1
|
Buck SAJ, Van Hemelryk A, de Ridder C, Stuurman D, Erkens-Schulze S, van 't Geloof S, Teubel WJ, Koolen SLW, Martens-Uzunova ES, van Royen ME, de Wit R, Mathijssen RHJ, van Weerden WM. Darolutamide Added to Docetaxel Augments Antitumor Effect in Models of Prostate Cancer through Cell Cycle Arrest at the G1-S Transition. Mol Cancer Ther 2024; 23:711-720. [PMID: 38030379 DOI: 10.1158/1535-7163.mct-23-0420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/03/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Resistance to taxane chemotherapy is frequently observed in metastatic prostate cancer. The androgen receptor (AR) is a major driver of prostate cancer and a key regulator of the G1-S cell-cycle checkpoint, promoting cancer cell proliferation by irreversible passage to the S-phase. We hypothesized that AR signaling inhibitor (ARSi) darolutamide in combination with docetaxel could augment antitumor effect by impeding the proliferation of taxane-resistant cancer cells. We monitored cell viability in organoids, tumor volume, and PSA secretion in patient-derived xenografts (PDX) and analyzed cell cycle and signaling pathway alterations. Combination treatment increased antitumor effect in androgen-sensitive, AR-positive prostate cancer organoids and PDXs. Equally beneficial effects of darolutamide added to docetaxel were observed in a castration-resistant model, progressive on docetaxel, enzalutamide, and cabazitaxel. In vitro studies showed that docetaxel treatment with simultaneous darolutamide resulted in a reduction of cells entering the S-phase in contrast to only docetaxel. Molecular analysis in the prostate cancer cell line LNCaP revealed an upregulation of cyclin-dependent kinase inhibitor p21, supporting blockade of S-phase entry and cell proliferation. Our results provide a preclinical support for combining taxanes and darolutamide as a multimodal treatment strategy in patients with metastatic prostate cancer progressive on ARSi and taxane chemotherapy.
Collapse
Affiliation(s)
- Stefan A J Buck
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
| | - Annelies Van Hemelryk
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
| | - Corrina de Ridder
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
| | - Debra Stuurman
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
| | - Sigrun Erkens-Schulze
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
| | - Sem van 't Geloof
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
| | - Wilma J Teubel
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Elena S Martens-Uzunova
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
| | - Martin E van Royen
- Department of Pathology, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Ronald de Wit
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
| | - Wytske M van Weerden
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
| |
Collapse
|
2
|
Van Hemelryk A, Tomljanovic I, de Ridder CMA, Stuurman DC, Teubel WJ, Erkens-Schulze S, Verhoef EI, Remmers S, Mahes AJ, van Leenders GJLH, van Royen ME, van de Werken HJG, Grudniewska M, Jenster GW, van Weerden WM. Patient-Derived Xenografts and Organoids Recapitulate Castration-Resistant Prostate Cancer with Sustained Androgen Receptor Signaling. Cells 2022; 11:cells11223632. [PMID: 36429059 PMCID: PMC9688335 DOI: 10.3390/cells11223632] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) remains an incurable and lethal malignancy. The development of new CRPC treatment strategies is strongly impeded by the scarcity of representative, scalable and transferable preclinical models of advanced, androgen receptor (AR)-driven CRPC. Here, we present contemporary patient-derived xenografts (PDXs) and matching PDX-derived organoids (PDXOs) from CRPC patients who had undergone multiple lines of treatment. These models were comprehensively profiled at the morphologic, genomic (n = 8) and transcriptomic levels (n = 81). All are high-grade adenocarcinomas that exhibit copy number alterations and transcriptomic features representative of CRPC patient cohorts. We identified losses of PTEN and RB1, MYC amplifications, as well as genomic alterations in TP53 and in members of clinically actionable pathways such as AR, PI3K and DNA repair pathways. Importantly, the clinically observed continued reliance of CRPC tumors on AR signaling is preserved across the entire set of models, with AR amplification identified in four PDXs. We demonstrate that PDXs and PDXOs faithfully reflect donor tumors and mimic matching patient drug responses. In particular, our models predicted patient responses to subsequent treatments and captured sensitivities to previously received therapies. Collectively, these PDX-PDXO pairs constitute a reliable new resource for in-depth studies of treatment-induced, AR-driven resistance mechanisms. Moreover, PDXOs can be leveraged for large-scale tumor-specific drug response profiling critical for accelerating therapeutic advances in CRPC.
Collapse
Affiliation(s)
- Annelies Van Hemelryk
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Ingrid Tomljanovic
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
- GenomeScan B.V., Plesmanlaan 1/D, 2333 BZ Leiden, The Netherlands
| | - Corrina M. A. de Ridder
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Debra C. Stuurman
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Wilma J. Teubel
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Sigrun Erkens-Schulze
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Esther I. Verhoef
- Department of Pathology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Sebastiaan Remmers
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Amrish J. Mahes
- GenomeScan B.V., Plesmanlaan 1/D, 2333 BZ Leiden, The Netherlands
| | - Geert J. L. H. van Leenders
- Department of Pathology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Martin E. van Royen
- Department of Pathology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Harmen J. G. van de Werken
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
- Cancer Computational Biology Center, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | | | - Guido W. Jenster
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Wytske M. van Weerden
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
- Correspondence: ; Tel.: +31-107-043-674
| |
Collapse
|
3
|
Van Hemelryk A, Mout L, Erkens-Schulze S, French PJ, van Weerden WM, van Royen ME. Modeling Prostate Cancer Treatment Responses in the Organoid Era: 3D Environment Impacts Drug Testing. Biomolecules 2021; 11:1572. [PMID: 34827570 PMCID: PMC8615701 DOI: 10.3390/biom11111572] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023] Open
Abstract
Organoid-based studies have revolutionized in vitro preclinical research and hold great promise for the cancer research field, including prostate cancer (PCa). However, experimental variability in organoid drug testing complicates reproducibility. For example, we observed PCa organoids to be less affected by cabazitaxel, abiraterone and enzalutamide as compared to corresponding single cells prior to organoid assembly. We hypothesized that three-dimensional (3D) organoid organization and the use of various 3D scaffolds impact treatment efficacy. Live-cell imaging of androgen-induced androgen receptor (AR) nuclear translocation and taxane-induced tubulin stabilization was used to investigate the impact of 3D scaffolds, spatial organoid distribution and organoid size on treatment effect. Scaffolds delayed AR translocation and tubulin stabilization, with Matrigel causing a more pronounced delay than synthetic hydrogel as well as incomplete tubulin stabilization. Drug effect was further attenuated the more centrally organoids were located in the scaffold dome. Moreover, cells in the organoid core revealed a delayed treatment effect compared to cells in the organoid periphery, underscoring the impact of organoid size. These findings indicate that analysis of organoid drug responses needs careful interpretation and requires dedicated read-outs with consideration of underlying technical aspects.
Collapse
Affiliation(s)
- Annelies Van Hemelryk
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (A.V.H.); (L.M.); (S.E.-S.)
| | - Lisanne Mout
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (A.V.H.); (L.M.); (S.E.-S.)
- Department of Medical Oncology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Sigrun Erkens-Schulze
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (A.V.H.); (L.M.); (S.E.-S.)
| | - Pim J. French
- Cancer Treatment Screening Facility, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands;
- Department of Neurology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Wytske M. van Weerden
- Department of Urology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (A.V.H.); (L.M.); (S.E.-S.)
| | - Martin E. van Royen
- Department of Pathology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands;
| |
Collapse
|
4
|
Nascimento-Gonçalves E, Seixas F, Ferreira R, Colaço B, Parada B, Oliveira PA. An overview of the latest in state-of-the-art murine models for prostate cancer. Expert Opin Drug Discov 2021; 16:1349-1364. [PMID: 34224283 DOI: 10.1080/17460441.2021.1943354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Prostate cancer (PCa) is a complex, heterogenous and multifocal disease, which is debilitating for patients and often fatal - due to bone metastasis and castration-resistant cancer. The use of murine models that mimic human disease has been crucial in the development of innovative therapies and for better understanding the mechanisms associated with initiation and progression of PCa. AREAS COVERED This review presents a critical analysis of murine models for the study of PCa, highlighting their strengths, weaknesses and applications. EXPERT OPINION In animal models, disease may not occur exactly as it does in humans, and sometimes the levels of efficacy that certain treatments obtain in animal models cannot be translated into clinical practice. To choose the most appropriate animal model for each research work, it is crucial to understand the anatomical and physiological differences between the mouse and the human prostate, while it is also important to identify biological similarities and differences between murine and human prostate tumors. Although significant progress has already been made, thanks to many years of research and study, the number of new challenges and obstacles to overcome mean there is a long and difficult road still to travel.
Collapse
Affiliation(s)
- Elisabete Nascimento-Gonçalves
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, UTAD, Vila Real, Portugal.,Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (Laqv-requimte),department of Chemistry, University of Aveiro (UA), Portugal
| | - Fernanda Seixas
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Animal and Veterinary Research Centre (CECAV), UTAD, Vila Real, Portugal
| | - Rita Ferreira
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (Laqv-requimte),department of Chemistry, University of Aveiro (UA), Portugal
| | - Bruno Colaço
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, UTAD, Vila Real, Portugal.,Department of Zootechnics, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Belmiro Parada
- Faculty of Medicine, University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (Icbr), Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Urology and Renal Transplantation Department, Coimbra University Hospital Centre (CHUC), Coimbra, Portugal
| | - Paula A Oliveira
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, UTAD, Vila Real, Portugal
| |
Collapse
|
5
|
Mout L, van Dessel LF, Kraan J, de Jong AC, Neves RPL, Erkens-Schulze S, Beaufort CM, Sieuwerts AM, van Riet J, Woo TLC, de Wit R, Sleijfer S, Hamberg P, Sandberg Y, Te Boekhorst PAW, van de Werken HJG, Martens JWM, Stoecklein NH, van Weerden WM, Lolkema MP. Generating human prostate cancer organoids from leukapheresis enriched circulating tumour cells. Eur J Cancer 2021; 150:179-189. [PMID: 33932725 DOI: 10.1016/j.ejca.2021.03.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/04/2021] [Accepted: 03/13/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Circulating tumour cell (CTC)-derived organoids have the potential to provide a powerful tool for personalised cancer therapy but are restrained by low CTC numbers provided by blood samples. Here, we used diagnostic leukapheresis (DLA) to enrich CTCs from patients with metastatic prostate cancer (mPCa) and explored whether organoids provide a platform for ex vivo treatment modelling. METHODS We prospectively screened 102 patients with mPCa and performed DLA in 40 patients with ≥5 CTCs/7.5 mL blood. We enriched CTCs from DLA using white blood cell (WBC) depletion alone or combined with EpCAM selection. The enriched CTC samples were cultured in 3D to obtain organoids and used for downstream analyses. RESULTS The DLA procedure resulted in a median yield of 5312 CTCs as compared with 22 CTCs in 7.5 mL of blood. Using WBC depletion, we recovered 46% of the CTCs, which reduced to 12% with subsequent EpCAM selection. From the isolated and enriched CTC samples, organoid expansion succeeded in 35%. Successful organoid cultures contained significantly higher CTC numbers at initiation. Moreover, we performed treatment modelling in one organoid cell line and identified substantial tumour heterogeneity in CTCs using single cell DNA sequencing. CONCLUSIONS DLA is an efficient method to enrich CTCs, although the modest success rate of culturing CTCs precludes large scale clinical application. Our data do suggest that DLA and subsequent processing provides a rich source of viable tumour cells. Therefore, DLA offers a promising alternative to biopsy procedures to obtain sufficient number of tumour cells to study sequential samples in patients with mPCa. TRIAL REGISTRATION NUMBER NL6019.
Collapse
Affiliation(s)
- Lisanne Mout
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Lisanne F van Dessel
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands; Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jaco Kraan
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands; Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Anouk C de Jong
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Rui P L Neves
- Department of General, Visceral and Pediatric Surgery, Heinrich-Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Sigrun Erkens-Schulze
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Corine M Beaufort
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands; Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Anieta M Sieuwerts
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Job van Riet
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands; Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| | - Thomas L C Woo
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ronald de Wit
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Stefan Sleijfer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Paul Hamberg
- Department of Internal Medicine, Franciscus Gasthuis & Vlietland, Rotterdam, the Netherlands
| | - Yorick Sandberg
- Department of Internal Medicine, Maasstad Hospital, Rotterdam, the Netherlands
| | - Peter A W Te Boekhorst
- Department of Hematology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Harmen J G van de Werken
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands; Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands; Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Nikolas H Stoecklein
- Department of General, Visceral and Pediatric Surgery, Heinrich-Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Wytske M van Weerden
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Martijn P Lolkema
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
6
|
Devlies W, Handle F, Devos G, Joniau S, Claessens F. Preclinical Models in Prostate Cancer: Resistance to AR Targeting Therapies in Prostate Cancer. Cancers (Basel) 2021; 13:915. [PMID: 33671614 PMCID: PMC7926818 DOI: 10.3390/cancers13040915] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer is an androgen-driven tumor. Different prostate cancer therapies consequently focus on blocking the androgen receptor pathway. Clinical studies reported tumor resistance mechanisms by reactivating and bypassing the androgen pathway. Preclinical models allowed the identification, confirmation, and thorough study of these pathways. This review looks into the current and future role of preclinical models to understand resistance to androgen receptor-targeted therapies. Increasing knowledge on this resistance will greatly improve insights into tumor pathophysiology and future treatment strategies in prostate cancer.
Collapse
Affiliation(s)
- Wout Devlies
- Laboratory of Molecular Endocrinology, KU Leuven, 3000 Leuven, Belgium;
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium; (G.D.); (S.J.)
| | - Florian Handle
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Gaëtan Devos
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium; (G.D.); (S.J.)
| | - Steven Joniau
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium; (G.D.); (S.J.)
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, KU Leuven, 3000 Leuven, Belgium;
| |
Collapse
|