism. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:83-91. [PMID: 35792714 DOI: 10.1002/jsfa.12114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/28/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Worldwide, fried food has a huge demand and good development prospects. Low oil in foods is the standard that everyone is now pursuing for a healthy diet. RESULTS The oil absorption behavior of rice starch during frying was investigated in the presence or absence of fatty acids or fatty acid esters with different carbon chain lengths. The complex formed between starch and fatty acids or fatty acid esters was dependent on lipid chain length, which was confirmed by X-ray diffraction and complexing index. The formation of starch-lipid complexes could significantly reduce the oil absorption of starch, and the complexes with higher complexing index had lower oil absorption. The starch-palmitic acid complex showed the lowest oil absorption after frying, which was 14.06 g per 100 g lower than that of gelatinized starch. This was attributed to the ability of the palmitic acid to increase the density of starch crystalline polymorphs as well as their ability to complex with the amylose spiral cavity. CONCLUSION These results may be useful for development of healthier fried starch-based foods with reduced oil contents. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shunjing Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Shaobai Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Xianbao Li
- Gannan Medical University, School of Public Health & Health Management, Ganzhou, Jiangxi, China
| | - Xiuting Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Jiangping Ye
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Typical application of electrostatic layer-by-layer self-assembly technology in food safety assurance. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
3
|
Mihailovici R, Croitoriu A, Nedeff F, Nedeff V, Ochiuz L, Vasincu D, Popa O, Agop M, Moraru A, Costin D, Costuleanu M, Verestiuc L. Drug-Loaded Polymeric Particulated Systems for Ophthalmic Drugs Release. Molecules 2022; 27:molecules27144512. [PMID: 35889383 PMCID: PMC9323211 DOI: 10.3390/molecules27144512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023] Open
Abstract
Drug delivery to the anterior or posterior segments of the eye is a major challenge due to the protection barriers and removal mechanisms associated with the unique anatomical and physiological nature of the ocular system. The paper presents the preparation and characterization of drug-loaded polymeric particulated systems based on pre-emulsion coated with biodegradable polymers. Low molecular weight biopolymers (chitosan, sodium hyaluronate and heparin sodium) were selected due to their ability to attach polymer chains to the surface of the growing system. The particulated systems with dimensions of 190–270 nm and a zeta potential varying from −37 mV to +24 mV depending on the biopolymer charges have been obtained. Current studies show that particles release drugs (dexamethasone/pilocarpine/bevacizumab) in a safe and effective manner, maintaining therapeutic concentration for a longer period of time. An extensive modeling study was performed in order to evaluate the drug release profile from the prepared systems. In a multifractal paradigm of motion, nonlinear behaviors of a drug delivery system are analyzed in the fractal theory of motion, in order to correlate the drug structure with polymer. Then, the functionality of a SL(2R) type ”hidden symmetry” implies, through a Riccati type gauge, different ”synchronization modes” (period doubling, damped oscillations, quasi-periodicity and intermittency) during the drug release process. Among these, a special mode of Kink type, better reflects the empirical data. The fractal study indicated more complex interactions between the angiogenesis inhibitor Bevacizumab and polymeric structure.
Collapse
Affiliation(s)
- Ruxandra Mihailovici
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.M.); (A.C.); (D.C.); (M.C.)
| | - Alexandra Croitoriu
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.M.); (A.C.); (D.C.); (M.C.)
- Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Florin Nedeff
- Department of Industrial Systems Engineering and Management, Faculty of Engineering, “Vasile Alecsandri” University of Bacau, 600115 Bacau, Romania
- Correspondence: (F.N.); (M.A.); (A.M.)
| | - Valentin Nedeff
- Department of Environmental Engineering and Mechanical Engineering, Faculty of Engineering, “Vasile Alecsandri” University of Bacau, 600115 Bacau, Romania;
| | - Lacramioara Ochiuz
- Department of Pharmaceutical and Biotechnological Drug Industry, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Decebal Vasincu
- Department of Natural, Bioactive and Biocompatible Polymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania;
| | - Ovidiu Popa
- Department of Emergency Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Maricel Agop
- Department of Physics, “Gh. Asachi” Technical University of Iasi, 700050 Iasi, Romania
- Romanian Scientists Academy, 050094 Bucharest, Romania
- Correspondence: (F.N.); (M.A.); (A.M.)
| | - Andreea Moraru
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.M.); (A.C.); (D.C.); (M.C.)
- Correspondence: (F.N.); (M.A.); (A.M.)
| | - Danut Costin
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.M.); (A.C.); (D.C.); (M.C.)
| | - Marcel Costuleanu
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (R.M.); (A.C.); (D.C.); (M.C.)
| | - Liliana Verestiuc
- Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| |
Collapse
|
4
|
Layer-by-layer assembly of lysozyme with iota-carrageenan and gum Arabic for surface modification of food packaging materials with improved barrier properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Zhang Z, Zeng J, Groll J, Matsusaki M. Layer-by-layer assembly methods and their biomedical applications. Biomater Sci 2022; 10:4077-4094. [DOI: 10.1039/d2bm00497f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Various biomedical applications arising due to the development of different LbL assembly methods with unique process properties.
Collapse
Affiliation(s)
- Zhuying Zhang
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jinfeng Zeng
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Research Fellow of Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB) and Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Fan X, Zhao M, Li T, Zhang LY, Jing M, Yuan W, Li CM. In situ self-assembled N-rich carbon on pristine graphene as a highly effective support and cocatalyst of short Pt nanoparticle chains for superior electrocatalytic activity toward methanol oxidation. NANOSCALE 2021; 13:18332-18339. [PMID: 34726684 DOI: 10.1039/d1nr05988b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Highly conductive cocatalysts with great promotion effects are critical for the development of pristine graphene supported Pt-based catalysts for the methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). However, identification of these cocatalysts and controlled fabrication of Pt/cocatalyst/graphene hybrids with superior catalytic performance present great challenges. For the first time, pristine graphene supported N-rich carbon (NC) has been controllably fabricated via ionic-liquid-based in situ self-assembly for in situ growth of small and uniformly dispersed Pt NP chains to improve the MOR catalytic activity. It is discovered that the NC serves simultaneously as a linker to facilitate in situ nucleation of Pt, a stabilizer to restrict its growth and aggregation, and a structure-directing agent to induce the formation of Pt NP chains. The obtained nanohybrid shows a much higher forward peak current density than commercial Pt/C and most reported noncovalently functionalized carbon (NFC) supported Pt catalysts, a lower onset potential than almost all commercial Pt/C and NFC supported Pt, and greatly enhanced durability compared to graphene supported Pt NPs and commercial Pt/C. The superior catalytic performance is ascribed to the uniformly dispersed, small-diameter, and short Pt NP chains supported on highly conductive G@NC providing high ECSA and improved CO tolerance and the NC with high content of graphitic N greatly enhancing the intrinsic activity and CO tolerance of Pt and offering numerous binding sites for robustly attaching Pt. This work not only identifies and controllably fabricates a novel cocatalyst to significantly promote the catalytic activity of pristine graphene supported Pt but provides a facile and economical strategy for the controlled synthesis of high-performance integrated catalysts for the MOR in DMFCs.
Collapse
Affiliation(s)
- Xiuling Fan
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ming Zhao
- Institute for Clean energy and Advanced Materials, College of Materials & Energy, Southwest University, Chongqing 400715, China
| | - Tianhao Li
- Institute for Clean energy and Advanced Materials, College of Materials & Energy, Southwest University, Chongqing 400715, China
| | - Lian Ying Zhang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Maoxiang Jing
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| | - Weiyong Yuan
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chang Ming Li
- Institute for Clean energy and Advanced Materials, College of Materials & Energy, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Maayan M, Mani KA, Yaakov N, Natan M, Jacobi G, Atkins A, Zelinger E, Fallik E, Banin E, Mechrez G. Fluorine-Free Superhydrophobic Coating with Antibiofilm Properties Based on Pickering Emulsion Templating. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37693-37703. [PMID: 34337945 DOI: 10.1021/acsami.1c10125] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study presents antibiofilm coating formulations based on Pickering emulsion templating. The coating contains no bioactive material because its antibiofilm properties stem from passive mechanisms that derive solely from the superhydrophobic nature of the coating. Moreover, unlike most of the superhydrophobic formulations, our system is fluorine-free, thus making the method eminently suitable for food and medical applications. The coating formulation is based on water in toluene or xylene emulsions that are stabilized using commercial hydrophobic silica, with polydimethylsiloxane (PDMS) dissolved in toluene or xylene. The structure of the emulsions and their stability was characterized by confocal microscopy and cryogenic-scanning electron microscopy (cryo-SEM). The most stable emulsions are applied on polypropylene (PP) surfaces and dried in an oven to form PDMS/silica coatings in a process called emulsion templating. The structure of the resulting coatings was investigated by atomic force microscopy (AFM) and SEM. The surface of the coatings shows a honeycomb-like structure that exhibits a combination of micron-scale and nanoscale roughness, which endows it with its superhydrophobic properties. After tuning, the superhydrophobic properties of the coatings demonstrated highly efficient passive antibiofilm activity. In vitro antibiofilm trials with E. coli indicate that the coatings reduced the biofilm accumulation by 83% in the xylene-water-based surfaces and by 59% in the case of toluene-water-based surfaces.
Collapse
Affiliation(s)
- Mor Maayan
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Karthik Ananth Mani
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Noga Yaakov
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel
| | - Michal Natan
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Gila Jacobi
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Ayelet Atkins
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Einat Zelinger
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Elazar Fallik
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel
| | - Ehud Banin
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Guy Mechrez
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel
| |
Collapse
|
8
|
Al Thaher Y. Tailored gentamicin release from silica nanocarriers coated with polyelectrolyte multilayers. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Luo S, Dai X, Sui Y, Li P, Zhang C. Preparation of biomimetic membrane with hierarchical structure and honeycombed through-hole for enhanced oil–water separation performance. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Electrostatic Assembly Technique for Novel Composites Fabrication. JOURNAL OF COMPOSITES SCIENCE 2020. [DOI: 10.3390/jcs4040155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Electrostatic assembly is one of the bottom–up approaches used for multiscale composite fabrication. Since its discovery, this method has been actively used in molecular bioscience as well as materials design and fabrication for various applications. Despite the recent advances and controlled assembly reported using electrostatic interaction, the method still possesses vast potentials for various materials design and fabrication. This review article is a timely revisit of the electrostatic assembly method with a brief introduction of the method followed by surveys of recent advances and applications of the composites fabricated. Emphasis is also given to the significant potential of this method for advanced materials and composite fabrication in line with sustainable development goals. Prospective outlook and future developments for micro-/nanocomposite materials fabrication for emerging applications such as energy-related fields and additive manufacturing are also mentioned.
Collapse
|
11
|
Long acting anti-infection constructs on titanium. J Control Release 2020; 326:91-105. [PMID: 32580044 DOI: 10.1016/j.jconrel.2020.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/23/2020] [Accepted: 06/14/2020] [Indexed: 01/12/2023]
Abstract
Peri-prosthetic joint infections (PJI) are a serious adverse event following joint replacement surgeries; antibiotics are usually added to bone cement to prevent infection offset. For uncemented prosthesis, alternative antimicrobial approaches are necessary in order to prevent PJI; however, despite elution of drug from the surface of the device being shown one of the most promising approach, no effective antimicrobial eluting uncemented device is currently available on the market. Consequently, there is a clinical need for non-antibiotic antimicrobial uncemented prosthesis as these devices present numerous benefits, particularly for young patients, over cemented artificial joints. Moreover, non-antibiotic approaches are driven by the need to address the growing threat posed by antibiotic resistance. We developed a multilayers functional coating on titanium surfaces releasing chlorhexidine, a well-known antimicrobial agent used in mouthwash products and antiseptic creams, embedding the drug between alginate and poly-beta-amino-esters. Chlorhexidine release was sustained for almost 2 months and the material efficacy and safety was proven both in vitro and in vivo. The coatings did not negatively impact osteoblast and fibroblast cells growth and were capable of reducing bacterial load and accelerating wound healing in an excisional wound model. As PJI can develop weeks and months after the initial surgery, these materials could provide a viable solution to prevent infections after arthroplasty in uncemented prosthetic devices and, simultaneously, help the fight against antibiotic resistance.
Collapse
|
12
|
The preparation of PCL/MSO/SiO2 hierarchical superhydrophobic mats for oil-water separation by one-step method. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Wang M, Bai X, Jiang Y, Lang S, Yu L. Preparation and characterization of low oil absorption starch via freeze-thawing. Carbohydr Polym 2019; 211:266-271. [DOI: 10.1016/j.carbpol.2019.02.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/22/2022]
|
14
|
Perni S, Caserta S, Pasquino R, Jones SA, Prokopovich P. Prolonged Antimicrobial Activity of PMMA Bone Cement with Embedded Gentamicin-Releasing Silica Nanocarriers. ACS APPLIED BIO MATERIALS 2019; 2:1850-1861. [DOI: 10.1021/acsabm.8b00752] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Stefano Perni
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, United Kingdom
| | - Sergio Caserta
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Napoli 80125, Italy
| | - Rossana Pasquino
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Napoli 80125, Italy
| | - Steve A. Jones
- University Hospital Llandough, Cardiff & Vale University Health Board, Penlan Road, Penarth, Vale of Glamorgan, Wales CF64 2XX, United Kingdom
| | - Polina Prokopovich
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, United Kingdom
| |
Collapse
|
15
|
Al Thaher Y, Yang L, Jones SA, Perni S, Prokopovich P. LbL-assembled gentamicin delivery system for PMMA bone cements to prolong antimicrobial activity. PLoS One 2018; 13:e0207753. [PMID: 30543660 PMCID: PMC6292632 DOI: 10.1371/journal.pone.0207753] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/06/2018] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Antibiotic-loaded poly(methyl methacrylate) bone cements (ALBCs) are widely used in total joint replacement (TJR), for local delivery of antibiotics to provide prophylaxis against prosthetic joint infections (PJI). One of the shortcomings of the current generation of ALBCs is that the antibiotic release profile is characterized by a burst over the first few hours followed by a sharp decrease in rate for the following several days (often below minimum inhibitory concentration (MIC)), and, finally, exhaustion (after, typically, ~ 20 d). This profile means that the ALBCs provide only short-term antimicrobial action against bacterial strains involved PJI. RATIONALE The purpose of the present study was to develop an improved antibiotic delivery system for an ALBC. This system involved using a layer-by-layer technique to load the antibiotic (gentamicin sulphate) (GEN) on silica nanoparticles, which are then blended with the powder of the cement. Then, the powder was mixed with the liquid of the cement (NP-GEN cement). For controls, two GEN-loaded brands were used (Cemex Genta and Palacos R+G). Gentamicin release and a host of other relevant properties were determined for all the cements studied. RESULTS Compared to control cement specimens, improved GEN release, longer antimicrobial activity (against clinically-relevant bacterial strains), and comparable setting time, cytocompatibility, compressive strength (both prior to and after aging in PBS at 37 oC for 30 d), 4-point bend strength and modulus, fracture toughness, and PBS uptake. CONCLUSIONS NP-GEN cement may have a role in preventing or treating PJI.
Collapse
Affiliation(s)
- Yazan Al Thaher
- School of Pharmacy and Pharmaceutical Science, Cardiff University, Cardiff, United Kingdom
| | - Lirong Yang
- School of Pharmacy and Pharmaceutical Science, Cardiff University, Cardiff, United Kingdom
| | - Steve A. Jones
- University Hospital Llandough, Cardiff & Vale University Health Board, Vale of Glamorgan, Wales, United Kingdom
| | - Stefano Perni
- School of Pharmacy and Pharmaceutical Science, Cardiff University, Cardiff, United Kingdom
| | - Polina Prokopovich
- School of Pharmacy and Pharmaceutical Science, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
16
|
|