1
|
Sun Y, Liu J, Pi X, Jiang S, Cheng J, Guo M. Comparison of lipidome profiles in human milk from Chinese Han and Korean ethnic groups based on high-throughput lipidomic techniques. J Dairy Sci 2024; 107:4205-4215. [PMID: 38428489 DOI: 10.3168/jds.2023-23610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 01/25/2024] [Indexed: 03/03/2024]
Abstract
The composition of milk lipids varies across different ethnic sources. The lipidome profiles of Chinese Han human milk (HHM) and Chinese Korean human milk (KHM) were investigated in this study. A total of 741 lipids were identified in HHM and KHM. Twenty-eight differentially expressed lipids (DEL) were screened between the 2 milk groups; among these, 6 triacylglycerols (TG), 13 diacylglycerols (DG), 7 free fatty acids (FFA), and 1 monoglyceride (MG) were upregulated in KHM. Carnitine (CAR) was upregulated in HHM. Most DEL showed a single peak distribution in both groups. The correlations, related pathways and diseases of these DEL were further analyzed. The results demonstrated that DG, MG, and FFA showed highly positive correlations with each other (r > 0.8). The most enriched Kyoto Encyclopedia of Genes and Genomes (https://www.kegg.jp/kegg/) and Human Metabolome Database (http://www.hmdb.ca) pathways were inositol phosphate metabolism, and α-linolenic acid and linolenic acid metabolism, respectively. Major depressive disorder-related FFA (20:5) and FFA (22:6) were more abundant in KHM, whereas HHM showed more obesity-related CAR. These data potentially provide lipidome information regarding human milk from different ethnicities in China.
Collapse
Affiliation(s)
- Yuxue Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Jiafei Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Xiaowen Pi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | | | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Mingruo Guo
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405.
| |
Collapse
|
2
|
Zhu L, Fang S, Zhang Y, Sun X, Yang P, Lu W, Yu L. Effects of sn-2 Palmitic Triacylglycerols and the Ratio of OPL to OPO in Human Milk Fat Substitute on Metabolic Regulation in Sprague-Dawley Rats. Nutrients 2024; 16:1299. [PMID: 38732546 PMCID: PMC11085268 DOI: 10.3390/nu16091299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
In this study, the influence of total sn-2 palmitic triacylglycerols (TAGs) and ratio of 1-oleoyl-2-palmitoyl-3-linoleoylglycerol (OPL) to 1,3-dioleoyl-2-palmitoylglycerol (OPO) in human milk fat substitute (HMFS) on the metabolic changes were investigated in Sprague-Dawley rats. Metabolomics and lipidomics profiling analysis indicated that increasing the total sn-2 palmitic TAGs and OPL to OPO ratio in HMFS could significantly influence glycine, serine and threonine metabolism, glycerophospholipid metabolism, glycerolipid metabolism, sphingolipid metabolism, bile acid biosynthesis, and taurine and hypotaurine metabolism pathways in rats after 4 weeks of feeding, which were mainly related to lipid, bile acid and energy metabolism. Meanwhile, the up-regulation of taurine, L-tryptophan, and L-cysteine, and down-regulations of lysoPC (18:0) and hypoxanthine would contribute to the reduction in inflammatory response and oxidative stress, and improvement of immunity function in rats. In addition, analysis of targeted biochemical factors also revealed that HMFS-fed rats had significantly increased levels of anti-inflammatory factor (IL-4), immunoglobulin A (IgA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-px), and decreased levels of pro-inflammatory factors (IL-6 and TNF-α) and malondialdehyde (MDA), compared with those of the control fat-fed rats. Collectively, these observations present new in vivo nutritional evidence for the metabolic regulatory effects of the TAG structure and composition of human milk fat substitutes on the host.
Collapse
Affiliation(s)
- Lin Zhu
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Z.); (S.F.); (X.S.); (P.Y.); (W.L.)
| | - Shuaizhen Fang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Z.); (S.F.); (X.S.); (P.Y.); (W.L.)
| | - Yaqiong Zhang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Z.); (S.F.); (X.S.); (P.Y.); (W.L.)
| | - Xiangjun Sun
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Z.); (S.F.); (X.S.); (P.Y.); (W.L.)
| | - Puyu Yang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Z.); (S.F.); (X.S.); (P.Y.); (W.L.)
| | - Weiying Lu
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (L.Z.); (S.F.); (X.S.); (P.Y.); (W.L.)
| | - Liangli Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|
3
|
Fan L, Wang X, Szeto IMY, Liu B, Sinclair AJ, Li D. Dietary intake of different ratios of ARA/DHA in early stages and its impact on infant development. Food Funct 2024; 15:3259-3273. [PMID: 38469864 DOI: 10.1039/d3fo04629j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Long-chain polyunsaturated fatty acids (LC-PUFAs), arachidonic acid (ARA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3) are essential in the development of infants. ARA and DHA from breast milk or infant formula are the main sources of access for infants to meet their physiological and metabolic needs. The ratio of ARA to DHA in breast milk varies among regions and different lactation stages. Different ratios of ARA and DHA mainly from algal oil, animal fat, fish oil, and microbial oil, are added to infant formula in different regions and infant age ranges. Supplementing with appropriate ratios of ARA and DHA during infancy promotes brain, neural, visual, and other development aspects. In this review, we first introduced the current intake status of ARA and DHA in different locations, lactation stages, and age ranges in breast milk and infant formula. Finally, we discussed the effect of different ratios of ARA and DHA on infant development. This review provided a comprehensive research basis for the nutritional research of infants who consume different ratios of ARA and DHA.
Collapse
Affiliation(s)
- Lijiao Fan
- Institute of Nutrition & Health, School of Public Health, Qingdao University, Qingdao 266071, China.
| | - Xincen Wang
- Institute of Nutrition & Health, School of Public Health, Qingdao University, Qingdao 266071, China.
| | | | - Biao Liu
- National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Andrew J Sinclair
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Monash University, Notting Hill, VIC 3168, Australia
- Faculty of Health, Deakin University, Burwood, VIC 3152, Australia
| | - Duo Li
- Institute of Nutrition & Health, School of Public Health, Qingdao University, Qingdao 266071, China.
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Monash University, Notting Hill, VIC 3168, Australia
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Liu B, Liang YH, He YZ, Ye W, Deng ZY, Li J, Guo S. Differences in fat digestion from milk of different Species: In vitro gastrointestinal digestion model for infants. Food Res Int 2023; 174:113571. [PMID: 37986442 DOI: 10.1016/j.foodres.2023.113571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
The differences in the milk fat digestion from goat milk (GM), camel milk (CM), bovine milk (BM), sheep milk (SM), mare milk (MM) and human milk (HM) using an in vitro gastrointestinal digestion model for simulated infants were investigated. The particle size distributions in goat and mare milk were similar to that of HM after digestion in the small intestine. During in vitro digestion, the zeta-potential change of MM was more consistent with that of HM. After 60 min of gastric digestion, the lipolysis degree (LD) of different milks were<2%, of which the highest LD was MM (1.84%), followed by HM (1.45%). At the end of intestinal digestion, the LD of HM was the highest, reaching 88.47%, and the LD of SM was similar to that of HM, reaching 83.92%, followed by GM (57.00%), BM (40.98%) and MM (39.37%), respectively, the LD of CM was only 29.99%, which was much lower than HM. The results of the glyceride composition hierarchical clustering analysis revealed that MM and HM were clustered into one category at the end of gastric and intestinal digestion. This study provides a scientific basis for the development of lipid ingredients in infant formula.
Collapse
Affiliation(s)
- Biao Liu
- College of Food Science and Nutritional Engineering, China agricultural University, 100083 Beijing, PR China
| | - Ye-Hui Liang
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, PR China
| | - Yang-Zheng He
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, PR China
| | - Wenhui Ye
- Inner Mongolia Yili Industrial Group Co., ltd, 010110 Hohhot, PR China
| | - Ze-Yuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, PR China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, PR China.
| | - Shuntang Guo
- College of Food Science and Nutritional Engineering, China agricultural University, 100083 Beijing, PR China.
| |
Collapse
|
5
|
Ma Q, Zhang X, Li X, Liu L, Liu S, Hao D, Bora AFM, Kouame KJEP, Xu Y, Liu W, Li J. Novel trends and challenges in fat modification of next-generation infant formula: Considering the structure of milk fat globules to improve lipid digestion and metabolism of infants. Food Res Int 2023; 174:113574. [PMID: 37986523 DOI: 10.1016/j.foodres.2023.113574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
Differences in the composition and structure of lipid droplets in infant formula (IF) and human milk (HM) can affect the fat digestion of infants, leading to high risk of metabolic diseases during later stages of growth. Recently, interest in simulating HM fat (HMF) has gradually increased due to its beneficial functions for infants. Much research focuses on the simulation of fatty acids and triacylglycerols. Enzymatic combined with new technologies such as carbodiimide coupling immobilization enzymes, solvent-free synthesis, and microbial fermentation can improve the yield of simulated HMF. Furthermore, fat modification in next-generation IF requires attention to the impact on the structure and function of milk fat globules (MFG). This review also summarizes the latest reports on MFG structure simulation, mainly related to the addition method and sequence of membrane components, and other milk processing steps. Although some of the simulated HMF technologies and products have been applied to currently commercially available IF, the cost is still high. Furthermore, understanding the fat decomposition of simulated HMF during digestion and assessing its nutritional effects on infants later in life is also a huge challenge. New process development and more clinical studies are needed to construct and evaluate simulated HMF in the future.
Collapse
Affiliation(s)
- Qian Ma
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Xiuxiu Zhang
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China.
| | - Lu Liu
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China.
| | - Shuming Liu
- Heilongjiang Beingmate Dairy Company Ltd, Suihua 151499, China
| | - Donghai Hao
- Heilongjiang Beingmate Dairy Company Ltd, Suihua 151499, China
| | - Awa Fanny Massounga Bora
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Kouadio Jean Eric-Parfait Kouame
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Yanling Xu
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Wenli Liu
- Heilongjiang Beingmate Dairy Company Ltd, Suihua 151499, China
| | - Jiajun Li
- Heilongjiang Yaolan Dairy Technology Stock Company Ltd, Harbin 150010, China
| |
Collapse
|
6
|
Shen J, Wu Y, Wei T, He Y, Liu X, Deng Z, Li J. The digestion and absorption characteristics of human milk phospholipid analogs: a combination study between in vitro and in vivo. Food Funct 2023; 14:10617-10627. [PMID: 37964622 DOI: 10.1039/d3fo02779a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Phospholipids play a crucial role in the growth and neurodevelopment of infants. Currently, soybean phospholipids (SPLs) are the common phospholipid component in most infant formulas (IFs), which, however, shows an obvious difference with the phospholipid (PL) composition of human milk fat. Therefore, in the present study, human milk phospholipid analogs (HMPAs) were prepared by mimicking the composition of PE, PC, PI, PS, and SM in breast milk phospholipids and the composition of the major fatty acids (C16:0, C18:0, C18:1, and C18:2), and their digestion and absorption characteristics were explored using in vitro and mice models. The prepared HMPA contained 26.48% PE, 24.64% PC, 36.19% SM, 6.35% PI, and 6.32% PS, with 40.51% C16:0, 17.02% C18:0, 29.19% C18:1, and 13.26% C18:2, showing different digestive properties relative to SPL. There was little effect on the physical and chemical properties of HMPA under in vitro gastric conditions. The hydrolysis degree, fatty acids release rate, and average particle size decreasing rate of HMPA was significantly higher than that of SPL during digestion in vitro intestine (P < 0.05), showing better digestive process relative to SPL. In terms of the mice model, HMPA had a higher hydrolysis degree in the intestinal tract. Based on the area under curve (AUC) analysis of serum fatty acids, it was found that despite HMPA being absorbed at a slower rate than SPL, it was absorbed more than SPL. In summary, the digestion and absorption of HMPA were preferred to SPL, and these obtained results might provide a theoretical basis for the development and utilization of HMPA in IF.
Collapse
Affiliation(s)
- Jiaxin Shen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Yanping Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Teng Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Yangzheng He
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Xiaoru Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China.
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China.
| |
Collapse
|
7
|
Liu Q, Qiao W, Liu Y, Liu Y, Zhao J, Fan X, Li Z, Hou J, Liu Y, Chen J, Yang K, Yu X, Lin L, Jin Y, Chen L. Effects of lipids from multiple sources on glyceride composition, concentration, and structure of infant formulas benchmarked to human milk. Heliyon 2023; 9:e21611. [PMID: 38027638 PMCID: PMC10654232 DOI: 10.1016/j.heliyon.2023.e21611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
The important parameters affecting the nutritional properties of lipids were analyzed and compared between human milk (HM), infant formulas (IFs), mammalian milk, and substitute fat, including molecular species, fatty acid composition, glyceride content, and important structural triacylglycerols (TAGs). The molecular species of triacylglycerols with functional fatty acids were significantly different between HM and IFs, and their contents in HM were significantly higher than those in IFs. Accordingly, the evaluation scores of fatty acid composition and glyceride content in IFs were less than 50 compared to HM. Although the introduction of vegetable oils effectively improved the unsaturation of IF lipid, the excessive addition of TAGs rich in oleic and linoleic acid resulted in an imbalance of TAG composition and structure. Only 36.84 % of IFs were supplemented with structured lipids, but those still lacked sn-2 palmitate TAGs. The adoption of multiple lipids and novel processing technologies is required for novel IFs to match the composition, content, positional structure and spherical membrane structure of HM as closely as possible.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Xiaofei Fan
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Ziqi Li
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Juncai Hou
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China
| | - Yanpin Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Jingyao Chen
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Kai Yang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Xiaowen Yu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Li Lin
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yue Jin
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Lijun Chen
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| |
Collapse
|
8
|
Zou X, Su H, Zhang F, Zhang H, Yeerbolati Y, Xu X, Chao Z, Zheng L, Jiang B. Bioimprinted lipase-catalyzed synthesis of medium- and long-chain structured lipids rich in docosahexaenoic acid for infant formula. Food Chem 2023; 424:136450. [PMID: 37247604 DOI: 10.1016/j.foodchem.2023.136450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 05/31/2023]
Abstract
Medium- and long-chain structured lipids (MLSLs) rich in docosahexaenoic acid (DHA) were obtained in shorter reaction time by acidolysis of single-cell oil (DHASCO) from Schizochytrium sp. with caprylic acid (CA) using a lipase bioimprinted with fatty acids as a catalyst. The conditions for preparation of the bioimprinted lipase for the acidolysis reaction were firstly optimized and the activity of the obtained lipase was 2.17 times higher than that of the non-bioimprinted. The bioimprinted lipase was then used as a catalyst and the reaction conditions were optimized. Under the optimal conditions, the equilibrium could be achieved in 4 h, and the total and sn-1,3 CA contents in the product were 29.18% and 42.34%, respectively, and the total and sn-2 DHA contents were 46.26% and 70.12%, respectively. Such MLSLs rich in sn-1,3 CA and sn-2 DHA are beneficial for DHA absorption, and thus have potential for use in infant formula.
Collapse
Affiliation(s)
- Xiaoqiang Zou
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| | - Heng Su
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| | - Fengcheng Zhang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Hongjiang Zhang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Yeliaman Yeerbolati
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Xiuli Xu
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Zhonghao Chao
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Lei Zheng
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Bangzhi Jiang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| |
Collapse
|
9
|
Luo G, Zhu Y, Ni D, Chen J, Zhang W, Mu W. Infant formulae - Key components, nutritional value, and new perspectives. Food Chem 2023; 424:136393. [PMID: 37210844 DOI: 10.1016/j.foodchem.2023.136393] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 05/23/2023]
Abstract
Breastfeeding is the most effective strategy for meeting the nutritional demands of infants, whilst infant formulae are manufactured foods that mimic human milk and can be safely used to replace breastfeeding. In this paper, the compositional differences between human milk and other mammalian milk are reviewed, and thus nutritional profiles and compositions of standard bovine milk-based formulae as well as special formulae are discussed. Differences between breast milk and other mammalian milk in composition and content affect their digestion and absorption in infants. Characteristics and mimicking of breast milk have been intensively studied with the objective of narrowing the gap between human milk and infant formulae. The functions of the key nutritional components in infant formulae are examined. This review detailed recent developments in the formulation of different types of special infant formulae and efforts for their humanization, and summarized safety and quality control of infant formulae.
Collapse
Affiliation(s)
- Guocong Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiajun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
10
|
Ding D, He X, Agarry IE, Wang Y, Zhou F, Li Y, Kan J, Cai T, Chen K. Profile of Human Milk Phospholipids at Different Lactation Stages with UPLC/Q-TOF-MS: Characterization, Distribution, and Differences. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6326-6337. [PMID: 37040528 DOI: 10.1021/acs.jafc.2c07512] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Human milk phospholipids are important for the regular growth and development of infants. Ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS) was employed to qualitatively and quantitatively analyze 277 phospholipid molecular species in 112 human milk samples to obtain a detailed profile of human milk phospholipids along the lactation stage. MS/MS fragmentation patterns of sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and phosphatidylserine were characterized in detail. Phosphatidylcholine is the most dominant group, followed by sphingomyelin. PC(18:0/18:2), SM(d18:1/24:1), PE(18:0/18:0), PS(18:0/20:4), and PI(18:0/18:2) showed the highest average concentration among all of the phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol molecular species, respectively. The fatty acids attached to the phospholipid molecules were mainly palmitic, stearic, oleic, and linoleic acids, and the plasmalogens decreased along the lactation stage. The increase of sphingomyelins and phosphatidylethanolamines and the decrease of phosphatidylcholines are the key changes from colostrum to transitional milk; the increase of lysophosphatidylcholines and lysophosphatidylethanolamines and the continuous decrease of phosphatidylcholines are the vital changes from transitional milk to mature milk.
Collapse
Affiliation(s)
- Desheng Ding
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Xiaoling He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Israel Emiezi Agarry
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, P. R. China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Yuankai Wang
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Fenglan Zhou
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Yunchang Li
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Jianquan Kan
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, P. R. China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Tian Cai
- School of Chemistry and Chemical Engineering, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, P. R. China
| | - Kewei Chen
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, P. R. China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| |
Collapse
|
11
|
Wu D, Zhang L, Zhang Y, Shi J, Tan CP, Zheng Z, Liu Y. Lipid Profiles of Human Milk and Infant Formulas: A Comparative Lipidomics Study. Foods 2023; 12:foods12030600. [PMID: 36766129 PMCID: PMC9914114 DOI: 10.3390/foods12030600] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Infant formulas (IFs) are prevalent alternatives for human milk (HM), although their comparative lipid profiles have not been fully investigated. We adopted lipidomics to analyze and compare in-depth the lipid patterns of HM and IFs. The results indicated that the distribution of fatty acids (FAs) and the structure of triacylglycerols varied substantially in the analyzed samples. A total number of 425 species were identified during the analysis. HM was abundant in triacylglycerols that contained unsaturated and long-chain FAs (>C13), while triacylglycerols in IFs were mainly comprised of saturated and medium-chain FAs (C8-C13). Higher levels of sphingomyelin were observed in HM. Furthermore, HM and IF1 contained 67 significantly differential lipids (SDLs), and 73 were identified between HM and IF2. These SDLs were closely associated with nine metabolic pathways, of which the most significant was the glycerophospholipid metabolism. The results shed light on the differences between the lipid profiles of human and infant formula milks, and provide support for designing Chinese infant formula.
Collapse
Affiliation(s)
- Danjie Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Le Zhang
- Department of Neonatology, The Affiliated Wuxi Children’s Hospital of Nanjing Medical University, Wuxi 214023, China
- Correspondence: (L.Z.); (Y.L.)
| | - Yan Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Serdang 43400, Malaysia
| | - Zhaojun Zheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- Correspondence: (L.Z.); (Y.L.)
| |
Collapse
|
12
|
Liu Y, Qiao W, Liu Y, Zhao J, Liu Q, Yang K, Zhang M, Wang Y, Liu Y, Chen L. Quantification of phospholipids and glycerides in human milk using ultra-performance liquid chromatography with quadrupole-time-of-flight mass spectrometry. Front Chem 2023; 10:1101557. [PMID: 36700070 PMCID: PMC9868747 DOI: 10.3389/fchem.2022.1101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Human milk lipids, which are an important source of energy and affect growth and development of infants, require a comprehensive method for its qualitative and quantitative analysis. This work describes a method for the analysis of phospholipids, glycerides, free fatty acids and gangliosides in human milk by ultra-performance liquid chromatography using a C18 column with quadrupole-time-of-flight mass spectrometry (Q-TOF-MS). The lipids were extracted by liquid-liquid extraction and phospholipids were separated by solid phase extraction (SPE). The chromatographic columns with two different specifications (4.6 mm × 150 mm, and 3 mm × 50 mm) were used to detect phospholipids and glycerides in human milk, respectively. The sphingolipids and glycerides were analyzed in positive ion mode, and the glycerophospholipids and free fatty acids were analyzed in negative ion mode. Both internal and external standards were used for absolute quantification in this experiment. 483 species of lipids, including phospholipids, glycerides, free fatty acids and gangliosides, in human milk were analyzed using UPLC-Q-TOF-MS with high sensitivity and good linearity, with coefficient of correlation above 0.99, the relative standard deviation of accuracy and precision less than 10%. The results in a large number of human milk samples showed that this method was suitable for qualitative and quantitative analysis of lipids in human milk, even for other mammalian milk and infant formulae.
Collapse
Affiliation(s)
- Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Yanpin Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Qian Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Kai Yang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Minghui Zhang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Yaling Wang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China
| | - Lijun Chen
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing, China,Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing, China,*Correspondence: Lijun Chen,
| |
Collapse
|
13
|
Profiling of phospholipid classes and molecular species in human milk, bovine milk, and goat milk by UHPLC-Q-TOF-MS. Food Res Int 2022; 161:111872. [DOI: 10.1016/j.foodres.2022.111872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022]
|
14
|
Ge L, Wu Y, Zou W, Mao X, Wang Y, Du J, Zhao H, Zhu C. Analysis of the trend of volatile compounds by HS-SPME-GC-MS and the main factors affecting the formation of rancid odor during the oxidation process of infant nutrition package. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3367-3378. [PMID: 35875207 PMCID: PMC9304473 DOI: 10.1007/s13197-021-05320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/27/2021] [Accepted: 11/04/2021] [Indexed: 06/15/2023]
Abstract
In this study, headspace solid-phase micro-extraction (HS-SPME) coupled with GC-MS was used to analyze the trend of volatile compounds in fresh and oxidative infant nutrition package. Among the volatile compounds, aldehydes and ketones, alcohols, lipids, cycloalkenes, alkanes, alkenes, aromatic hydrocarbons, oxygenated compound were identified. A total of 65 volatile compounds were detected in the fresh nutrition package, whereas 9 new volatile compounds were detected during the accelerated oxidation process, which was oxidized at 45 °C for 4 weeks. The main components of the rancid flavor formed and the relative content of volatile substances gradually changed during the accelerated oxidation process. The volatile substances hexanal, nonanal, and 2-pentylfuran substantially increased. Linalool, α-terpineol, d-limonene, and 1-methoxy-nonane presented an evidently downward trend. The relative content of the newly formed compound 3-hydroxy-2-methylpyran-4-one during the oxidation process was always large, its relative content initially increased, then decreased, and finally increased again. The formation of rancid flavor of the nutrient package was speculated to have been formed by the interaction of hexanal, nonanal, 2-pentylfuran, and 3-hydroxy-2-methylpyran-4-one.
Collapse
Affiliation(s)
- Liqin Ge
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047 Jiangxi China
| | - Yuqin Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047 Jiangxi China
| | - Wenhaotian Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047 Jiangxi China
| | - Xuejin Mao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047 Jiangxi China
| | - Yuanxing Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047 Jiangxi China
| | - Jinlin Du
- Ganzhou Quanbiao Biological Technology Co., Ltd, Ganzhou, 341100 Jiangxi China
| | - Haibin Zhao
- Ganzhou Quanbiao Biological Technology Co., Ltd, Ganzhou, 341100 Jiangxi China
| | - Chunyan Zhu
- Ganzhou Quanbiao Biological Technology Co., Ltd, Ganzhou, 341100 Jiangxi China
| |
Collapse
|
15
|
Sun Y, Ma S, Liu Y, Jia Z, Li X, Liu L, Ma Q, Jean Eric-parfait Kouame K, Li C, Leng Y, Jiang S. Changes in interfacial composition and structure of milk fat globules are crucial regulating lipid digestion in simulated in-vitro infant gastrointestinal digestion. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Liu Q, Zhao J, Liu Y, Qiao W, Jiang T, Liu Y, Yu X, Chen L. Advances in analysis, metabolism and mimicking of human milk lipids. Food Chem 2022; 393:133332. [PMID: 35661604 DOI: 10.1016/j.foodchem.2022.133332] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 12/17/2022]
Abstract
Human milk lipids differ from the milk lipids of other mammals in composition and positional distribution of fatty acids. Analysis and detection technology of lipids is key to understanding milk lipids, and thus the concentrations, compositions and distribution characteristics of milk lipids are discussed. Differences between human milk lipids and their substitutes in form, composition and structure affect their digestion, absorption and function in infants. Characteristics and mimicking of human milk lipids have been intensively studied with the objective of narrowing the gap between human milk and infant formulae. Based on the existing achievements, further progress may be made by improving detection techniques, deepening knowledge of metabolic pathways and perfecting fat substitutes. This review detailed the characteristics of human milk lipids and related detection technologies with a view towards providing a clear direction for research on mimicking human milk lipids in formulae to further improve infant nutrition.
Collapse
Affiliation(s)
- Qian Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Tiemin Jiang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health, Guilin University of Technology, Guilin 541006, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Xiaowen Yu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Lijun Chen
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China.
| |
Collapse
|
17
|
Garwolińska D, Młynarczyk M, Kot-Wasik A, Hewelt-Belka W. The Influence of Storage on Human Milk Lipidome Stability for Lipidomic Studies. J Proteome Res 2021; 21:438-446. [PMID: 34965729 PMCID: PMC8822481 DOI: 10.1021/acs.jproteome.1c00760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human milk (HM) lipidome stability during storage is crucial in lipidomic studies to avoid misinterpretations. Facing the lack of comprehensive work on the HM lipidome stability, we performed a study on a potential alteration in the lipid profiles of HM samples stored under different conditions. An untargeted LC-Q-TOF-MS-based approach was applied to study the influence of storage conditions as well as the interaction of the storage temperature and time on HM lipid profiles. The samples were stored for 4-84 days at temperatures in the range from 4 to -80 °C and also were exposed to up to three freeze-thaw cycles. The results showed that the storage at 4 °C for just 4 days as well as being subjected to three freeze-thaw cycles can lead to a change in the content of lipids. The observed differences in levels of some lipid species in samples stored at -20 °C in comparison to the concentration level of those lipids in samples stored at -80 °C were not statistically significant, and inter-individual variance regardless of sample storage condition was maintained. The storage of HM samples at -20 °C for up to 3 weeks and -80 °C for up to 12 weeks ensures sample lipidome stability.
Collapse
Affiliation(s)
- Dorota Garwolińska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Michał Młynarczyk
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Agata Kot-Wasik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Weronika Hewelt-Belka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
18
|
Pan Y, Xia Y, Yu X, Hussain M, Li X, Liu L, Wang L, Li C, Leng Y, Jiang S. Comparative Analysis of Lipid Digestion Characteristics in Human, Bovine, and Caprine Milk Based on Simulated In Vitro Infant Gastrointestinal Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10104-10113. [PMID: 34449210 DOI: 10.1021/acs.jafc.1c02345] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lipid digestion characteristics in human, bovine, and caprine milk were investigated using an infant in vitro digestion model. Our results suggested that particle size in bovine and caprine milk increased initially and then decreased over time, whereas the particle size in human milk continuously decreased. The lipolysis degree of human milk (86.8%) was higher than that in bovine (80.2%) and caprine (82.7%) milk (P < 0.05). Compared to human milk, bovine and caprine milk released higher unsaturated fatty acids and lower SFAs. In addition, 12 and 84 glyceride species were significantly different between bovine and human milk, during gastrointestinal digestion (P < 0.05). Another 13 and 92 glyceride species were found to be significantly different between caprine and human milk. A total of 30 and 31 lipids were screened as biomarkers to further clarify the differences related to lipid digestion properties of human, bovine, and caprine milk.
Collapse
Affiliation(s)
- Yue Pan
- Food College, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, 150030 Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, 150030 Harbin, China
| | - Yu Xia
- Food College, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, 150030 Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, 150030 Harbin, China
| | - Xiaoxue Yu
- Food College, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, 150030 Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, 150030 Harbin, China
| | - Muhammad Hussain
- Food College, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, 150030 Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, 150030 Harbin, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, 150030 Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, 150030 Harbin, China
| | - Lu Liu
- Food College, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, 150030 Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, 150030 Harbin, China
| | - Lina Wang
- Food College, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, 150030 Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, 150030 Harbin, China
| | - Chunmei Li
- Heilongjiang Institute of Green Food Science, 150028 Harbin, China
| | - Youbin Leng
- Heilongjiang Feihe Dairy Co., Ltd., 100015 Beijing, China
| | - Shilong Jiang
- Heilongjiang Feihe Dairy Co., Ltd., 100015 Beijing, China
| |
Collapse
|
19
|
Sari RN, Pan J, Zhang W, Li Y, Zhu H, Pang X, Zhang S, Jiang S, Lu J, Lv J. Comparative Proteomics of Human Milk From Eight Cities in China During Six Months of Lactation in the Chinese Human Milk Project Study. Front Nutr 2021; 8:682429. [PMID: 34458300 PMCID: PMC8387594 DOI: 10.3389/fnut.2021.682429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/14/2021] [Indexed: 12/23/2022] Open
Abstract
Human milk (HM) is the golden standard of infant nutrition that can protect immature body function and enhance nutrition metabolism to ensure infant growth. Region specificity and lactation period could change the protein composition in HM. In this research, proteomics analysis was used to compare proteomes across eight cities, namely Harbin, Lanzhou, Guangzhou, Chengdu, Jinhua, Weihai, Zhengzhou, and Beijing, which represented the northeast, northwest, southeast, southwest, east, and north and central regions of China,. Proteins varied significantly among the cities. These different proteins were mainly involved in the process of platelet degranulation, innate immune response, and triglyceride metabolic process, which might be due to different living environments. These differences also lead to variation in protection and fat metabolism from mothers to infants in different cities. Four proteins were expressed differently during 6 months of lactation, namely Dipeptidyl peptidase 1, Lysozyme C, Carbonic anhydrase 6, and Chordin-like protein 2. The changes in these proteins might be because of the change of growth needs of the infants. The findings from our results might help to improve the understanding of HM as well as to design infant formula.
Collapse
Affiliation(s)
- Ratna Nurmalita Sari
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, China
| | - Jiancun Pan
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., Beijing, China.,PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Beijing, China
| | - Wenyuan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, China
| | - Yuanyuan Li
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., Beijing, China.,PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Beijing, China
| | - Huiquan Zhu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, China
| | - Xiaoyang Pang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, China
| | - Shuwen Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, China
| | - Shilong Jiang
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., Beijing, China.,PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Beijing, China
| | - Jing Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, China.,School of Food and Health, Beijing Business and Technology University, Beijing, China
| | - Jiaping Lv
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, China
| |
Collapse
|
20
|
Investigation of alterations in phospholipids during the production chain of infant formulas via HILIC-QTOF-MS and multivariate data analysis. Food Chem 2021; 364:130414. [PMID: 34175632 DOI: 10.1016/j.foodchem.2021.130414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 11/20/2022]
Abstract
Phospholipids play a key role in infant nutrition and cognitive function. In this study, hydrophilic interaction liquid chromatography coupled to quadrupole time-of-flight mass spectrometry method was firstly developed to analyze the composition of phospholipids. Then we characterized and quantified phospholipids extracted from raw, pasteurized, homogenized, and spray-dried milk to investigate the effect of the technological process on the composition of the phospholipids. Results indicate that the composition of the phospholipids underwent minor changes after pasteurization, while the concentration of phospholipids was significantly affected by the spray-drying process, especially phosphatidylethanolamine and phosphatidylinositol. Multivariate data analysis further verified the results and indicated that phospholipids containing polyunsaturated fatty acids had undergone significant changes during the production chain, especially in spray-drying. This work reveals the changes of phospholipids composition during the production chain of infant formulas and serve as a reference for the subsequent optimization of infant formulas to meet nutritional need of infants.
Collapse
|
21
|
Hussain M, Li X, Wang L, Qayum A, Liu L, Zhang X, Hussain A, Koko M, Baigalmaa P. Recent Approaches and Methods for the Formulation of a Risk Free Infant Formula: Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1901113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Muhammad Hussain
- Department of Food Science, Food College, Northeast Agricultural University, Harbin, China
- Department of Food Science, Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xiaodong Li
- Department of Food Science, Food College, Northeast Agricultural University, Harbin, China
- Department of Food Science, Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Lina Wang
- Department of Food Science, Food College, Northeast Agricultural University, Harbin, China
- Department of Food Science, Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Abdul Qayum
- Department of Food Science, Food College, Northeast Agricultural University, Harbin, China
- Department of Food Science, Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Lu Liu
- Department of Food Science, Food College, Northeast Agricultural University, Harbin, China
- Department of Food Science, Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xiuxiu Zhang
- Department of Food Science, Food College, Northeast Agricultural University, Harbin, China
- Department of Food Science, Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Abid Hussain
- School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
| | - Marwa Koko
- Department of Food, Greases and Vegetable Protein Engineering, School of Food Sciences, Northeast Agriculture University Harbin, Harbin, China
| | - Purevsuren Baigalmaa
- Department of Food Science, Food College, Northeast Agricultural University, Harbin, China
- Department of Food Science, Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
22
|
Nguyen MTT, Kim J, Seo N, Lee AH, Kim YK, Jung JA, Li D, To XHM, Huynh KTN, Van Le T, Israr B, Nazir A, Seo JA, Lee D, An HJ, Kim J. Comprehensive analysis of fatty acids in human milk of four Asian countries. J Dairy Sci 2021; 104:6496-6507. [PMID: 33685684 DOI: 10.3168/jds.2020-18184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 11/18/2020] [Indexed: 01/25/2023]
Abstract
Human milk lipids provide not only energy but also indispensable bioactive components such as essential fatty acids. To establish the recommended daily intake value and guidelines for infant formula, a reference library of fatty acid composition has been generated from 4 Asian countries (South Korea, China, Vietnam, and Pakistan). Regardless of country, palmitic acid (C16:0), linoleic acid (C18:1), and linolenic acid (C18:2) were the 3 most abundant fatty acids in human milk and account for more than 75% of total fatty acids (total FA). However, there were several considerable differences between fatty acids, particularly n-3 and n-6 (omega-3 and omega-6) groups. Chinese mothers' milk had a high concentration of linoleic acid at 24.38 ± 10.02% of total FA, which may be due to maternal diet. Among the 4 countries, Pakistani mothers' milk contained a high amount of saturated fatty acid (56.83 ± 5.96% of total FA), and consequently, polyunsaturated fatty acids, including n-3 and n-6, were significantly lower than in other countries. It is noteworthy that docosahexaenoic acid (DHA) in Pakistani mothers' milk was 44.8 ± 33.3 mg/L, which is only 25 to 30% of the levels in the other 3 countries, suggesting the need for DHA supplementation for infants in Pakistan. Moreover, the ratio of n-6 to n-3 was also remarkably high in Pakistani mothers' milk (15.21 ± 4.96), being 1.4- to 1.7-fold higher than in other countries. The average DHA:ARA ratio in Asian human milk was 1.01 ± 0.79. Korean mothers' milk showed a high DHA:ARA ratio, with a value of 1.30 ± 0.98, but Pakistani mothers' milk had a significantly lower value (0.42 ± 0.12). The fatty acid compositions and anthropometric data of mother (body mass index, age) did not show any correlation. The obtained data might provide information about human milk compositions in the Asian region that could benefit from setting up recommended nutrient intake and infant formula for Asian babies.
Collapse
Affiliation(s)
- My Tuyen T Nguyen
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea; College of Agriculture, Can Tho University, Can Tho, 900000, Vietnam
| | - Jieun Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea
| | - Nari Seo
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - A Hyun Lee
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea
| | - Yong-Ki Kim
- Maeil Asia Human Milk Research Center, Maeil Dairies Co. Ltd., 63 Jinwiseo-ro, Jinwi-myeon, Pyeongtaek, Gyeonggi-do 17706, Korea
| | - Ji A Jung
- Maeil Asia Human Milk Research Center, Maeil Dairies Co. Ltd., 63 Jinwiseo-ro, Jinwi-myeon, Pyeongtaek, Gyeonggi-do 17706, Korea
| | - Dan Li
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Xuan Hong M To
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Khanh Trang N Huynh
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Thanh Van Le
- Faculty of Nursing and Medical Technology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Beenish Israr
- Faculty of Food, Nutrition, and Home Science, University of Agriculture, Faisalabad 38000, Pakistan
| | - Anum Nazir
- Faculty of Food, Nutrition, and Home Science, University of Agriculture, Faisalabad 38000, Pakistan
| | - Jung-A Seo
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Daum Lee
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Jaehan Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
23
|
Zou X, Zhang S, Cheng Y, Huang J, He X, Jiang X, Wen Y, Wu S, Zhang H. Lipase‐Catalyzed Interesterification of
Schizochytrium
sp. Oil and Medium‐Chain Triacylglycerols for Preparation of
DHA
‐Rich Medium and Long‐Chain Structured Lipids. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoqiang Zou
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Shiqun Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Yang Cheng
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Jianhua Huang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Xuechun He
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Xuan Jiang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Ye Wen
- Joint Laboratory of Functional Food for Healthy Body Fat Loss Chengdu Tianyi Cuisine Nutritious Food Co., Ltd 360 Tianhui Road, High‐tech Zone Chengdu Sichuan 641400 China
| | - Shibin Wu
- Joint Laboratory of Functional Food for Healthy Body Fat Loss Chengdu Tianyi Cuisine Nutritious Food Co., Ltd 360 Tianhui Road, High‐tech Zone Chengdu Sichuan 641400 China
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| |
Collapse
|
24
|
Zhao J, Liu Q, Liu Y, Qiao W, Yang K, Jiang T, Hou J, Zhou H, Zhao Y, Lin T, Li N, Chen L. Quantitative profiling of glycerides, glycerophosphatides and sphingolipids in Chinese human milk with ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry. Food Chem 2020; 346:128857. [PMID: 33373822 DOI: 10.1016/j.foodchem.2020.128857] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 01/23/2023]
Abstract
Human milk lipids are an important energy source and essential nutrients for the growth and development of infants. The UPLC/Q-TOF-MS was used to qualitatively and quantitatively analyze human milk lipids. Totally, 411 species of lipids were identified, in which the content of OPL was generally higher than that of OPO; SM (75.38 mg/L, 40.39%), PE (51.12 mg/L, 27.39%) and PC (40.10 mg/L, 21.49%) had the highest contents among polar lipids, mainly including SM42:2:2 (22.24 mg/L), PE36:2 (C18:0-C18:2, 21.39 mg/L) and PC36:2 (C18:0-C18:2, 19.80 mg/L). In human milk, TAG56:7 (137.14 mg/L), TAG56:8 (59.49 mg/L), TAG58:8 (65.90 mg/L) and TAG58:9 (49.99 mg/L) were the main sources of AA and DHA; PE was an important source of AA and DHA in polar lipids; and linoleic acyl in glycerides and phospholipids had higher contents than other polyunsaturated fatty acyls. These results provided the scientific basis for the simulation of human milk at molecular level.
Collapse
Affiliation(s)
- Junying Zhao
- National Engineering Center of Dairy for Maternal and Child Health, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China; Beijing Engineering Research Center of Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China
| | - Qian Liu
- National Engineering Center of Dairy for Maternal and Child Health, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China; Beijing Engineering Research Center of Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China
| | - Yan Liu
- National Engineering Center of Dairy for Maternal and Child Health, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China; Beijing Engineering Research Center of Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China
| | - Weicang Qiao
- National Engineering Center of Dairy for Maternal and Child Health, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China; Beijing Engineering Research Center of Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China
| | - Kai Yang
- National Engineering Center of Dairy for Maternal and Child Health, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China; Beijing Engineering Research Center of Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China
| | - Tiemin Jiang
- National Engineering Center of Dairy for Maternal and Child Health, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China; Beijing Engineering Research Center of Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China; College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, PR China
| | - Juncai Hou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Hao Zhou
- National Engineering Center of Dairy for Maternal and Child Health, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China; Beijing Engineering Research Center of Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China
| | - Yuyang Zhao
- National Engineering Center of Dairy for Maternal and Child Health, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China; Beijing Engineering Research Center of Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China
| | - Tie Lin
- National Engineering Center of Dairy for Maternal and Child Health, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China; Beijing Engineering Research Center of Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China
| | - Nan Li
- National Engineering Center of Dairy for Maternal and Child Health, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China; Beijing Engineering Research Center of Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China
| | - Lijun Chen
- National Engineering Center of Dairy for Maternal and Child Health, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China; Beijing Engineering Research Center of Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, PR China.
| |
Collapse
|
25
|
Sun H, Ren Q, Zhao X, Tian Y, Pan J, Wei Q, Li Y, Chen Y, Zhang H, Zhang W, Jiang S. Regional similarities and differences in mature human milk fatty acids in Chinese population: A systematic review. Prostaglandins Leukot Essent Fatty Acids 2020; 162:102184. [PMID: 33045533 DOI: 10.1016/j.plefa.2020.102184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 11/21/2022]
Abstract
Maternal factors such as the diet can impact human milk fatty acid profiles. We hypothesized that mature human milk fatty acid profiles differ among regions of China. To test our hypothesis, we conducted a systematic review to calculate regional average contents of fatty acids and the statistical significance of regional differences in fatty acids. We searched both Chinese and English literature databases and selected 21 articles, including 11 in Chinese and 10 in English. We categorized regions of China by 3 ways: 1) north vs. south; 2) inland vs. coastal; 3) socioeconomic development levels. The ratios of ΣSFAs:ΣMUFAs:ΣPUFAs were similar between regions and the average was 1:1:0.7. Contents of palmitic, oleic, and linoleic acids were also similar between regions and together they accounted for more than 70% of all fatty acids in mature human milk. Conversely, concentrations of ALA and DHA differed more than palmitic, oleic, and linoleic acids. We also found that it might be necessary to reduce maternal dietary contents of potentially harmful fatty acids such as erucic acid to minimize detrimental effects on infant health. To our knowledge, this study represents the first systematic review that quantitatively investigated the regional similarities and differences in mature human milk fatty acid contents and is therefore significant for academia and policy makers.
Collapse
Affiliation(s)
- Han Sun
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-12, 10A Jiuxianqiao Road, Chaoyang District, Beijing, 100015, China
| | - Qiqi Ren
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-12, 10A Jiuxianqiao Road, Chaoyang District, Beijing, 100015, China
| | - Xuejun Zhao
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-12, 10A Jiuxianqiao Road, Chaoyang District, Beijing, 100015, China
| | - Yueyue Tian
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-12, 10A Jiuxianqiao Road, Chaoyang District, Beijing, 100015, China
| | - Jiancun Pan
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-12, 10A Jiuxianqiao Road, Chaoyang District, Beijing, 100015, China
| | - Qiaosi Wei
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-12, 10A Jiuxianqiao Road, Chaoyang District, Beijing, 100015, China
| | - Yuanyuan Li
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-12, 10A Jiuxianqiao Road, Chaoyang District, Beijing, 100015, China
| | - Yong Chen
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-12, 10A Jiuxianqiao Road, Chaoyang District, Beijing, 100015, China
| | - Huaqin Zhang
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-12, 10A Jiuxianqiao Road, Chaoyang District, Beijing, 100015, China
| | - Wei Zhang
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-12, 10A Jiuxianqiao Road, Chaoyang District, Beijing, 100015, China.
| | - Shilong Jiang
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd., C-12, 10A Jiuxianqiao Road, Chaoyang District, Beijing, 100015, China.
| |
Collapse
|
26
|
Viriato RLS, Queirós MDS, Macedo GA, Ribeiro APB, Gigante ML. Design of new lipids from bovine milk fat for baby nutrition. Crit Rev Food Sci Nutr 2020; 62:145-159. [PMID: 32876475 DOI: 10.1080/10408398.2020.1813073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The lipid phase of infant formulas is generally composed of plant-based lipids structured with a high concentration of palmitic acid (C16:0) esterified at the sn-2 position of triacylglycerol since this structure favors the absorption and metabolism of fatty acids. Palm oil is commonly used to make up the lipid phase of infant formulas due to its high concentration of palmitic acid and solids profile and melting point similar to human milk fat. However, the addition of palm oil to infant formulas has been associated with the presence of 3-monochloropropane-1,2-diol (3-MCPD) esters, a group of glycerol-derived chemical contaminants (1,2,3-propanotriol), potentially toxic, formed during the refining process of vegetable oil. Bovine milk fat obtained from the complex biosynthesis in the mammary gland has potential as a technological alternative to replace palm oil and its fractions for the production of structured lipids to be used in infant formulas. Its application as a substitute is due to its composition and structure, which resembles breast milk fat, and essentially to the preferential distribution pattern of palmitic acids (C16:0) with approximately 85% distributed at the sn-1 and sn-2 position of triacylglycerol. This review will address the relationship between the chemical composition and structure of lipids in infant nutrition, as well as the potential of bovine milk fat as a basis for the production of structured lipids in substitution for the lipid phase of vegetable origin currently used in infant formulas.
Collapse
Affiliation(s)
- Rodolfo Lázaro Soares Viriato
- Department of Food Technology, School of Food Engineering, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Mayara de Souza Queirós
- Department of Food Technology, School of Food Engineering, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Gabriela Alves Macedo
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Ana Paula Badan Ribeiro
- Department of Food Technology, School of Food Engineering, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Mirna Lúcia Gigante
- Department of Food Technology, School of Food Engineering, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| |
Collapse
|
27
|
Pajewska-Szmyt M, Buszewski B, Gadzała-Kopciuch R. Supported ionic liquid adsorbent and ELSD–HPLC method as an alternative procedure for exogenous fatty acid analysis in breast milk. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Ogasawara S, Ogawa S, Yamamoto Y, Hara S. Enzymatic Preparation and Oxidative Stability of Human Milk Fat Substitute Containing Polyunsaturated Fatty Acid Located at sn-2 Position. J Oleo Sci 2020; 69:825-835. [PMID: 32641606 DOI: 10.5650/jos.ess19332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The development of human milk fat substitutes (HMFSs), rich in palmitic acid (16:0) at the sn-2 position of triacylglycerol (TAG) and rich in unsaturated fatty acids (FAs) (oleic acid, 18:1 and linoleic acid, 18:2) at the sn-1(3) positions, has gained popularity. In this study, HMFSs containing polyunsaturated fatty acids (PUFAs) predominantly at the sn-2 position were prepared, and their oxidation stabilities were compared. First, a non-PUFA-containing HMFS (NP-HMFS) was produced by enzymatic reactions using Novozyme® 435 and Lipozyme® RM-IM as the enzymes and lard as the raw material. Second, HMFSs, containing 10 % PUFA at the sn-2 or sn-1(3) position, were individually prepared by enzymatic reactions using lard and fish oil as raw materials. Here, sn-2-PUFA-monoacylglycerol (MAG) was extracted from the reaction solution using a mixture of hexane and ethanol/water (70:30, v/v) to produce high-purity sn-2-PUFA-MAG with 78.1 % yield. For the PUFA-containing HMFS substrates, comparable oxidation stability was confirmed by an auto-oxidation test. Finally, HMFSs containing 10 % or 2 % sn-1,3-18:1-sn-2-PUFA-TAG species were prepared by enzymatic reactions and subsequent physical blending. The oxidative stability of sn-1,3-18:1-sn-2-PUFA-HMFS was two-fold higher than that of 1/2/3-PUFA-HMFS in which each PUFA was located without stereospecific limitations in TAG. The removal of PUFA-TAG molecular species with higher concentrations of unsaturated units had a significant effect. In addition, the oxidation stability increased with the addition of tocopherol as an antioxidant. Thus, the combined use of two strategies, that is, the removal of PUFA-TAG molecular species with high concentrations of unsaturated units and the addition of antioxidants, would provide a PUFA-containing HMFS substrate with high oxidative stability.
Collapse
Affiliation(s)
- Shin Ogasawara
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University
| | - Shigesaburo Ogawa
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University
| | - Yukihiro Yamamoto
- Department of Life Sciences, Faculty of Science and Technology, Prefectural University of Hiroshima
| | - Setsuko Hara
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University
| |
Collapse
|
29
|
Hewelt-Belka W, Garwolińska D, Młynarczyk M, Kot-Wasik A. Comparative Lipidomic Study of Human Milk from Different Lactation Stages and Milk Formulas. Nutrients 2020; 12:E2165. [PMID: 32708300 PMCID: PMC7401268 DOI: 10.3390/nu12072165] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023] Open
Abstract
In this report, we present a detailed comparison of the lipid composition of human milk (HM) and formula milk (FM) targeting different lactation stages and infant age range. We studied HM samples collected from 26 Polish mothers from colostrum to 19 months of lactation, along with FM from seven brands available on the Polish market (infant formula, follow-on formula and growing-up formula). Lipid extracts were analysed using liquid chromatography coupled to high-resolution mass spectrometry (LC-Q-TOF-MS). We found that the lipid composition of FM deviates significantly from the HM lipid profile in terms of qualitative and quantitative differences. FM had contrasting lipid profiles mostly across brands and accordingly to the type of fat added but not specific to the target age range. The individual differences were dominant in HM; however, differences according to the lactation stage were also observed, especially between colostrum and HM collected in other lactation stages. Biologically and nutritionally important lipids, such as long-chain polyunsaturated fatty acids (LC-PUFAs) containing lipid species, sphingomyelines or ether analogues of glycerophosphoethanoloamines were detected in HM collected in all studied lactation stages. The observed differences concerned all the major HM lipid classes and highlight the importance of the detailed compositional studies of both HM and FM.
Collapse
Affiliation(s)
- Weronika Hewelt-Belka
- Department of Analytical Chemistry, Chemical Faculty, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (D.G.); (M.M.); (A.K.-W.)
| | | | | | | |
Collapse
|
30
|
Nuclear Magnetic Resonance Metabolomics Reveals Qualitative and Quantitative Differences in the Composition of Human Breast Milk and Milk Formulas. Nutrients 2020; 12:nu12040921. [PMID: 32230787 PMCID: PMC7230615 DOI: 10.3390/nu12040921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 01/21/2023] Open
Abstract
Commercial formula milk (FM) constitutes the best alternative to fulfill the nutritional requirements of infants when breastfeeding is precluded. Here, we present the comparative study of polar metabolite composition of human breast milk (HBM) and seven different brands of FM by nuclear magnetic resonance spectroscopy. The results of the multivariate data analysis exposed qualitative and quantitative differences between HBM and FM composition as well as within FM of various brands and in HBM itself (between individual mothers and lactation period). Several metabolites were found exclusively in HBM and FM. Statistically significant higher levels of isoleucine and methionine in their free form were detected in FM samples based on caprine milk, while FM samples based on bovine milk showed a higher level of glucose and galactose in comparison to HBM. The results suggest that the amelioration of FM formulation is imperative to better mimic the composition of minor nutrients in HBM.
Collapse
|
31
|
Castejón N, Señoráns FJ. Enzymatic modification to produce health-promoting lipids from fish oil, algae and other new omega-3 sources: A review. N Biotechnol 2020; 57:45-54. [PMID: 32224214 DOI: 10.1016/j.nbt.2020.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 01/23/2023]
Abstract
Lipases are a versatile class of enzymes that have aroused great interest in the food and pharmaceutical industries due to their ability to modify and synthesize new lipids for functional foods. Omega-3 polyunsaturated fatty acids (omega-3 PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have shown important biological functions promoting human health, especially in the development and maintenance of brain function and vision. Lipases allow selective production of functional lipids enriched in omega-3 PUFAs and are unique enzymatic tools to improve the natural composition of lipids and provide specific bioactivities. This review comprises recent research trends on the enzymatic production of bioactive, structured lipids with improved nutritional characteristics, using new enzymatic processing technologies in combination with novel raw materials, including microalgal lipids and new seed oils high in omega-3 fatty acids. An extensive number of lipase applications in the synthesis of health-promoting lipids enriched in omega-3 fatty acids by enzymatic modification is reviewed, considering the main advances in recent years for production of ethyl esters, 2-monoacylglycerols and structured triglycerides and phospholipids with omega-3 fatty acids, in order to achieve bioactive lipids as new foods and drugs.
Collapse
Affiliation(s)
- Natalia Castejón
- Healthy-Lipids Group, Sección Departamental de Ciencias de la Alimentación, Faculty of Sciences, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Francisco J Señoráns
- Healthy-Lipids Group, Sección Departamental de Ciencias de la Alimentación, Faculty of Sciences, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
32
|
Gabriel AA, Bayaga CLT, Magallanes EA, Aba RPM, Tanguilig KMN. Fates of pathogenic bacteria in time-temperature-abused and Holder-pasteurized human donor-, infant formula-, and full cream cow's milk. Food Microbiol 2020; 89:103450. [PMID: 32138997 DOI: 10.1016/j.fm.2020.103450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 11/19/2022]
Abstract
This study was conducted to address the dearth in works that simultaneously compare the growth and inactivation behaviors of selected pathogens in different milk products. In worst-case scenarios where hygienic practices are absent and heavy microbiological contaminations occur, Salmonella enterica, Escherichia coli O157:H7, Listeria monocytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus multiplied in all samples at room temperature (27 °C). Most organisms readily proliferated with growth lag (tlag) values ranging from 0.00 to 5.95 h. Growth rates (KG) ranged from 0.16 to 0.67 log CFU/h. Sanitary risk times (SRTs) for a 1-log population increase ranged from 1.85 to 6.27 h, while 3.69-12.55 h were the SRTs determined for 2-log population increase. Final populations (Popfin) ranged from 7.11 to 9.36 log CFU/mL. Inactivation in heavily contaminated milk during Holder pasteurization revealed biphasic inactivation behavior with total log reduction (TLR) after exposure to 62.5 °C for 30 min ranging from 1.91 (90.8%) to 6.00 (99.9999%). These results emphasize the importance food safety systems in the handling of milk and milk products during manufacture and preparation.
Collapse
Affiliation(s)
- Alonzo A Gabriel
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, College of Home Economics, Alonso Hall, A. Ma. Regidor Street, University of the Philippines Diliman, 1101, Quezon City, Philippines.
| | - Cecile Leah T Bayaga
- Breastmilk Research Laboratory, Department of Food Science and Nutrition, College of Home Economics, University of the Philippines Diliman, Philippines
| | - Eiric A Magallanes
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, College of Home Economics, Alonso Hall, A. Ma. Regidor Street, University of the Philippines Diliman, 1101, Quezon City, Philippines
| | - Richard Paolo M Aba
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, College of Home Economics, Alonso Hall, A. Ma. Regidor Street, University of the Philippines Diliman, 1101, Quezon City, Philippines
| | - Karen May N Tanguilig
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, College of Home Economics, Alonso Hall, A. Ma. Regidor Street, University of the Philippines Diliman, 1101, Quezon City, Philippines
| |
Collapse
|
33
|
Preparation of DHA-Rich Medium- and Long-Chain Triacylglycerols by Lipase-Catalyzed Acidolysis of Microbial Oil from Schizochytrium sp.with Medium-Chain Fatty Acids. Appl Biochem Biotechnol 2020; 191:1294-1314. [PMID: 32096059 DOI: 10.1007/s12010-020-03261-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/13/2020] [Indexed: 12/15/2022]
Abstract
DHA-rich medium- and long-chain triacylglycerols (MLCT) were produced by lipase-catalyzed acidolysis of microbial oil from Schizochytrium sp. with medium-chain fatty acids (MCFA). Four commercial lipases, i.e., NS40086, Novozym 435, Lipozyme RM IM, and Lipozyme TL IM were screened based on their activity and fatty acid specificity. The selected conditions for MLCT synthesis were Lipozyme RM IM as catalyst, reaction time 6 h, lipase load 8 wt%, substrate molar ratio (MCFA/microbial oil) 3:1, and temperature 55 °C. Under the selected conditions, the lipase could be reused successively for 17 cycles without significant loss of lipase activity. The obtained product contained 27.53% MCFA, 95.29% at sn-1,3 positions, and 44.70% DHA, 69.77% at sn-2 position. Fifty-nine types of triacylglycerols (TAG) were identified, in which 35 types of TAG contained MCFA, the content accounting for 55.35%. This product enriched with DHA at sn-2 position and MCFA at sn-1,3 positions can improve its digestion and absorption under an infant's digestive system, and thus has potential to be used in infant formula to increase the bioavailability of DHA.
Collapse
|
34
|
The Determinants of the Human Milk Metabolome and Its Role in Infant Health. Metabolites 2020; 10:metabo10020077. [PMID: 32093351 PMCID: PMC7074355 DOI: 10.3390/metabo10020077] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 01/07/2023] Open
Abstract
Human milk is needed for optimal growth as it satisfies both the nutritional and biological needs of an infant. The established relationship between breastfeeding and an infant’s health is attributable to the nutritional and non-nutritional, functional components of human milk including metabolites such as the lipids, amino acids, biogenic amines and carbohydrates. These components have diverse roles, including protecting the infant against infections and guiding the development of the infant’s immature immune system. In this review, we provide an in-depth and updated insight into the immune modulatory and anti-infective role of human milk metabolites and their effects on infant health and development. We also review the literature on potential determinants of the human milk metabolome, including maternal infectious diseases such as human immunodeficiency virus and mastitis.
Collapse
|
35
|
Garwolińska D, Namieśnik J, Kot-Wasik A, Hewelt-Belka W. Chemistry of Human Breast Milk-A Comprehensive Review of the Composition and Role of Milk Metabolites in Child Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11881-11896. [PMID: 30247884 DOI: 10.1021/acs.jafc.8b04031] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Early nutrition has an enormous influence on a child's physiological function, immune system maturation, and cognitive development. Human breast milk (HBM) is recognized as the gold standard for human infant nutrition. According to a WHO report, breastfeeding is considered as an unequaled way of providing ideal food to the infant, which is required for his healthy growth and development. HBM contains various macronutrients (carbohydrates, proteins, lipids, and vitamins) as well as numerous bioactive compounds and interactive elements (growth factors, hormones, cytokines, chemokines, and antimicrobial compounds. The aim of this review is to summarize and discuss the current knowledge about metabolites, which are the least understood components of HBM, and their potential role in infant development. We focus on small metabolites (<1500 Da) and characterize the chemical structure and biological function of polar metabolites such as human milk oligosaccharides, nonprotein molecules containing nitrogen (creatine, amino acids, nucleotides, polyamines), and nonpolar lipids. We believe that this manuscript will provide a comprehensive insight into a HBM metabolite composition, chemical structure, and their role in a child's early life nutrition.
Collapse
Affiliation(s)
- Dorota Garwolińska
- Department of Analytical Chemistry, Faculty of Chemistry , Gdańsk University of Technology , Gabriela Narutowicza 11/12 , 80-233 Gdańsk , Poland
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Faculty of Chemistry , Gdańsk University of Technology , Gabriela Narutowicza 11/12 , 80-233 Gdańsk , Poland
| | - Agata Kot-Wasik
- Department of Analytical Chemistry, Faculty of Chemistry , Gdańsk University of Technology , Gabriela Narutowicza 11/12 , 80-233 Gdańsk , Poland
| | - Weronika Hewelt-Belka
- Department of Analytical Chemistry, Faculty of Chemistry , Gdańsk University of Technology , Gabriela Narutowicza 11/12 , 80-233 Gdańsk , Poland
| |
Collapse
|
36
|
Cheong LZ, Jiang C, He X, Song S, Lai OM. Lipid Profiling, Particle Size Determination, and in Vitro Simulated Gastrointestinal Lipolysis of Mature Human Milk and Infant Formula. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12042-12050. [PMID: 30362342 DOI: 10.1021/acs.jafc.8b03998] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dairy technologists has attempted to produce "improved" infant formulas mimicking human milk by supplementation with bovine MFGM and/or phospholipids-enriched materials. The present study investigated and compared the lipid profile and particle sizes of mature human milk and infant formula fat globules (IF 1, IF 2, IF 3, and IF 4) and elucidated the relationship between physicochemical properties and in vitro simulated gastrointestinal lipolysis rate of the different milk samples. Despite having larger micron-sized fat globules, mature human milk demonstrated the highest gastrointestinal lipolysis rate with higher release of medium- and long-chain saturated fatty acids. In comparison, IF 3, which contained the lowest phospholipids content, demonstrated the lowest gastrointestinal lipolysis rate. Higher gastrointestinal lipolysis rate of mature human milk fat as compared to infant formula fats might be due to the presence of MFGM interfacial layer (phospholipids) surrounding the fat droplets which govern lipase activity on lipid droplets.
Collapse
Affiliation(s)
- Ling-Zhi Cheong
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences , Ningbo University , Ningbo 315211 , China
| | - Chenyu Jiang
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences , Ningbo University , Ningbo 315211 , China
| | - Xiaoqian He
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences , Ningbo University , Ningbo 315211 , China
| | - Shuang Song
- National Institute for Nutrition and Health , Chinese Center for Disease Control and Prevention , Beijing 100050 , China
| | | |
Collapse
|
37
|
Abstract
We report the fatty acid profile of raw milk and of the corresponding digested milk from different sources (human milk, formula milk and donkey, bovine, ovine and caprine milk) to gain information on the nutritional quality of different milk sources in infant nutrition.Short chain fatty acids (SC-FA) were higher in bovine and caprine milk, intermediate in ovine and donkey and lower in human and formula milk. Medium chain fatty acids (MC-FA) showed the highest values for bovine and caprine milk and the lowest for donkey and formula milk, whereas long chain fatty acids (LC-FA) were the highest in donkey and formula milk and intermediate in human milk.The percentage distribution of fatty acids liberated after in vitro digestion did not reflect the patterns found in the corresponding milk sources. In particular, MC free fatty acids (MC-FFA) showed the highest and the lowest values in donkey and in formula milk, LC-FFA showed the highest value in human milk. The total FFA was highest in human milk, lowest in formula milk and intermediate in donkey, bovine, ovine, and caprine milk.
Collapse
|
38
|
Liang L, Zhang X, Wang X, Jin Q, McClements DJ. Influence of Dairy Emulsifier Type and Lipid Droplet Size on Gastrointestinal Fate of Model Emulsions: In Vitro Digestion Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9761-9769. [PMID: 30173508 DOI: 10.1021/acs.jafc.8b02959] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Human breast milk is a natural emulsion containing relatively large triacylglycerol droplets coated by a distinct interfacial layer known as the milk fat globule membrane (MFGM). The unique properties of the MFGM impact the release of nutrients from breast milk in an infant's gastrointestinal tract (GIT), but the membrane architecture is susceptible to disruption by industrial processes. To formulate infant formula that simulates the gastrointestinal behavior of breast milk, food manufacturers require knowledge of the impact of the interfacial properties on the gastrointestinal fate of fat globules. In this study, a simulated GIT was utilized to monitor the gastrointestinal fate of emulsified corn oil with different dairy emulsifiers, including sodium caseinate, lactoferrin (LF), whey protein isolate (WPI), and milk phospholipids (MPL) isolated from MFGM. The influence of droplet size on the gastrointestinal fate of the MPL-stabilized emulsions was also examined. Our findings provide valuable information for the optimization of infant formula and dairy-based nutritional beverages.
Collapse
Affiliation(s)
- Li Liang
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food , Jiangnan University , Wuxi , Jiangsu 214122 , China
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Xiaoyun Zhang
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Xingguo Wang
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Qingzhe Jin
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - David Julian McClements
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
39
|
Jiang C, Ma B, Song S, Lai OM, Cheong LZ. Fingerprinting of Phospholipid Molecular Species from Human Milk and Infant Formula Using HILIC-ESI-IT-TOF-MS and Discriminatory Analysis by Principal Component Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7131-7138. [PMID: 29902005 DOI: 10.1021/acs.jafc.8b01393] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phospholipid composition in the milk fat globule membrane (MFGM) fluctuates during the entire lactation period in order to suit the growing needs of newborn infants. The present study elucidated and relatively quantified phospholipid molecular species extracted from human milk (HM), mature human milk (MHM), and infant formulas (with or without MFGM supplementation) using hydrophilic liquid chromatography-electrospray ionization-ion trap-time of flight-mass spectrometry (HILIC-ESI-IT-TOF-MS) system. Principal component analysis was used to clarify the differences between phospholipid composition in HM, MHM, and infant formulas. HM and MHM contained high concentrations of sphingomyeline (HM: 107.61 μg/mL, MHM: 227.18 μg/mL), phosphatidylcholine (HM: 59.96 μg/mL, MHM: 50.77 μg/mL), and phosphatidylethanolamine (PE) (HM: 25.24 μg/mL, MHM: 31.76 μg/mL). Significant concentrations (<300 ng/mL) of arachidonic, eicosapentanoic, and docosahexanoic acids were found to esterify to PE in HM and MHM. Meanwhile, all infant formulas were found to contain high concentrations of phosphatidic acids indicating the possibility of degradation of the fortified MFGM either during processing or storage of the infant formulas.
Collapse
Affiliation(s)
- Chenyu Jiang
- Department of Food Science and Engineering, School of Marine Science , Ningbo University , Ningbo 315211 , China
| | - Baokai Ma
- School of Life and Sciences , Shanghai University , Shanghai 200444 , China
| | - Shuang Song
- National Institute for Nutrition and Health , Chinese Center for Disease Control and Prevention , Beijing 100050 , China
| | - Oi-Ming Lai
- Department of Bioprocess Technology, Faculty of Biotechnology & Bimolecular Sciences , Universiti Putra Malaysia , 43400 UPM Serdang , Selangor Malaysia
- Institute of Bioscience , Universiti Putra Malaysia , 43400 UPM Serdang , Selangor Malaysia
| | - Ling-Zhi Cheong
- Department of Food Science and Engineering, School of Marine Science , Ningbo University , Ningbo 315211 , China
| |
Collapse
|