1
|
Cao S, Li S, Zhang Z, Zhang L, Jiang L. Preparation and evaluation of novel Agriophyllum squarrosum starch nanoparticles for encapsulation of lycopene with enhanced retention rate and bioactivity during simulated in-vitro digestion. Int J Biol Macromol 2025; 288:138436. [PMID: 39647755 DOI: 10.1016/j.ijbiomac.2024.138436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
In this study, we developed novel Agriophyllum squarrosum starch nanoparticles (ASSNPs) for the encapsulation of lycopene (LYC), aiming to enhance its stability and bioactivity under adverse environmental and digestive conditions. The small-granule starch extracted from A. squarrosum seeds was processed using ionic liquids (ILs) as an effective "green" solvent, followed by a systematic treatment involving ultrasonication and pullulanase to prepare the ASSNPs. The resulting nanoparticles exhibited small size, narrow particle size distribution, negative zeta potential, and high encapsulation efficiency of up to 64.3 %. The structures of ASSNPs were characterized using Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and transmission electron microscopy. These analytical techniques confirmed the successful encapsulation of LYC and revealed increased intermolecular interactions. Stability and degradation experiments demonstrated that the retention of the LYC in the complexes was significantly higher than that of the unencapsulated LYC, highlighting the superior protective effects of ASSNPs on the storage and digestive stability of LYC. This research elucidated the structural features of the complex between ASSNPs and LYC, underscoring the potential of ASSNPs as a food-grade delivery system. This approach offers a sustainable method for enhancing the bioavailability of hydrophobic nutraceuticals.
Collapse
Affiliation(s)
- Shaopan Cao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Senqiao Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Zhidong Zhang
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Liling Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| |
Collapse
|
2
|
Huang S, Li Y, Sun S, Liu TC, Xiao Q, Zhang Y. Prolamin and prolamin-polysaccharide composite nanoparticles for oral drug and nutrient delivery systems: A review. Int J Biol Macromol 2024; 283:137567. [PMID: 39549796 DOI: 10.1016/j.ijbiomac.2024.137567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Prolamin-based nanoparticles, particularly those composed of prolamin-polysaccharide composites, have garnered significant interest as oral delivery systems in recent research. This review provides a thorough analysis of the current advancements in these composite nanoparticles with prolamins derived from various cereals, including maize, wheat, sorghum, and millet, with a focus on their applications in oral drug delivery. It discusses the mechanisms by which these composites enhance nanoparticle performance, especially in terms of stability. The review also explores the differences among various prolamins and clarifies the reasons for their performance characteristics as encapsulants for nanoparticles. Additionally, it offers an in-depth examination of various preparation methods for these composite nanoparticles, such as the traditional anti-solvent method, pH-driven method, and several innovative techniques. The study highlights the physicochemical and encapsulation properties of these composite nanoparticles and underscores their novel applications, which hold promise for future use in the food and pharmaceutical sectors. The findings aim to support the integration of prolamin-polysaccharide composites into these industries, ultimately accelerating the development of new applications for these nanoparticles.
Collapse
Affiliation(s)
- Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Yi Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Shengqian Sun
- Research Institute of Food and Agriculture Nutrition, Standard Investment (China) Ltd., No. 2138 Wanyuan Rd, Shanghai 201103, PR China
| | - Tristan C Liu
- Research Institute of Food and Agriculture Nutrition, Standard Investment (China) Ltd., No. 2138 Wanyuan Rd, Shanghai 201103, PR China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China.
| | - Yue Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310012, PR China.
| |
Collapse
|
3
|
Meng Q, Xu M, Chen L, Xu S, Li J, Li Y, Fan L, Shi G, Ding Z. Emulsion for stabilizing β-carotene and curcumin prepared directly using a continuous phase of polysaccharide-rich Schizophyllum commune fermentation broth. Int J Biol Macromol 2024; 254:127730. [PMID: 38287588 DOI: 10.1016/j.ijbiomac.2023.127730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/28/2023] [Accepted: 10/26/2023] [Indexed: 01/31/2024]
Abstract
In this study, we examined the effect of Schizophyllum commune fermentation broth (SCFB) rich in polysaccharides (SCFP) on the stability and bioaccessibility of β-carotene and curcumin. An SCFB-stabilized oil-in-water (o/w) emulsion (SCFBe) was prepared using SCFB as the continuous phase, and then evaluated for storage stability using an SCFP-based emulsion (SCFPe) as the control. The findings revealed that SCFBe is more stable at 60 °C than SCFPe, and stratification or droplet size varied at differing pH levels (3-9) and concentrations of Na+ (0.1-0.5 M) and Ca2+ (0.01-0.05 M). Since the absolute value of the zeta potential of SCFBe is much lower at 60 °C than that at 4 °C and 25 °C, a higher temperature (60 °C) may enhance the reactivity of polysaccharides and proteins in SCFB to improve the stability of SCFBe. Both the protective impact of SCFB on functional food molecules and their capacity to block lipid oxidation increased as polysaccharide content improved. The bioaccessibility of β-carotene after in vitro simulated gastrointestinal digestion is 11.18 %-12.28 %, whereas that of curcumin is 31.64 %-33.00 %. By fermenting edible and medicinal fungi in liquid, we created a unique and environmentally friendly approach for getting food-grade emulsifiers without extraction.
Collapse
Affiliation(s)
- Qi Meng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Mengmeng Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Sha Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Youran Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Wang Z, Hu X, Hamaker BR, Zhang T, Miao M. Development of phytoglycogen-derived core-shell-corona nanoparticles complexed with conjugated linoleic acid. Food Funct 2023; 14:6376-6384. [PMID: 37335179 DOI: 10.1039/d3fo00281k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Phytoglycogen-derived self-assembled nanoparticles (SMPG/CLA) and enzymatic-assembled nanoparticles (EMPG/CLA) were fabricated for delivery of conjugated linoleic acid (CLA). After measuring the loading rate and yield, the optimal ratio for both assembled host-guest complexes was 1 : 10, and the maximum loading rate and yield for EMPG/CLA were 1.6% and 88.1%, respectively, higher than those of SMPG/CLA. Structural characterization studies showed that the assembled inclusion complexes were successfully constructed, and had a specific spatial architecture with inner-core amorphous and external-shell crystalline parts. A higher protective effect against oxidation of EMPG/CLA was observed than that of SMPG/CLA, supporting efficient complexation for a higher order crystalline structure. After 1 h of gastrointestinal digestion under the simulated conditions, 58.7% of CLA was released from EMPG/CLA, which was lower than that released from SMPG/CLA (73.8%). These results indicated that in situ enzymatic-assembled phytoglycogen-derived nanoparticles might be a promising carrier platform for protection and targeted delivery of hydrophobic bioactive ingredients.
Collapse
Affiliation(s)
- Ziqi Wang
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
| | - Xiuting Hu
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
| | - Bruce R Hamaker
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
- Whistler Center for Carbohydrate Research, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA
| | - Tao Zhang
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
| | - Ming Miao
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
| |
Collapse
|
5
|
Fabrication and characterizations of cyclic amylopectin-based delivery system incorporated with β-carotene. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Wang C, Cui B, Sun Y, Wang C, Guo M. Preparation, stability, antioxidative property and in vitro release of cannabidiol (CBD) in zein-whey protein composite nanoparticles. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Shi Y, Ye F, Zhu Y, Miao M. Development of dendrimer-like glucan-stabilized Pickering emulsions incorporated with β-carotene. Food Chem 2022; 385:132626. [PMID: 35305435 DOI: 10.1016/j.foodchem.2022.132626] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/29/2022] [Accepted: 03/02/2022] [Indexed: 01/07/2023]
Abstract
The impact of sugary maize dendrimer-like glucan octenyl succinate (OSA-SMDG) on the storage stability and antioxidant activity of β-carotene (BC)-loaded emulsions as well as bioaccessibility were investigated. The encapsulation efficiency of β-carotene in emulsions containing 3% OSA-SMDG (3OSA-SMDG-BC) or 5% OSA-SMDG (5OSA-SMDG-BC) was 89.6% and 94.9%, respectively. The antioxidant activity of both emulsions was higher than that of pure β-carotene. During simulated digestion, the particle size of emulsions was immediately reduced, whereas zeta-potential was continuously increased in intestinal digestion. After 2 h digestion, the free fatty acids (FFA) release rate of 3OSA-SMDG-BC and 5OSA-SMDG-BC was significantly higher than that of blank emulsion. Bioaccessibility of β-carotene encapsulated in 3OSA-SMDG-BC and 5OSA-SMDG-BC was also significantly higher than that of blank emulsion. FFA release rate and β-carotene bioaccessibility of 5OSA-SMDG-BC were higher than that of 3OSA-SMDG-BC. These results demonstrated that OSA-SMDG could be used to fabricate food-grade O/W Pickering emulsion as a delivery system for bioactive compounds.
Collapse
Affiliation(s)
- Yaning Shi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Fan Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yingjie Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
8
|
Chen YY, Liu K, Zha XQ, Li QM, Pan LH, Luo JP. Encapsulation of luteolin using oxidized lotus root starch nanoparticles prepared by anti-solvent precipitation. Carbohydr Polym 2021; 273:118552. [PMID: 34560964 DOI: 10.1016/j.carbpol.2021.118552] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/20/2021] [Accepted: 08/06/2021] [Indexed: 11/19/2022]
Abstract
In this study, luteolin-oxidized lotus root starch (OLRS) nanoparticles (NPs) were developed to improve the stability and antioxidant activity of luteolin. Results showed that a stable luteolin-OLRS NPs was formed using luteolin and OLRS (oxidation degree, 15%) in the weight ratio of 3:1, as well as anti-solvent and solvent in the volume ratio of 10:1. Under this condition, the particle size, polydispersity index and zeta-potential of luteolin-OLRS NPs was 305 nm, 0.173 and -20.8 mV, respectively. The analysis of transmission electron microscopy, X-ray diffractometer and Fourier transform infrared spectroscopy demonstrated that the luteolin was successfully encapsulated in OLRS NPs, giving an encapsulation efficiency of 87.2%. The release characteristic and antioxidant activity of encapsulated luteolin were further investigated. Results exhibited that the OLRS NPs enabled luteolin to be stable in simulated gastric fluid and sustained release in simulated intestinal fluid, leading to the enhancement of antioxidant activity of luteolin.
Collapse
Affiliation(s)
- Ying-Ying Chen
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Kang Liu
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China.
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China.
| |
Collapse
|
9
|
Miao M, Janaswamy S. Editorial: Advances and Challenges of Carrier Architectures for Bioactive Delivery Systems. Front Chem 2021; 9:739946. [PMID: 34540808 PMCID: PMC8445328 DOI: 10.3389/fchem.2021.739946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 11/28/2022] Open
Affiliation(s)
- Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Srinivas Janaswamy
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Department of Dairy and Food Science, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
10
|
Bagheri AR, Li C, Zhang X, Zhou X, Aramesh N, Zhou H, Jia J. Recent advances in covalent organic frameworks for cancer diagnosis and therapy. Biomater Sci 2021; 9:5745-5761. [PMID: 34318797 DOI: 10.1039/d1bm00960e] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In recent years, the number of patients diagnosed with cancer has been soaring. Therefore, the design, development, and implementation of new approaches for the diagnosis and therapy of different types of cancers have attracted an increasing amount of attention. To date, different methods have been used for cancer diagnosis and therapy with main drawbacks in terms of severe side effects, e.g., damage to healthy cells, development of drug resistance and tumor recurrence. Therefore, there is an urgent need for the introduction and application of innovative methods. Covalent organic frameworks (COFs) are versatile materials with excellent properties in terms of biocompatibility, porous and crystalline structure, and easy functionalization. The porous structure and organic monomers in COFs allow them to load different therapeutic drugs and/or functional species efficiently. These promising properties make COFs ideal candidates for medical application, especially in cancer diagnosis and therapy. To date, many studies have focused on the design and synthesis of novel COFs while their application as diagnostic and therapeutic materials remains less understood. In this review, different synthesis and functionalization approaches of COFs were summarized. In particular, cancer diagnosis and therapy based on COFs were investigated and the advantages and limitations of each method were discussed. Most importantly, the mechanism for cancer therapy of COFs and fundamental challenges and perspectives for the application of COFs in cancer theranostics were assessed.
Collapse
Affiliation(s)
- Ahmad Reza Bagheri
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Effects of a High-Molecular-Weight Polysaccharides Isolated from Korean Persimmon on the Antioxidant, Anti-Inflammatory, and Antiwrinkle Activity. Molecules 2021; 26:molecules26061600. [PMID: 33805791 PMCID: PMC7998197 DOI: 10.3390/molecules26061600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/01/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Persimmon (Diospyros kaki), a familiar and widespread fruit worldwide, is known to exhibit several physiological effects because of the presence of pharmacologically active compounds called phytochemicals. However, its high-molecular-weight compounds, particularly polysaccharides, have not been extensively studied. In this study, D. kaki extract (DK) was fractionated into low- and high-molecular-weight fractions (DK-L and DK-H, respectively) through ethanol fractionation, and their effects on antioxidant, anti-inflammatory, and antiwrinkle activities were investigated by an in vitro system. DK-H contained significantly higher contents of neutral sugar, uronic acid, and polyphenols compared to DK and DK-L. Furthermore, DK-H exhibited significantly improved pharmacological activities, such as antioxidant, anti-inflammatory, and antiwrinkle properties, compared to those of DK and DK-L, demonstrating that DK-H may play an important role in mediating the beneficial effects of persimmon. Sugar composition analysis and molecular characterization indicated that DK-H consisted of a galacturonic acid (GalA)-rich polysaccharide with a molecular weight of >345 kDa that mainly comprised GalA and small amounts of neutral sugar and polyphenol residues. These results suggest that the bioactive fraction DK-H is likely to be a GalA-rich pectic polysaccharide containing a small number of polyphenol residues, which may be a novel candidate in the pharmaceutical and cosmeceutical industries.
Collapse
|
12
|
Usman M, Zhang C, Patil PJ, Mehmood A, Li X, Bilal M, Haider J, Ahmad S. Potential applications of hydrophobically modified inulin as an active ingredient in functional foods and drugs - A review. Carbohydr Polym 2021; 252:117176. [PMID: 33183623 PMCID: PMC7536552 DOI: 10.1016/j.carbpol.2020.117176] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 01/18/2023]
Abstract
Inulin is a substance found in a wide variety of fruits, vegetables, and herbs. Inulin was modified by physical and chemical means to improve functionality. HMI has been used in the stability of emulsions and suspensions. SCFAs inulin esters have transformed the gut microbiota and improved the bioavailability of SCFAs. HMI based bioconjugates, hydrogel, and nanomicelles were used as a controlled release of drugs and vaccines.
Over the past few years, hydrophobically modified inulin (HMI) has gained considerable attention due to its multitudinous features. The targeted release of drugs remains a subject of research interest. Moreover, it is important to explore the properties of short-chain fatty acids (SCFAs) inulin esters because they are less studied. Additionally, HMI has been used to stabilize various dispersion formulations, which have been observed to be safe because inulin is generally recognized as safe (GRAS). However, the results regarding HMI-based dispersion products are dispersed throughout the literature. This comprehensive review is discussed the possible limitations regarding SCFAs inulin esters, real food dispersion formulations, and HMI drugs. The results revealed that SCFAs inulin esters can regulate the human gut microbiota and increase the biological half-life of SCFAs in the human body. This comprehensive review discusses the versatility of HMI as a promising excipient for the production of hydrophobic drugs.
Collapse
Affiliation(s)
- Muhammad Usman
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, China.
| | - Chengnan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, China.
| | - Prasanna Jagannath Patil
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, China.
| | - Arshad Mehmood
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, China.
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, China.
| | - Muhammad Bilal
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Junaid Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Shabbir Ahmad
- Department of Food Science and Technology, MNS-University of Agriculture, Multan, Pakistan.
| |
Collapse
|
13
|
Dendrimer-like glucan nanoparticulate system improves the solubility and cellular antioxidant activity of coenzyme Q10. Food Chem 2020; 333:127510. [PMID: 32673958 DOI: 10.1016/j.foodchem.2020.127510] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/24/2020] [Accepted: 07/04/2020] [Indexed: 11/22/2022]
Abstract
Aqueous coenzyme Q10 (CoQ10) dispersions were prepared using sugary maize dendrimer-like glucan (SMDG) with solid-dispersion treatment. After measuring solubility, recovery rate and loading rate, the initial weight ratio of CoQ10:SMDG was optimized to be 1:27, with the solubility markedly increasing up 188.8-folds compared to pure CoQ10 solution. The structural characterizations of CoQ10-SMDG formulation showed crystal CoQ10 was entrapped in SMDG matrix for amorphous state, associated with the strong interactions with glucan chains. The antioxidant activity of CoQ10-SMDG was assessed via DPPH and FRAP assay. DPPH scavenging activity and FRAP value of it were as high as 95.1% and 0.87 mM, respectively. The cellular uptake of CoQ10 in CoQ10-SMDG group was significantly higher than that of natural CoQ10. CoQ10-SMDG also exhibited significant protective effects against cellular damage in H2O2-induced HaCaT cell model. The results indicated that dendrimer-like glucan is an excellent platform to encapsulate and improve biological activity of hydropholic compounds.
Collapse
|
14
|
Shi Y, Ye F, Lu K, Hui Q, Miao M. Characterizations and Bioavailability of Dendrimer-like Glucan Nanoparticulate System Containing Resveratrol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6420-6429. [PMID: 32396340 DOI: 10.1021/acs.jafc.0c01315] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, sugary maize dendrimer-like glucan (SMDG) was used as a delivery carrier for improving the bioavailability of resveratrol (RES). After optimization, the solubility of RES in RES-SMDG markedly increased to approximately 9.1 times that of the raw RES solution. The structural characterizations of the RES-SMDG formulation showed crystal RES was entrapped in the SMDG matrix for the amorphous state due to the strong intermolecular hydrogen bonds between the -OH of RES and glucan chains. In this case, antioxidant activity of RES-SMDG was markedly higher than that of the raw RES solution. In the Caco-2 cell model, the Papp value of RES in the RES-SMDG group was slightly higher than those of common permeable compounds, while the cellular uptake was significantly improved. RES-SMDG also exhibited protective effects against cellular damage under oxidative stress. The results indicated that SMDG is an attractive carrier to encapsulate and protect hydrophilic bioactive ingredients.
Collapse
Affiliation(s)
- Yaning Shi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Fan Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Keyu Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Qianru Hui
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
15
|
Liu Y, Lu K, Hu X, Jin Z, Miao M. Structure, properties and potential applications of phytoglycogen and waxy starch subjected to carboxymethylation. Carbohydr Polym 2020; 234:115908. [DOI: 10.1016/j.carbpol.2020.115908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/15/2022]
|
16
|
Chen C, Lu K, Hu X, Liu Y, Cui SW, Miao M. Biofabrication, structure and characterization of an amylopectin-based cyclic glucan. Food Funct 2020; 11:2543-2554. [PMID: 32150182 DOI: 10.1039/c9fo02999k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel amylopectin-based cyclic architecture was fabricated, arising from microbial branching enzyme treated waxy rice starch. The recombinant enzyme had a molecular weight of 72.0 kDa, and exhibited optimum activity at pH 7.0 and 75 °C. During the cyclization reaction catalyzed by a branching enzyme, the molecular weight of amylopectin rapidly decreased for the initial 2 h, and then very slowly decreased, tapering off at approximately 1.8 × 105 g mol-1 at 12 h. The number of A-chain fractions greatly increased, whereas the percentage of B-chain fractions decreased after enzymatic modification, accompanied by more α-1, 6 linkage formation. The core ring structure as a glucoamylase-resistant fraction had a number-average degree of polymerization of 21, which was constructed by 19 glucose units linked with, 2 glucosyl stubs at the O-6-position of the cyclic glucan through α-1,4 and α-1,6 linkages. Similar to large-ring cyclodextrin with equal glucose units, this cyclic glucan had a cavity geometry with two-circular loops and short stubs in perpendicular planes. Moreover, this cyclic glucan could complex with iodine for the host-guest formation. These results revealed the potential application of the amylopectin-based cyclic glucan as a good delivery system to encapsulate and protect bioactive ingredients.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
| | - Keyu Lu
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
| | - Xiuting Hu
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
| | - Yao Liu
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
| | - Steve W Cui
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China. and Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ont., Canada N1G 5C9
| | - Ming Miao
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
| |
Collapse
|
17
|
A review of green techniques for the synthesis of size-controlled starch-based nanoparticles and their applications as nanodelivery systems. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Sun L, Miao M. Dietary polyphenols modulate starch digestion and glycaemic level: a review. Crit Rev Food Sci Nutr 2019; 60:541-555. [PMID: 30799629 DOI: 10.1080/10408398.2018.1544883] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Polyphenols, as one group of secondary metabolite, are widely distributed in plants and have been reported to show various bioactivities in recent year. Starch digestion not only is related with food industrial applications such as brewing but also plays an important role in postprandial blood glucose level, and therefore insulin resistance. Many studies have shown that dietary phenolic extracts and pure polyphenols can retard starch digestion in vitro, and the retarding effect depends on the phenolic composition and molecular structure. Besides, dietary polyphenols have also been reported to alleviate elevation of blood glucose level after meal, indicating the inhibition of starch digestion in vivo. This review aims to analyze how dietary polyphenols affect starch digestion both in vitro and in vivo. We can conclude that the retarded starch digestion in vitro by polyphenols results from inhibition of key digestive enzymes, including α-amylase and α-glucosidase, as well as from interactions between polyphenols and starch. The alleviation of postprandial hyperglycemia by polyphenols might be caused by both the inhibited starch digestion in vivo and the influenced glucose transport. Therefore, phenolic extracts or pure polyphenols may be alternatives for preventing and treating type II diabetes disease.
Collapse
Affiliation(s)
- Lijun Sun
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, P.R. China
| | - Ming Miao
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| |
Collapse
|
19
|
McClements DJ. Recent developments in encapsulation and release of functional food ingredients: delivery by design. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.06.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Li J, Xu X, Chen Z, Wang T, Wang L, Zhong Q. Biological macromolecule delivery system fabricated using zein and gum arabic to control the release rate of encapsulated tocopherol during in vitro digestion. Food Res Int 2018; 114:251-257. [PMID: 30361023 DOI: 10.1016/j.foodres.2018.08.073] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/17/2018] [Accepted: 08/23/2018] [Indexed: 10/28/2022]
Abstract
Nanoparticles were fabricated by adsorbing gum arabic (GA) on zein nanoparticles by antisolvent precipitation. The most stable mass ratio of zein:GA was 1:1.5 with a stable zeta-potential (-32.8 mV) in a pH range of 3.0-9.0. The surface hydrophobicity of zein-GA nanoparticles indicated formation of a stable structure through electrostatic attraction at a pH range of 3.0-6.0 and hydrophobic interaction at pH 7.0-9.0. The FTIR spectrogram showed an additional role of hydrogen bonds to promote the adsorption of GA on zein nanoparticles. Tocopherol (TOC) was encapsulated within the prepared zein-GA nanoparticles with a high loading capacity. The presence of GA not only prevented the precipitation of zein nanoparticles but also controlled the release of TOC from zein-GA nanoparticles during in vitro gastrointestinal digestion. Zein-GA biopolymer nanoparticles can be stably fabricated in a wide pH range for applications in the food and pharmacy industries.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xueer Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengxing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| | - Tao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixing Zhong
- Department of Food Science and Technology, University of Tennessee, Knoxville, TN 37996-4539, USA
| |
Collapse
|
21
|
Ma D, Tu ZC, Wang H, Zhang Z, McClements DJ. Microgel-in-Microgel Biopolymer Delivery Systems: Controlled Digestion of Encapsulated Lipid Droplets under Simulated Gastrointestinal Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3930-3938. [PMID: 29595967 DOI: 10.1021/acs.jafc.8b00132] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Structural design principles are increasingly being used to develop colloidal delivery systems for bioactive agents. In this study, oil droplets were encapsulated within microgel-in-microgel systems. Initially, a nanoemulsion was formed that contained small whey protein-coated oil droplets ( d43 = 211 nm). These oil droplets were then loaded into either carrageenan-in-alginate (O/MC/MA) or alginate-in-carrageenan (O/MA/MC) microgels. A vibrating nozzle encapsulation unit was used to form the smaller inner microgels ( d43 = 170-324 μm), while a hand-held syringe was used to form the larger outer microgels ( d43 = 2200-3400 μm). Calcium alginate microgels (O/MA) were more stable to simulated gastrointestinal tract (GIT) conditions than potassium carrageenan microgels (O/MC), which was attributed to the stronger cross-links formed by divalent calcium ions than the monovalent potassium ions. As a result, the microgel-in-microgel systems had different gastrointestinal fates depending upon the nature of the external microgel phase; i.e., the O/MC/MA system was more resistant to rupture than the O/MA/MC system. The rate of lipid digestion under simulated small intestine conditions decreased in the following order: free oil droplets > O/MC > O/MA > O/MA/MC > O/MC/MA. This effect was attributed to differences in the integrity and dimensions of the microgels in the small intestine, because a hydrogel network surrounding the oil droplets inhibits lipid hydrolysis by lipase. The structured microgels developed in this study may have interesting applications for the protection or controlled release of bioactive agents.
Collapse
Affiliation(s)
- Da Ma
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , Jiangxi 330047 , People's Republic of China
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01060 , United States
| | - Zong-Cai Tu
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , Jiangxi 330047 , People's Republic of China
- College of Life Science , Jiangxi Normal University , Nanchang , Jiangxi 330022 , People's Republic of China
| | - Hui Wang
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Zipei Zhang
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01060 , United States
| | - David Julian McClements
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01060 , United States
| |
Collapse
|