1
|
Kong S, Wei H, Zhang Y, Rao Q. UV-driven self-replenishing liquid-infused surface with promising anti-algal adhesion performance. RSC Adv 2024; 14:28596-28607. [PMID: 39247511 PMCID: PMC11378032 DOI: 10.1039/d4ra04077e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/25/2024] [Indexed: 09/10/2024] Open
Abstract
Slippery liquid-infused porous surfaces (SLIPSs) inspired by Nepenthes have attracted much attention owing to their potential application in various cutting-edge fields. However, the performance of SLIPSs is impeded by surface damage and lubricant depletion, thereby limiting their further application. Herein, a UV-responsive slippery surface (SMEMG) was fabricated by introducing the UV-responsive functional group coumarin into the polymer side chain through random copolymerization, followed by crosslinking, curing and impregnation with vegetable oil. The self-healing ability and lubricant self-replenishing performance of the SMEMG were investigated. The results show that upon exposure to UV light, the damaged surface substrate can be repaired through a reversible photodimerization reaction between coumarin groups. Meanwhile, the lubricant oil within the bulk of the SMEMG substrate can be extruded to the surface during the photodimerization reaction, facilitating the recovery of surface wettability. The SMEMG exhibited excellent self-cleaning and anti-algal properties as well as durability in a harsh environment, demonstrating its promising application in marine anti-fouling.
Collapse
Affiliation(s)
- Shuai Kong
- State Grid Shandong Electric Power Research Institute Jinan 250003 China
- College of Chemical and Biochemical Engineering, Zhejiang University Hangzhou 310027 China
- Shandong Smart Grid Technology Innovation Center Jinan 250002 China
| | - Hao Wei
- School of Life Sciences, Qufu Normal University Qufu 273165 China
| | - Yan Zhang
- State Grid Shandong Electric Power Research Institute Jinan 250003 China
- Shandong Smart Grid Technology Innovation Center Jinan 250002 China
| | - Qingqing Rao
- College of Chemistry and Materials Engineering, Zhejiang A&F University Hangzhou 311300 China
| |
Collapse
|
2
|
Fong C, Andersen MJ, Kunesh E, Leonard E, Durand D, Coombs R, Flores-Mireles AL, Howell C. Effect of free liquid layer quantity on bacteria and protein adhesion to liquid infused polymers. Biointerphases 2024; 19:041003. [PMID: 39136648 PMCID: PMC11324329 DOI: 10.1116/6.0003776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Liquid-infused polymers are recognized for their ability to repel foulants, making them promising for biomedical applications including catheter-associated urinary tract infections (CAUTIs). However, the impact of the quantity of free liquid layer covering the surface on protein and bacterial adhesion is not well understood. Here, we explore how the amount of free silicone liquid layer in infused silicone catheter materials influences the adhesion of bacteria and proteins relevant to CAUTIs. To alter the quantity of the free liquid layer, we either physically removed excess liquid from fully infused catheter materials or partially infused them. We then evaluated the impact on bacterial and host protein adhesion. Physical removal of the free liquid layer from the fully infused samples reduced the height of the liquid layer from 60 μm to below detection limits and silicone liquid loss into the environment by approximately 64% compared to controls, without significantly increasing the deposition of protein fibrinogen or the adhesion of the common uropathogen Enterococcus faecalis. Partially infused samples showed even greater reductions in liquid loss: samples infused to 70%-80% of their maximum capacity exhibited about an 85% decrease in liquid loss compared to fully infused controls. Notably, samples with more than 70% infusion did not show significant increases in fibrinogen or E. faecalis adhesion. These findings suggest that adjusting the levels of the free liquid layer in infused polymers can influence protein and bacterial adhesion on their surfaces. Moreover, removing the free liquid layer can effectively reduce liquid loss from these polymers while maintaining their functionality.
Collapse
Affiliation(s)
- ChunKi Fong
- Author to whom correspondence should be addressed:
| | - Marissa Jeme Andersen
- Department of Biological Sciences and Department of Chemistry and Biochemistry, College of Science, Notre Dame University, South Bend, Indiana 46556
| | - Emma Kunesh
- Department of Chemical and Biomedical Engineering, Maine College of Engineering and Computing, University of Maine, Orono, Maine 04469
| | - Evan Leonard
- Department of Chemical and Biomedical Engineering, Maine College of Engineering and Computing, University of Maine, Orono, Maine 04469
| | - Donovan Durand
- Department of Chemical and Biomedical Engineering, Maine College of Engineering and Computing, University of Maine, Orono, Maine 04469
| | - Rachel Coombs
- Department of Chemical and Biomedical Engineering, Maine College of Engineering and Computing, University of Maine, Orono, Maine 04469
| | - Ana Lidia Flores-Mireles
- Department of Biological Sciences and Department of Chemistry and Biochemistry, College of Science, Notre Dame University, South Bend, Indiana 46556
| | | |
Collapse
|
3
|
Wang X, Zhuang Z, Li X, Yao X. Droplet Manipulation on Bioinspired Slippery Surfaces: From Design Principle to Biomedical Applications. SMALL METHODS 2024; 8:e2300253. [PMID: 37246251 DOI: 10.1002/smtd.202300253] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/02/2023] [Indexed: 05/30/2023]
Abstract
Droplet manipulation with high efficiency, high flexibility, and programmability, is essential for various applications in biomedical sciences and engineering. Bioinspired liquid-infused slippery surfaces (LIS), with exceptional interfacial properties, have led to expanding research for droplet manipulation. In this review, an overview of actuation principles is presented to illustrate how materials or systems can be designed for droplet manipulation on LIS. Recent progress on new manipulation methods on LIS is also summarized and their prospective applications in anti-biofouling and pathogen control, biosensing, and the development of digital microfluidics are presented. Finally, an outlook is made on the key challenges and opportunities for droplet manipulation on LIS.
Collapse
Affiliation(s)
- Xuejiao Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, P. R. China
| | - Zhicheng Zhuang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, P. R. China
| | - Xin Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, P. R. China
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518075, P. R. China
| |
Collapse
|
4
|
Cremaschini S, Cattelan A, Ferraro D, Filippi D, Marinello F, Meggiolaro A, Pierno M, Sada C, Zaltron A, Umari P, Mistura G. Trifurcated Splitting of Water Droplets on Engineered Lithium Niobate Surfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4271-4282. [PMID: 38194671 PMCID: PMC10811617 DOI: 10.1021/acsami.3c16573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024]
Abstract
Controlled splitting of liquid droplets is a key function in many microfluidic applications. In recent years, various methodologies have been used to accomplish this task. Here, we present an optofluidic technique based on an engineered surface formed by coating a z-cut iron-doped lithium niobate crystal with a lubricant-infused layer, which provides a very slippery surface. Illuminating the crystal with a light spot induces surface charges of opposite signs on the two crystal faces because of the photovoltaic effect. If the light spot is sufficiently intense, millimetric water droplets placed near the illuminated spot split into two charged fragments, one fragment being trapped by the bright spot and the other moving away from it. The latter fragment does not move randomly but rather follows one of three well-defined trajectories separated by 120°, which reflect the anisotropic crystalline structure of Fe:LiNbO3. Numerical simulations explain the behavior of water droplets in the framework of the forces induced by the interplay of pyroelectric, piezoelectric, and photovoltaic effects, which originate simultaneously inside the illuminated crystal. Such a synergetic effect can provide a valuable feature in applications that require splitting and coalescence of droplets, such as chemical microreactors and biological encapsulation and screening.
Collapse
Affiliation(s)
- Sebastian Cremaschini
- Dipartimento di Fisica e
Astronomia “G. Galilei”, Università
di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Alberto Cattelan
- Dipartimento di Fisica e
Astronomia “G. Galilei”, Università
di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Davide Ferraro
- Dipartimento di Fisica e
Astronomia “G. Galilei”, Università
di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Daniele Filippi
- Dipartimento di Fisica e
Astronomia “G. Galilei”, Università
di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Filippo Marinello
- Dipartimento di Fisica e
Astronomia “G. Galilei”, Università
di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Alessio Meggiolaro
- Dipartimento di Fisica e
Astronomia “G. Galilei”, Università
di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Matteo Pierno
- Dipartimento di Fisica e
Astronomia “G. Galilei”, Università
di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Cinzia Sada
- Dipartimento di Fisica e
Astronomia “G. Galilei”, Università
di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Annamaria Zaltron
- Dipartimento di Fisica e
Astronomia “G. Galilei”, Università
di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Paolo Umari
- Dipartimento di Fisica e
Astronomia “G. Galilei”, Università
di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Giampaolo Mistura
- Dipartimento di Fisica e
Astronomia “G. Galilei”, Università
di Padova, Via Marzolo 8, 35131 Padova, Italy
| |
Collapse
|
5
|
Mahato M, Garai M, Nguyen VH, Oh S, Nam S, Zeng X, Yoo H, Tabassian R, Oh IK. Polysulfonated covalent organic framework as active electrode host for mobile cation guests in electrochemical soft actuator. SCIENCE ADVANCES 2023; 9:eadk9752. [PMID: 38091394 PMCID: PMC10848701 DOI: 10.1126/sciadv.adk9752] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/16/2023] [Indexed: 02/12/2024]
Abstract
Tailoring transfer dynamics of mobile cations across solid-state electrolyte-electrode interfaces is crucial for high-performance electrochemical soft actuators. In general, actuation performance is directly proportional to the affinity of cations and anions in the electrolyte for the opposite electrode surfaces under an applied field. Herein, to maximize electrochemical actuation, we report an electronically conjugated polysulfonated covalent organic framework (pS-COF) used as a common electrolyte-electrode host for 1-ethyl-3-methylimidazolium cation embedded into a Nafion membrane. The pS-COF-based electrochemical actuator exhibits remarkable bending deflection at near-zero voltage (~0.01 V) and previously unattainable blocking force, which is 34 times higher than its own weight. The ultrafast step response shows a very short rising time of 1.59 seconds without back-relaxation, and substantial ultralow-voltage actuation at higher frequencies up to 5.0 hertz demonstrates good application prospects of common electrolyte-electrode hosts. A soft fluidic switch is constructed using the proposed soft actuator as a potential engineering application.
Collapse
Affiliation(s)
- Manmatha Mahato
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Mousumi Garai
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Van Hiep Nguyen
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Saewoong Oh
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sanghee Nam
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Xiangrong Zeng
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyunjoon Yoo
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Rassoul Tabassian
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Mechanical and Production Engineering, Aarhus University, Katrinebjergvej 89 G-F, 8200 Aarhus N, Denmark
| | - Il-Kwon Oh
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
6
|
Son C, Yang Z, Kim S, Ferreira PM, Feng J, Kim S. Bidirectional Droplet Manipulation on Magnetically Actuated Superhydrophobic Ratchet Surfaces. ACS NANO 2023. [PMID: 37856876 DOI: 10.1021/acsnano.3c07360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Droplet manipulation has garnered significant attention in various fields due to its wide range of applications. Among many different methods, magnetic actuation has emerged as a promising approach for remote and instantaneous droplet manipulation. In this study, we present the bidirectional droplet manipulation on a magnetically actuated superhydrophobic ratchet surface. The surface consists of silicon strips anchored on elastomer ridges with superhydrophobic black silicon structures on the top side and magnetic layers on the bottom side. The soft magnetic properties of the strips enable their bidirectional tilting to form a ratchet surface and thus bidirectional droplet manipulation upon varying external magnetic field location and strength. Computational multiphysics models were developed to predict the tilting of the strips, demonstrating the concept of bidirectional tilting along with a tilting angle hysteresis theory. Experimental results confirmed the soft magnetic hysteresis and consequential bidirectional tilting of the strips. The superhydrophobic ratchet surface formed by the tilting strips induced the bidirectional self-propulsion of dispensed droplets through the Laplace pressure gradient, and the horizontal acceleration of the droplets was found to be positively correlated with the tilting angle of the strips. Additionally, a finite element analysis was conducted to identify the critical conditions for dispensed droplet penetration through the gaps between the strips, which hinder the droplet's self-propulsion. The models and findings here provide substantial insights into the design and optimization of magnetically actuated superhydrophobic ratchet surfaces to manipulate droplets in the context of digital microfluidic applications.
Collapse
Affiliation(s)
- ChangHee Son
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zhengyu Yang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Seungbeom Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Placid M Ferreira
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jie Feng
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Seok Kim
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03722, South Korea
| |
Collapse
|
7
|
Carneri M, Ferraro D, Azarpour A, Meggiolaro A, Cremaschini S, Filippi D, Pierno M, Zanchetta G, Mistura G. Sliding and rolling of yield stress fluid droplets on highly slippery lubricated surfaces. J Colloid Interface Sci 2023; 644:487-495. [PMID: 37146485 DOI: 10.1016/j.jcis.2023.04.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/07/2023]
Abstract
HYPOTHESIS Droplets of yield stress fluids (YSFs), i.e. fluids that can flow only if they are subjected to a stress above a critical value and otherwise deform like solids, hardly move on solid surfaces due to their high viscosity. The use of highly slippery lubricated surfaces can shed light on the mobility of YSF droplets, which include everyday soft materials, such as toothpaste or mayonnaise, and biological fluids, such as mucus. EXPERIMENTS The spreading and mobility of droplets of aqueous solutions of swollen Carbopol microgels were studied on lubricant infused surfaces. These solutions represent a model system of YSFs. Dynamical phase diagrams were established by varying the concentration of the solutions and the inclination angle of the surfaces. FINDINGS Carbopol droplets deposited on lubricated surfaces could move even at low inclination angles. The droplets were found to slide because of the slip of the flowing oil that covered the solid substrate. However, as the descending speed increased, the droplets rolled down. Rolling was favored at high inclinations and low concentrations. A simple criterion based on the ratio between the yield stress of the Carbopol suspensions and the gravitational stress acting on the Carbopol droplets was found to nicely identify the transition between the two regimes.
Collapse
Affiliation(s)
- Mattia Carneri
- Dipartimento di Fisica e Astronomia "G. Galilei", Università di Padova, via Marzolo 8, 35131 Padova, Italy
| | - Davide Ferraro
- Dipartimento di Fisica e Astronomia "G. Galilei", Università di Padova, via Marzolo 8, 35131 Padova, Italy
| | - Afshin Azarpour
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, via F.lli Cervi 93, 20054 Segrate, Italy
| | - Alessio Meggiolaro
- Dipartimento di Fisica e Astronomia "G. Galilei", Università di Padova, via Marzolo 8, 35131 Padova, Italy
| | - Sebastian Cremaschini
- Dipartimento di Fisica e Astronomia "G. Galilei", Università di Padova, via Marzolo 8, 35131 Padova, Italy
| | - Daniele Filippi
- Dipartimento di Fisica e Astronomia "G. Galilei", Università di Padova, via Marzolo 8, 35131 Padova, Italy
| | - Matteo Pierno
- Dipartimento di Fisica e Astronomia "G. Galilei", Università di Padova, via Marzolo 8, 35131 Padova, Italy
| | - Giuliano Zanchetta
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, via F.lli Cervi 93, 20054 Segrate, Italy.
| | - Giampaolo Mistura
- Dipartimento di Fisica e Astronomia "G. Galilei", Università di Padova, via Marzolo 8, 35131 Padova, Italy.
| |
Collapse
|
8
|
Kan Y, Liu H, Yang Y, Wei Y, Yu Y, Qiu R, Ouyang Y. Two birds with one stone: The route from waste printed circuit board electronic trash to multifunctional biomimetic slippery liquid-infused coating. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Agarwal H, Quinn LJ, Walter SC, Polaske TJ, Chang DH, Palecek SP, Blackwell HE, Lynn DM. Slippery Antifouling Polymer Coatings Fabricated Entirely from Biodegradable and Biocompatible Components. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17940-17949. [PMID: 35394750 PMCID: PMC9310543 DOI: 10.1021/acsami.1c25218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report the design of slippery liquid-infused porous surfaces (SLIPS) fabricated from building blocks that are biodegradable, edible, or generally regarded to be biocompatible. Our approach involves infusion of lubricating oils, including food oils, into nanofiber-based mats fabricated by electrospinning or blow spinning of poly(ε-caprolactone), a hydrophobic biodegradable polymer used widely in medical implants and drug delivery devices. This approach leads to durable and biodegradable SLIPS that prevent fouling by liquids and other materials, including microbial pathogens, on objects of arbitrary shape, size, and topography. This degradable polymer approach also provides practical means to design "controlled-release" SLIPS that release molecular cargo at rates that can be manipulated by the properties of the infused oils (e.g., viscosity or chemical structure). Together, our results provide new designs and introduce useful properties and behaviors to antifouling SLIPS, address important issues related to biocompatibility and environmental persistence, and thus advance new potential applications, including the use of slippery materials for food packaging, industrial and marine coatings, and biomedical implants.
Collapse
Affiliation(s)
- Harshit Agarwal
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, Wisconsin 53706, United States
| | - La'Darious J Quinn
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Sahana C Walter
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, Wisconsin 53706, United States
| | - Thomas J Polaske
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Douglas H Chang
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, Wisconsin 53706, United States
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, Wisconsin 53706, United States
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - David M Lynn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| |
Collapse
|
10
|
|
11
|
Agarwal H, Polaske TJ, Sánchez-Velázquez G, Blackwell HE, Lynn DM. Slippery nanoemulsion-infused porous surfaces (SNIPS): anti-fouling coatings that can host and sustain the release of water-soluble agents. Chem Commun (Camb) 2021; 57:12691-12694. [PMID: 34781330 PMCID: PMC8851892 DOI: 10.1039/d1cc04645d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report the design of 'slippery' nanoemulsion-infused porous surfaces (SNIPS). These materials are strongly anti-fouling to a broad range of substances, including microorganisms. Infusion with water-in-oil nanoemulsions also endows these slippery coatings with the ability to host and control or sustain the release of water-soluble agents, including polymers, peptides, and nucleic acids, opening the door to new applications of liquid-infused materials.
Collapse
Affiliation(s)
- Harshit Agarwal
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA.
| | - Thomas J Polaske
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA
| | - Gabriel Sánchez-Velázquez
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA.
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA
| | - David M Lynn
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA.
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA
| |
Collapse
|
12
|
Rao Q, Lu Y, Song L, Hou Y, Zhan X, Zhang Q. Highly Efficient Self-Repairing Slippery Liquid-Infused Surface with Promising Anti-Icing and Anti-Fouling Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40032-40041. [PMID: 34378911 DOI: 10.1021/acsami.1c09491] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Smart slippery liquid-infused porous surfaces (SLIPSs) have aroused remarkable attention owing to tremendous application foreground in biomedical instruments and industry. However, challenges still remain in fabricating durable SLIPSs. In this work, a fast and highly efficient self-repairing slippery surface (SPU-60M) was fabricated based on a polyurethane membrane and silicone oil. By introducing a great quantity of reversible disulfide bonds into the polymer backbone and hydrogen bonds in the polymer interchain, this SLIPS material could be quickly repaired in 15 min with 97.8% healing efficiency. Moreover, the self-healing efficiency could be maintained at 42.75% after the 10th cutting-healing cycle. Notably, SPU-60M showed excellent self-repairing ability not only in an ambient environment but also in an underwater environment and at ultralow temperatures. Besides, the icing delay time (DT) of SPU-60M could be prolonged to 1182 s at -15 °C, and the ice adhesion strength was only 10.33 kPa at -30 °C. In addition, SPU-60M had excellent anti-fouling performance with BSA adsorption of 2.41 μg/cm2 and Escherichia coli CFU counts of 41 × 104. These findings provide a facile way to design highly efficient self-repairing SLIPSs with multifunctionality.
Collapse
Affiliation(s)
- Qingqing Rao
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou 310027, China
| | - Yulin Lu
- Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Lina Song
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou 310027, China
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Xiaoli Zhan
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Qinghua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| |
Collapse
|
13
|
Agarwal H, Nyffeler KE, Manna U, Blackwell HE, Lynn DM. Liquid Crystal-Infused Porous Polymer Surfaces: A "Slippery" Soft Material Platform for the Naked-Eye Detection and Discrimination of Amphiphilic Species. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33652-33663. [PMID: 34236833 PMCID: PMC8459213 DOI: 10.1021/acsami.1c08170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report the design and characterization of liquid crystal (LC)-infused porous polymer membranes that can detect and report on the presence of natural and synthetic amphiphiles in aqueous solution. We demonstrate that thermotropic LCs can be infused into nanoporous polymer membranes to yield LC-infused surfaces that exhibit slippery behaviors in contact with a range of aqueous fluids. In contrast to conventional liquid-infused surfaces (LIS) or slippery liquid-infused porous surfaces (SLIPS) prepared using isotropic oils, aqueous solutions slide over the surfaces of these LC-infused materials at speeds that depend strongly upon the composition of the fluid, including the presence, concentration, or structure of a dissolved surfactant. In general, the sliding times of aqueous droplets on these LC-infused surfaces increase significantly (e.g., from times on the order of seconds to times on the order of minutes) with increasing amphiphile concentration, allowing sliding times to be used to estimate the concentration of the amphiphile. Additional experiments revealed other intrinsic and extrinsic variables or parameters that can be used to further manipulate droplet sliding times and discriminate among amphiphiles of similar structure. Our results are consistent with a physical picture that involves reversible changes in the interfacial orientation of anisotropic LCs mediated by the interfacial adsorption of amphiphiles. These materials thus permit facile "naked-eye" detection and discrimination of amphiphiles in aqueous samples using equipment no more sophisticated than a stopwatch. We demonstrate the potential utility of these LC-infused surfaces for the unaided, naked-eye detection and monitoring of amphiphilic biotoxins in small droplets of fluid extracted directly from cultures of two common bacterial pathogens (Pseudomonas aeruginosa and Staphylococcus aureus). The ability to translate molecular interactions at aqueous/LC interfaces into large and readily observed changes in the sliding times of small aqueous droplets on surfaces could open the door to new applications for antifouling, liquid-infused materials in the context of environmental sensing and other fundamental and applied areas.
Collapse
Affiliation(s)
- Harshit Agarwal
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Kayleigh E Nyffeler
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | - Uttam Manna
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - David M Lynn
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
14
|
Son C, Ji B, Park J, Feng J, Kim S. A Magnetically Actuated Superhydrophobic Ratchet Surface for Droplet Manipulation. MICROMACHINES 2021; 12:325. [PMID: 33808660 PMCID: PMC8003513 DOI: 10.3390/mi12030325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022]
Abstract
A water droplet dispensed on a superhydrophobic ratchet surface is formed into an asymmetric shape, which creates a Laplace pressure gradient due to the contact angle difference between two sides. This work presents a magnetically actuated superhydrophobic ratchet surface composed of nanostructured black silicon strips on elastomer ridges. Uniformly magnetized NdFeB layers sputtered under the black silicon strips enable an external magnetic field to tilt the black silicon strips and form a superhydrophobic ratchet surface. Due to the dynamically controllable Laplace pressure gradient, a water droplet on the reported ratchet surface experiences different forces on two sides, which are explored in this work. Here, the detailed fabrication procedure and the related magnetomechanical model are provided. In addition, the resultant asymmetric spreading of a water droplet is studied. Finally, droplet impact characteristics are investigated in three different behaviors of deposition, rebound, and penetration depending on the impact speed. The findings in this work are exploitable for further droplet manipulation studies based on a dynamically controllable superhydrophobic ratchet surface.
Collapse
Affiliation(s)
- ChangHee Son
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (C.S.); (B.J.); (J.P.); (J.F.)
| | - BingQiang Ji
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (C.S.); (B.J.); (J.P.); (J.F.)
| | - JunKyu Park
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (C.S.); (B.J.); (J.P.); (J.F.)
| | - Jie Feng
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (C.S.); (B.J.); (J.P.); (J.F.)
| | - Seok Kim
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (C.S.); (B.J.); (J.P.); (J.F.)
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
15
|
Chen G, Dai Z, Li S, Huang Y, Xu Y, She J, Zhou B. Magnetically Responsive Film Decorated with Microcilia for Robust and Controllable Manipulation of Droplets. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1754-1765. [PMID: 33393309 DOI: 10.1021/acsami.0c16262] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Droplet manipulations are critical for applications ranging from biochemical analysis, medical diagnosis to environmental controls. Even though magnetic actuation has exhibited great potential, the capability of high-speed, precise manipulation, and mixing improvement covering a broad droplet volume has not yet been realized. Herein, we demonstrated that the magnetic actuation could be conveniently achieved via decorating the magnetically responsive film with microcilia. Under magnetic field, the film can quickly response with localized deformation, along with the microcilia to realize the surface superhydrophobicity for droplet manipulation with velocity up to ∼173 mm/s covering a broad volume of 2-100 μL. The robust system further allows us to realize rapid and complete droplet mixing within ∼1.6 s. In addition, the microcilia decorated surface can preserve the robust superhydrophobicity after various stability tests, for example, normal pressing, chemical corrosion, and mechanical abrasion, exhibiting the possibility toward the long-term and real applications. With the multifunctional demonstrations such as obvious mixing improvement, parallel manipulation, and serial dilution, we believe that the methodology can open up a magnetic field-based avenue for future applications in digital microfluidics, and biochemical assays, etc.
Collapse
Affiliation(s)
- Ge Chen
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Ziyi Dai
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Shunbo Li
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronics Engineering, Chongqing University, Chongqing 400044, China
| | - Yifeng Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi Xu
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronics Engineering, Chongqing University, Chongqing 400044, China
| | - Juncong She
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| |
Collapse
|
16
|
Gong Z, Su Z, Liu X, Pan D, Liu J, Zheng H, Joo SW. Boosting Electrically Actuated Manipulation of Water Droplets on Lubricated Surfaces through a Corona Discharge. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:400-405. [PMID: 33356299 DOI: 10.1021/acs.langmuir.0c03048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Controllable liquid transportation is of great value in various practical applications. Here, we experimentally demonstrate a method of actuating high-speed droplet transport with large manipulation controllability on lubricated surfaces using a corona discharge generated by a simple needle-plate electrode configuration. Linear motion of droplets is realized with a maximum velocity of 30 mm/s. Factors affecting the velocity of these droplets are analyzed systematically, and the mechanism of droplet transport is explained. The lubrication film flow induced by charge deposition is shown to be the dominating factor in the droplet manipulation controllability. The new method presented here opens a new path of high-performance manipulation of liquid droplets by controlling the lubrication liquid film flow with charge deposition.
Collapse
Affiliation(s)
- Zheng Gong
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Zhenpeng Su
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaofeng Liu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Di Pan
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Jie Liu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Huai Zheng
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749, South Korea
| |
Collapse
|
17
|
Okada K, Miura Y, Chiya T, Tokudome Y, Takahashi M. Thermo-responsive wettability via surface roughness change on polymer-coated titanate nanorod brushes toward fast and multi-directional droplet transport. RSC Adv 2020; 10:28032-28036. [PMID: 35519096 PMCID: PMC9055642 DOI: 10.1039/d0ra05471b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/15/2020] [Indexed: 01/13/2023] Open
Abstract
A novel approach for thermo-responsive wettability has been accomplished by surface roughness change induced by thermal expansion of paraffin coated on titanate nanostructures. The surface exhibits thermo-responsive and reversible wettability change in a hydrophobic regime; the surface shows superhydrophobicity with contact angles of ∼157° below 50 °C and ∼118° above 50 °C due to a decrease of surface roughness caused by thermally-expanded paraffin at higher temperatures. Reversible wettability change of ∼40° of a contact angle allows for fast and multi-directional droplet transport. The present approach affords a versatile selection of materials and wide variety of contact angles, promoting both scientific advancement and technology innovation in the field of smart surfaces.
Collapse
Affiliation(s)
- Kenji Okada
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University Sakai Osaka 599-8531 Japan
- JST, PRESTO 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Yoko Miura
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University Sakai Osaka 599-8531 Japan
| | - Tomoya Chiya
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University Sakai Osaka 599-8531 Japan
| | - Yasuaki Tokudome
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University Sakai Osaka 599-8531 Japan
| | - Masahide Takahashi
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University Sakai Osaka 599-8531 Japan
| |
Collapse
|
18
|
Wu Y, Wang F, Ma S, Selzer M, Nestler B. How do chemical patterns affect equilibrium droplet shapes? SOFT MATTER 2020; 16:6115-6127. [PMID: 32638820 DOI: 10.1039/d0sm00196a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
By utilizing a proposed analytical model in combination with the phase-field method, we present a comprehensive study on the effect of chemical patterns on equilibrium droplet morphologies. Here, three influencing factors, the droplet sizes, contact angles, and the ratios of the hydrophilic area to the hydrophobic area, are contemplated. In the analytical model, chemical heterogeneities are described by different non-linear functions. By tuning these functions and the related parameters, the analytical model is capable of calculating the energy landscapes of the system. The chemically patterned surfaces display complex energy landscapes with chemical-heterogeneity-induced local minima, which correspond to the equilibrium morphologies of the droplets. Phase-field (PF) simulations are accordingly conducted and compared with the predicted equilibrium morphologies. In addition, we propose a modified Cassie-Baxter (CB) model to delineate the equilibrium droplet shapes. In contrast to the classic CB model, our extension is not only restricted to the shape with a spherical cap. Both the energy landscape method and the modified CB model are demonstrated to have a good agreement with the PF simulations.
Collapse
Affiliation(s)
- Yanchen Wu
- Institute of Applied Materials-Computational Materials Science, Karlsruhe Institute of Technology, Straße am Forum 7, 76131 Karlsruhe, Germany.
| | - Fei Wang
- Institute of Applied Materials-Computational Materials Science, Karlsruhe Institute of Technology, Straße am Forum 7, 76131 Karlsruhe, Germany.
| | - Shaoping Ma
- Institute of Applied Materials-Computational Materials Science, Karlsruhe Institute of Technology, Straße am Forum 7, 76131 Karlsruhe, Germany.
| | - Michael Selzer
- Institute of Applied Materials-Computational Materials Science, Karlsruhe Institute of Technology, Straße am Forum 7, 76131 Karlsruhe, Germany. and Institute of Digital Materials Science, Karlsruhe University of Applied Sciences, Moltkestraße 30, 76133 Karlsruhe, Germany
| | - Britta Nestler
- Institute of Applied Materials-Computational Materials Science, Karlsruhe Institute of Technology, Straße am Forum 7, 76131 Karlsruhe, Germany. and Institute of Digital Materials Science, Karlsruhe University of Applied Sciences, Moltkestraße 30, 76133 Karlsruhe, Germany
| |
Collapse
|
19
|
Ge Q, Raza A, Li H, Sett S, Miljkovic N, Zhang T. Condensation of Satellite Droplets on Lubricant-Cloaked Droplets. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22246-22255. [PMID: 32306727 PMCID: PMC7304831 DOI: 10.1021/acsami.9b22417] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
Condensation on lubricant-infused micro- or nanotextured superhydrophobic surfaces exhibits remarkable heat transfer performance owing to the high condensation nucleation density and efficient condensate droplet removal. When a low surface tension lubricant is used, it can spread on the condensed droplet and "cloak" it. Here, we describe a previously unobserved condensation phenomenon of satellite droplet formation on lubricant-cloaked water droplets using environmental scanning electron microscopy. The presence of satellite droplets confirms the cloaking behavior of common lubricants on water such as Krytox oils. More interestingly, we have observed satellite droplets on BMIm ionic liquid-infused surfaces, which is unexpected because BMIm was used in previous reports as a lubricant to eliminate cloaking during water condensation. Our studies reveal that the cloaking of BMIm on water droplets is theoretically favorable due to the fast timescale spreading during initial condensation when compared to the long timescale required for dissolution of the lubricant in water. We utilize a novel characterization approach based on Raman spectroscopy to confirm the existence of cloaking lubricant films on water droplets residing on lubricant-infused surfaces. The selected lubricants include Krytox oil, ionic liquid, and dodecane, which have drastically different surface tensions and polarities. In addition, spreading dynamics of cloaking and noncloaking lubricants on water droplets show that ionic liquid has the capability to mobilize water droplets spontaneously owing to cloaking and its relatively high surface tension. Our studies not only elucidate the physics governing cloaking and satellite droplet condensation phenomena at micro- and macroscales but also reveal a subset of previously unobserved lubricant-water interfacial interactions for a large variety of applications.
Collapse
Affiliation(s)
- Qiaoyu Ge
- Department
of Mechanical Engineering, Masdar Institute, Khalifa University of Science and Technology, P.O. Box 54224, Abu Dhabi, UAE
| | - Aikifa Raza
- Department
of Mechanical Engineering, Masdar Institute, Khalifa University of Science and Technology, P.O. Box 54224, Abu Dhabi, UAE
| | - Hongxia Li
- Department
of Mechanical Engineering, Masdar Institute, Khalifa University of Science and Technology, P.O. Box 54224, Abu Dhabi, UAE
| | - Soumyadip Sett
- Department
of Mechanical Science and Engineering, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Nenad Miljkovic
- Department
of Mechanical Science and Engineering, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department
of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials
Research Laboratory, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
- International
Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744
Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - TieJun Zhang
- Department
of Mechanical Engineering, Masdar Institute, Khalifa University of Science and Technology, P.O. Box 54224, Abu Dhabi, UAE
| |
Collapse
|
20
|
Marquis K, Chasse B, Regan DP, Boutiette AL, Khalil A, Howell C. Vascularized Polymers Spatially Control Bacterial Cells on Surfaces. ACTA ACUST UNITED AC 2020; 4:e1900216. [PMID: 32293124 DOI: 10.1002/adbi.201900216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/05/2019] [Indexed: 11/10/2022]
Abstract
Nature uses vascular systems to permit large-area control over the functionality of surfaces that lie above them. In this work, the application of this concept to the control of a hybrid living-nonliving system is demonstrated. Defined arrangements of vascular channels are created in agar using a fugitive ink printing method. The antibiotic gentamicin is then introduced into the vascular network where it diffuses to the surface and interacts with a model system of Escherichia coli cells. The cells either live or die depending on their distance from the underlying channels, permitting spatial control over the biological system. Using single-channel systems to define critical parameters, a theoretical model is developed to define the final surface pattern based solely on the arrangement of the underlying vascular channels. The model is then successfully used to create more complex arrangements of cells at the surface. Finally, by introducing different types of active compounds into separate vascular channels, a mixture of bacterial species is separated and localized at defined points. This work demonstrates the ability of bioinspired embedded vascular systems to predictably control a biological system at a surface, laying the groundwork for future spatially and temporally controlled biointerfaces in both industry and medicine.
Collapse
Affiliation(s)
- Kayla Marquis
- Department of Chemical and Biomedical Engineering, University of Maine, 5737 Jenness Hall, Orono, ME, 04469, USA
| | - Benjamin Chasse
- Department of Chemical and Biomedical Engineering, University of Maine, 5737 Jenness Hall, Orono, ME, 04469, USA
| | - Daniel P Regan
- Department of Chemical and Biomedical Engineering, University of Maine, 5737 Jenness Hall, Orono, ME, 04469, USA.,Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Orono, ME, 04469, USA
| | - Amber L Boutiette
- Department of Chemical and Biomedical Engineering, University of Maine, 5737 Jenness Hall, Orono, ME, 04469, USA
| | - Andre Khalil
- Department of Chemical and Biomedical Engineering, University of Maine, 5737 Jenness Hall, Orono, ME, 04469, USA.,Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Orono, ME, 04469, USA
| | - Caitlin Howell
- Department of Chemical and Biomedical Engineering, University of Maine, 5737 Jenness Hall, Orono, ME, 04469, USA.,Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Orono, ME, 04469, USA
| |
Collapse
|
21
|
Malinowski R, Parkin IP, Volpe G. Advances towards programmable droplet transport on solid surfaces and its applications. Chem Soc Rev 2020; 49:7879-7892. [DOI: 10.1039/d0cs00268b] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We review progress towards the programmable transport of droplets on surfaces together with its applications in chemistry and materials science.
Collapse
Affiliation(s)
| | - Ivan P Parkin
- Department of Chemistry
- University College London
- WC1H 0AJ London
- UK
| | - Giorgio Volpe
- Department of Chemistry
- University College London
- WC1H 0AJ London
- UK
| |
Collapse
|
22
|
Combining the geometry of folded paper with liquid-infused polymer surfaces to concentrate and localize bacterial solutions. Biointerphases 2019; 14:041005. [PMID: 31431017 DOI: 10.1116/1.5114804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Point-of-care (POC) detection and diagnostic platforms provide critical information about health and safety conditions in austere and resource-limited settings in which medical, military, and disaster relief operations are conducted. In this work, low-cost paper materials commonly used in POC devices are coated with liquid-infused polymer surfaces and folded to produce geometries that precisely localize complex liquid samples undergoing concentration by evaporation. Liquid-infused polymer surfaces were fabricated by infusing silicone-coated paper with a chemically compatible polydimethylsiloxane oil to create a liquid overlayer. Tests on these surfaces showed no remaining bacterial cells after exposure to a sliding droplet containing a concentrated solution of Escherichia coli or Staphylococcus aureus, while samples without a liquid layer showed adhesion of both microdroplets and individual bacterial cells. Folding of the paper substrates with liquid-infused polymer surfaces into several functional 3D geometries enabled a clean separation and simultaneous concentration of a liquid containing rhodamine dye into discrete, predefined locations. When used with bacteria, which are known for their ability to adhere to nearly any surface type, functional geometries with liquid-infused polymer surfaces concentrated the cells at levels significantly higher than geometries with dry control surfaces. These results show the potential of synergistically combining paper-based materials with liquid-infused polymer surfaces for the manipulation and handling of complex samples, which may help the future engineering of POC devices.
Collapse
|
23
|
Editorial overview: A glance into the future of colloid and interface science: What outstanding young researchers tell us. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|