1
|
Pires RC, da Costa Calumby J, Rosim RE, Pires RD, Borowsky AM, Ali S, de Paiva EL, Silva R, Pimentel TC, da Cruz AG, de Oliveira CAF, Corassin CH. Evaluation of Ability of Inactivated Biomasses of Lacticaseibacillus rhamnosus and Saccharomyces cerevisiae to Adsorb Aflatoxin B 1 In Vitro. Foods 2024; 13:3299. [PMID: 39456361 PMCID: PMC11506918 DOI: 10.3390/foods13203299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Biological decontamination strategies using microorganisms to adsorb aflatoxins have shown promising results for reducing the dietary exposure to these contaminants. In this study, the ability of inactivated biomasses of Lacticaseibacillus rhamnosus (LRB) and Saccharomyces cerevisiae (SCB) incorporated alone or in combination into functional yogurts (FY) at 0.5-4.0% (w/w) to adsorb aflatoxin B1 (AFB1) was evaluated in vitro. Higher adsorption percentages (86.9-91.2%) were observed in FY containing 1.0% LR + SC or 2.0% SC (w/w). The survival of mouse embryonic fibroblasts increased after exposure to yogurts containing LC + SC at 1.0-4.0% (w/w). No significant differences were noted in the physicochemical and sensory characteristics between aflatoxin-free FY and control yogurts (no biomass) after 30 days of storage. The incorporation of combined LRB and SCB into yogurts as vehicles for these inactivated biomasses is a promising alternative for reducing the exposure to dietary AFB1. The results of this trial support further studies to develop practical applications aiming at the scalability of using the biomasses evaluated in functional foods to mitigate aflatoxin exposure.
Collapse
Affiliation(s)
- Rogério Cury Pires
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba 13418-900, SP, Brazil; (R.C.P.); (R.D.P.); (A.M.B.)
| | - Julia da Costa Calumby
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (J.d.C.C.); (R.E.R.); (S.A.); (E.L.d.P.); (C.H.C.)
| | - Roice Eliana Rosim
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (J.d.C.C.); (R.E.R.); (S.A.); (E.L.d.P.); (C.H.C.)
| | - Rogério D’Antonio Pires
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba 13418-900, SP, Brazil; (R.C.P.); (R.D.P.); (A.M.B.)
| | - Aline Moreira Borowsky
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba 13418-900, SP, Brazil; (R.C.P.); (R.D.P.); (A.M.B.)
| | - Sher Ali
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (J.d.C.C.); (R.E.R.); (S.A.); (E.L.d.P.); (C.H.C.)
| | - Esther Lima de Paiva
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (J.d.C.C.); (R.E.R.); (S.A.); (E.L.d.P.); (C.H.C.)
| | - Ramon Silva
- Instituto Federal do Paraná, R. Felipe Tequinha Street, 1400, Paranavaí 87703-536, PR, Brazil; (R.S.); (T.C.P.)
| | - Tatiana Colombo Pimentel
- Instituto Federal do Paraná, R. Felipe Tequinha Street, 1400, Paranavaí 87703-536, PR, Brazil; (R.S.); (T.C.P.)
| | - Adriano Gomes da Cruz
- Departamento de Alimentos, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, R. Sen. Furtado, 121/125, Rio de Janeiro 20270-021, RJ, Brazil;
| | - Carlos Augusto Fernandes de Oliveira
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (J.d.C.C.); (R.E.R.); (S.A.); (E.L.d.P.); (C.H.C.)
| | - Carlos Humberto Corassin
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (J.d.C.C.); (R.E.R.); (S.A.); (E.L.d.P.); (C.H.C.)
| |
Collapse
|
2
|
Furlong EB, Buffon JG, Cerqueira MB, Kupski L. Mitigation of Mycotoxins in Food-Is It Possible? Foods 2024; 13:1112. [PMID: 38611416 PMCID: PMC11011883 DOI: 10.3390/foods13071112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Among microorganisms found in food, fungi stand out because they are adaptable and competitive in a large range of water activities, temperatures, pHs, humidities and substrate types. Besides sporulating, some species are toxigenic and produce toxic metabolites, mycotoxins, under adverse biotic and abiotic variables. Microorganisms are inactivated along the food chain, but mycotoxins have stable structures and remain in ready-to-eat food. The most prevalent mycotoxins in food, which are aflatoxins, fumonisins, ochratoxin A, patulin, tenuazonic acid, trichothecenes and zearalenone, have maximum tolerable limits (MTLs) defined as ppb and ppt by official organizations. The chronic and acute toxicities of mycotoxins and their stability are different in a chemical family. This critical review aims to discuss promising scientific research that successfully mitigated levels of mycotoxins and focus the results of our research group on this issue. It highlights the application of natural antifungal compounds, combinations of management, processing parameters and emergent technologies, and their role in reducing the levels and bioaccessibility. Despite good crop management and processing practices, total decontamination is almost impossible. Experimental evidence has shown that exposure to mycotoxins may be mitigated. However, multidisciplinary efforts need to be made to improve the applicability of successful techniques in the food supply chain to avoid mycotoxins' impact on global food insecurity.
Collapse
Affiliation(s)
| | | | | | - Larine Kupski
- Laboratory of Mycotoxins and Food Science (LAMCA), School of Chemistry and Food, Federal University of Rio Grande, Av. Itália, km 8, s/n, Rio Grande 96203-900, Rio Grande do Sul, Brazil; (E.B.F.); (J.G.B.); (M.B.C.)
| |
Collapse
|
3
|
Krishnan SV, Nampoothiri KM, Suresh A, Linh NT, Balakumaran PA, Pócsi I, Pusztahelyi T. Fusarium biocontrol: antagonism and mycotoxin elimination by lactic acid bacteria. Front Microbiol 2024; 14:1260166. [PMID: 38235432 PMCID: PMC10791833 DOI: 10.3389/fmicb.2023.1260166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
Mycotoxins produced by Fusarium species are secondary metabolites with low molecular weight formed by filamentous fungi generally resistant to different environmental factors and, therefore, undergo slow degradation. Contamination by Fusarium mycotoxins in cereals and millets is the foremost quality challenge the food and feed industry faces across the globe. Several types of chemical preservatives are employed in the mitigation process of these mycotoxins, and they help in long-term storage; however, chemical preservatives can be used only to some extent, so the complete elimination of toxins from foods is still a herculean task. The growing demand for green-labeled food drives to evade the use of chemicals in the production processes is getting much demand. Thus, the biocontrol of food toxins is important in the developing food sector. Fusarium mycotoxins are world-spread contaminants naturally occurring in commodities, food, and feed. The major mycotoxins Fusarium species produce are deoxynivalenol, fumonisins, zearalenone, and T2/HT2 toxins. Lactic acid bacteria (LAB), generally regarded as safe (GRAS), is a well-explored bacterial community in food preparations and preservation for ages. Recent research suggests that LAB are the best choice for extenuating Fusarium mycotoxins. Apart from Fusarium mycotoxins, this review focuses on the latest studies on the mechanisms of how LAB effectively detoxify and remove these mycotoxins through their various bioactive molecules and background information of these molecules.
Collapse
Affiliation(s)
- S. Vipin Krishnan
- Microbial Processes and Technology Division (MPTD), CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
| | - K. Madhavan Nampoothiri
- Microbial Processes and Technology Division (MPTD), CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
| | - Anandhu Suresh
- Microbial Processes and Technology Division (MPTD), CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
| | - Nguyen Thuy Linh
- Central Laboratory of Agricultural and Food Products, FAFSEM, University of Debrecen, Debrecen, Hungary
| | - P. A. Balakumaran
- Microbial Processes and Technology Division (MPTD), CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, FAFSEM, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
4
|
You Y, Zhou Y, Duan X, Mao X, Li Y. Research progress on the application of different preservation methods for controlling fungi and toxins in fruit and vegetable. Crit Rev Food Sci Nutr 2023; 63:12441-12452. [PMID: 35866524 DOI: 10.1080/10408398.2022.2101982] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fruits and vegetables are susceptible to fungal infections during picking, transportation, storage and processing, which have a high potential to produce toxins. Fungi and toxins can cause acute or chronic poisoning after entering the body. In the field of fruit and vegetable preservation, technologies such as temperature control, modified atmosphere, irradiation, application of natural or chemical preservatives, and edible films are commonly used. In practical applications, according to the types, physiological differences and actual needs of fruits and vegetables, suitable preservation methods can be selected to achieve the effect of preservation and control of fungi and toxins. The starting point of fresh-keeping technology is to delay post-harvest senescence of fruits and vegetables, inhibit the respiratory intensity, and control the reproduction of microorganisms, which is important to control the reproduction of fungi and the production of toxins. From the three directions of physical, chemical and biological means, the article analyses and explores the effects of different external factors on the production of toxins and the effects of different preservation techniques on fungal growth and toxin production in fruits and vegetables, in order to provide new ideas for the preservation of fruits and vegetables and the control of harmful substances in food.
Collapse
Affiliation(s)
- Yanli You
- Yantai University, Yantai, Shandong, People's Republic of China
| | - Yunna Zhou
- Yantai University, Yantai, Shandong, People's Republic of China
| | - Xuewu Duan
- Department of South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Xin Mao
- Yantai University, Yantai, Shandong, People's Republic of China
| | - Yanshen Li
- Yantai University, Yantai, Shandong, People's Republic of China
| |
Collapse
|
5
|
Wang Y, Shang J, Cai M, Liu Y, Yang K. Detoxification of mycotoxins in agricultural products by non-thermal physical technologies: a review of the past five years. Crit Rev Food Sci Nutr 2023; 63:11668-11678. [PMID: 35791798 DOI: 10.1080/10408398.2022.2095554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mycotoxins produced by Aspergillus spp., Penicillium spp. and Fusarium spp. with small molecular weight and thermal stability, are highly toxic and carcinogenic secondary metabolites. Mycotoxins have caused widespread concern regarding food safety internationally because of their adverse effects on the health of humans and animals, and the major economic losses they cause. There is an urgent need to find ways to reduce or eliminate the impact of mycotoxins in food and feed without introducing new safety issues, or reducing nutritional quality. Non-thermal physical technology is the basis for new techniques to degrade mycotoxins, with great potential for practical detoxification applications in the food industry. Compared with conventional thermal treatments, non-thermal physical detoxification technologies are easier to apply and effective, with less adverse impact on the nutritional value of agricultural products. The advantages, limitations and development prospects of these new detoxification technologies are discussed. Further studies are recommended to standardize the treatment conditions for each detoxification technology, evaluate the safety of the degradation products, and to combine different detoxification technologies to achieve synergistic effects. This will facilitate realization of the great potential of the new technologies and the development of practical applications.
Collapse
Affiliation(s)
- Yan Wang
- College of Food science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang, P. R. China
| | - Jie Shang
- College of Food science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang, P. R. China
| | - Ming Cai
- College of Food science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang, P. R. China
| | - Yang Liu
- School of Food Science and Engineering, Foshan University/South China Food Safety Research Center, Foshan, Guangdong, P. R. China
| | - Kai Yang
- College of Food science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
6
|
Mukhtar K, Nabi BG, Ansar S, Bhat ZF, Aadil RM, Khaneghah AM. Mycotoxins and consumers' awareness: Recent progress and future challenges. Toxicon 2023:107227. [PMID: 37454753 DOI: 10.1016/j.toxicon.2023.107227] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
While food shortages have become an important challenge, providing safe food resources is a point of interest on a global scale. Mycotoxins are secondary metabolites that are formed through various fungi species. They are mainly spread through diets such as food or beverages. About one quarter of the world's food is spoiled with mycotoxins. As this problem is not resolved, it represents a significant threat to global food security. Besides the current concerns regarding the contamination of food items by these metabolites, the lack of knowledge by consumers and their possible growth and toxin production attracted considerable attention. While globalization provides a favorite condition for some countries, food security still is challenging for most countries. There are various approaches to reducing the mycotoxigenic fungi growth and formation of mycotoxins in food, include as physical, chemical, and biological processes. The current article will focus on collecting data regarding consumers' awareness of mycotoxins. Furthermore, a critical overview and comparison among different preventative approaches to reduce risk by consumers will be discussed. Finally, the current effect of mycotoxins on global trade, besides future challenges faced by mycotoxin contamination on food security, will be discussed briefly.
Collapse
Affiliation(s)
- Kinza Mukhtar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Brera Ghulam Nabi
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Sadia Ansar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | | | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland; Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan.
| |
Collapse
|
7
|
Lopes SJS, S Sant'Ana A, Freire L. Non-thermal emerging processing Technologies: Mitigation of microorganisms and mycotoxins, sensory and nutritional properties maintenance in clean label fruit juices. Food Res Int 2023; 168:112727. [PMID: 37120193 DOI: 10.1016/j.foodres.2023.112727] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/01/2023] [Accepted: 03/02/2023] [Indexed: 05/01/2023]
Abstract
The increase in the fruit juice consumption and the interest in clean label products boosted the development and evaluation of new processing technologies. The impact of some emerging non-thermal technologies in food safety and sensory properties has been evaluated. The main technologies applied in the studies are ultrasound, high pressure, supercritical carbon dioxide, ultraviolet, pulsed electric field, cold plasma, ozone and pulsed light. Since there is no single technique that presents high potential for all the evaluated requirements (food safety, sensory, nutritional and the feasibility of implementation in the industry), the search for new technologies to overcome the limitations is fundamental. The high pressure seems to be the most promising technology regarding all the aspects mentioned. Some of the outstanding results are 5 log reduction of E. coli, Listeria and Salmonella, 98.2% of polyphenol oxidase inactivation and 96% PME reduction. However its cost can be a limitation for industrial implementation. The combination of pulsed light and ultrasound could overcome this limitation and provide higher quality fruit juices. The combination was able to achieve 5.8-6.4 log cycles reduction of S. Cerevisiae, and pulsed light is able to obtain PME inactivation around 90%, 61.0 % more antioxidants, 38.8% more phenolics and 68.2% more vitamin C comparing to conventional processing, and similar sensory scores after 45 days at 4 °C comparing to fresh fruit juice. This review aims to update the information related to the application of non-thermal technologies in the fruit juice processing through systematic and updated data to assist in industrial implementation strategies.
Collapse
Affiliation(s)
- Simone J S Lopes
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Luísa Freire
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul. Campo Grande, Mato Grosso do Sul, Brazil.
| |
Collapse
|
8
|
Efremenko E, Senko O, Maslova O, Lyagin I, Aslanli A, Stepanov N. Destruction of Mycotoxins in Poultry Waste under Anaerobic Conditions within Methanogenesis Catalyzed by Artificial Microbial Consortia. Toxins (Basel) 2023; 15:205. [PMID: 36977096 PMCID: PMC10058804 DOI: 10.3390/toxins15030205] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
To reduce the toxicity of modern feeds polluted by mycotoxins, various sorbents are added to them when feeding animals. A part of the mycotoxins is excreted from the body of animals with these sorbents and remains in the manure. As a result, bulk animal wastes containing mixtures of mycotoxins are formed. It is known that it is partially possible to decrease the initial concentration of mycotoxins in the process of anaerobic digestion (AD) of contaminated methanogenic substrates. The aim of this review was to analyze the recent results in destruction of mycotoxins under the action of enzymes present in cells of anaerobic consortia catalyzing methanogenesis of wastes. The possible improvement of the functioning of the anaerobic artificial consortia during detoxification of mycotoxins in the bird droppings is discussed. Particular attention was paid to the possibility of effective functioning of microbial enzymes that catalyze the detoxification of mycotoxins, both at the stage of preparation of poultry manure for methanogenesis and directly in the anaerobic process itself. The sorbents with mycotoxins which appeared in the poultry wastes composed one of the topics of interest in this review. The preliminary alkaline treatment of poultry excreta before processing in AD was considered from the standpoint of effectively reducing the concentrations of mycotoxins in the waste.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
9
|
Stranska M, Prusova N, Behner A, Dzuman Z, Lazarek M, Tobolkova A, Chrpova J, Hajslova J. Influence of pulsed electric field treatment on the fate of Fusarium and Alternaria mycotoxins present in malting barley. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Exploring the impact of lactic acid bacteria on the biocontrol of toxigenic Fusarium spp. and their main mycotoxins. Int J Food Microbiol 2023; 387:110054. [PMID: 36525768 DOI: 10.1016/j.ijfoodmicro.2022.110054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/10/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
The occurrence of fungi and mycotoxins in foods is a serious global problem. Most of the regulated mycotoxins in food are produced by Fusarium spp. This work aimed to assess the antifungal activity of selected lactic acid bacteria (LAB) strains against the main toxigenic Fusarium spp. isolated from cereals. Various machine learning (ML) algorithms such as neural networks (NN), random forest (RF), extreme gradient boosted trees (XGBoost), and multiple linear regression (MLR), were applied to develop models able to predict the percentage of fungal growth inhibition caused by the LAB strains tested. In addition, the ability of the assayed LAB strains to reduce/inhibit the production of the main mycotoxins associated with these fungi was studied by UPLC-MS/MS. All assays were performed at 20, 25, and 30 °C in dual culture (LAB plus fungus) on MRS agar-cereal-based media. All factors and their interactions very significantly influenced the percentage of growth inhibition compared to controls. The efficacy of LAB strains was higher at 20 °C followed by 30 °C and 25 °C. Overall, the order of susceptibility of the fungi to LAB was F. oxysporum > F. poae = F. culmorum ≥ F. sporotrichioides > F. langsethiae > F. graminearum > F. subglutinans > F. verticillioides. In general, the most effective LAB was Leuconostoc mesenteroides ssp. mesenteroides (T3Y6b), and the least effective were Latilactobacillus sakei ssp. carnosus (T3MM1 and T3Y2). XGBoost and RF were the algorithms that produced the most accurate predicting models of fungal growth inhibition. Mycotoxin levels were usually lower when fungal growth decreased. In the cultures of F. langsethiae treated with LAB, T-2 and HT-2 toxins were not detected except in the treatments with Pediococcus pentosaceus (M9MM5b, S11sMM1, and S1M4). These three strains of P. pentosaceus, L. mesenteroides ssp. mesenteroides (T3Y6b) and L. mesenteroides ssp. dextranicum (T2MM3) inhibited fumonisin production in cultures of F. proliferatum and F. verticillioides. In F. culmorum cultures, zearalenone production was inhibited by all LAB strains, except L. sakei ssp. carnosus (T3MM1) and Companilactobacillus farciminis (T3Y6c), whereas deoxynivalenol and 3-acetyldeoxynivalenol were only detected in cultures of L. sakei ssp. carnosus (T3MM1). The results show that an appropriate selection and use of LAB strains can be one of the most impacting tools in the control of toxigenic Fusarium spp. and their mycotoxins in food and therefore one of the most promising strategies in terms of efficiency, positive impact on the environment, food safety, food security, and international economy.
Collapse
|
11
|
Urugo MM, Teka TA, Berihune RA, Teferi SL, Garbaba CA, Adebo JA, Woldemariam HW, Astatkie T. Novel non-thermal food processing techniques and their mechanism of action in mycotoxins decontamination of foods. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
12
|
Hamad GM, Mehany T, Simal-Gandara J, Abou-Alella S, Esua OJ, Abdel-Wahhab MA, Hafez EE. A review of recent innovative strategies for controlling mycotoxins in foods. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109350] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Wei Q, Mei J, Xie J. Application of electron beam irradiation as a non-thermal technology in seafood preservation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Abou Dib A, Assaf JC, El Khoury A, El Khatib S, Koubaa M, Louka N. Single, Subsequent, or Simultaneous Treatments to Mitigate Mycotoxins in Solid Foods and Feeds: A Critical Review. Foods 2022; 11:3304. [PMCID: PMC9601460 DOI: 10.3390/foods11203304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mycotoxins in solid foods and feeds jeopardize the public health of humans and animals and cause food security issues. The inefficacy of most preventive measures to control the production of fungi in foods and feeds during the pre-harvest and post-harvest stages incited interest in the mitigation of these mycotoxins that can be conducted by the application of various chemical, physical, and/or biological treatments. These treatments are implemented separately or through a combination of two or more treatments simultaneously or subsequently. The reduction rates of the methods differ greatly, as do their effect on the organoleptic attributes, nutritional quality, and the environment. This critical review aims at summarizing the latest studies related to the mitigation of mycotoxins in solid foods and feeds. It discusses and evaluates the single and combined mycotoxin reduction treatments, compares their efficiency, elaborates on their advantages and disadvantages, and sheds light on the treated foods or feeds, as well as on their environmental impact.
Collapse
Affiliation(s)
- Alaa Abou Dib
- Centre d’Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculté des Sciences, Campus des Sciences et Technologies, Université Saint-Joseph de Beyrouth, Mar Roukos, Matn 1104-2020, Lebanon
- Department of Food Sciences and Technology, Facuty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, Bekaa 1108, Lebanon
| | - Jean Claude Assaf
- Centre d’Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculté des Sciences, Campus des Sciences et Technologies, Université Saint-Joseph de Beyrouth, Mar Roukos, Matn 1104-2020, Lebanon
| | - André El Khoury
- Centre d’Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculté des Sciences, Campus des Sciences et Technologies, Université Saint-Joseph de Beyrouth, Mar Roukos, Matn 1104-2020, Lebanon
- Correspondence: ; Tel.: +9611421389
| | - Sami El Khatib
- Department of Food Sciences and Technology, Facuty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, Bekaa 1108, Lebanon
| | - Mohamed Koubaa
- TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, Université de Technologie de Compiègne, ESCOM—CS 60319, CEDEX, 60203 Compiègne, France
| | - Nicolas Louka
- Centre d’Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculté des Sciences, Campus des Sciences et Technologies, Université Saint-Joseph de Beyrouth, Mar Roukos, Matn 1104-2020, Lebanon
| |
Collapse
|
15
|
Zhou H, Sun F, Lin H, Fan Y, Wang C, Yu D, Liu N, Wu A. Food bioactive compounds with prevention functionalities against fungi and mycotoxins: developments and challenges. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Smaoui S, Agriopoulou S, D'Amore T, Tavares L, Mousavi Khaneghah A. The control of Fusarium growth and decontamination of produced mycotoxins by lactic acid bacteria. Crit Rev Food Sci Nutr 2022; 63:11125-11152. [PMID: 35708071 DOI: 10.1080/10408398.2022.2087594] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Global crop and food contamination with mycotoxins are one of the primary worldwide concerns, while there are several restrictions regarding approaching conventional physical and chemical mycotoxins decontamination methods due to nutrition loss, sensory attribute reduction in foods, chemical residual, inconvenient operation, high cost of equipment, and high energy consumption of some methods. In this regard, the overarching challenges of mycotoxin contamination in food and food crops require the development of biological decontamination strategies. Using certain lactic acid bacteria (LAB) as generally recognized safe (GRAS) compounds is one of the most effective alternatives due to their potential to release antifungal metabolites against various fungal factors species. This review highlights the potential applications of LAB as biodetoxificant agents and summarizes their decontamination activities against Fusarium growth and Fusarium mycotoxins released into food/feed. Firstly, the occurrence of Fusarium and the instrumental and bioanalytical methods for the analysis of mycotoxins were in-depth discussed. Upgraded knowledge on the biosynthesis pathway of mycotoxins produced by Fusarium offers new insightful ideas clarifying the function of these secondary metabolites. Moreover, the characterization of LAB metabolites and their impact on the decontamination of the mycotoxin from Fusarium, besides the main mechanisms of mycotoxin decontamination, are covered. While the thematic growth inhibition of Fusarium and decontamination of their mycotoxin by LAB is very complex, approaching certain lactic acid bacteria (LAB) is worth deeper investigations.
Collapse
Affiliation(s)
- Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Sfax, Tunisia
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, Kalamata, Greece
| | - Teresa D'Amore
- Chemistry Department, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZSPB), Foggia, Italy
| | - Loleny Tavares
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, CEP, Brazil
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
17
|
Zearalenone Degradation by Dielectric Barrier Discharge Cold Plasma: The Kinetics and Mechanism. Foods 2022; 11:foods11101494. [PMID: 35627062 PMCID: PMC9141501 DOI: 10.3390/foods11101494] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, dielectric barrier discharge (DBD) cold plasma was used to degrade zearalenone and the efficiency of degradation were evaluated. In addition, the degradation kinetics and possible pathway of degradation were investigated. The results showed that zearalenone degradation percentage increased with increasing voltage and time. When it was treated at 50 KV for 120 s, the degradation percentage could reach 98.28%. Kinetics analysis showed that the degradation process followed a first-order reaction, which fitted the exponential function model best (R² = 0.987). Meanwhile, liquid chromatographywith quadrupole time-of-flight mass spectrometry (Q-TOF LC/MS) was used to analyze the degradation products, one major compound was identified. In this study, the reactive species generated in cold plasma was analyzed by Optical Emission Spectroscopy (OES) and the free radicals were detected by Electron Spin Resonance (ESR). This study could provide a theoretical basis for the degradation of zearalenone to a certain extent.
Collapse
|
18
|
Ghadaksaz A, Nodoushan SM, Sedighian H, Behzadi E, Fooladi AAI. Evaluation of the Role of Probiotics As a New Strategy to Eliminate Microbial Toxins: a Review. Probiotics Antimicrob Proteins 2022; 14:224-237. [PMID: 35031968 DOI: 10.1007/s12602-021-09893-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 01/17/2023]
Abstract
Probiotics are living microorganisms that have favorable effects on human and animal health. The most usual types of microorganisms recruited as probiotics are lactic acid bacteria (LAB) and bifidobacteria. To date, numerous utilizations of probiotics have been reported. In this paper, it is suggested that probiotic bacteria can be recruited to remove and degrade different types of toxins such as mycotoxins and algal toxins that damage host tissues and the immune system causing local and systemic infections. These microorganisms can remove toxins by disrupting, changing the permeability of the plasma membrane, producing metabolites, inhibiting the protein translation, hindering the binding to GTP binding proteins to GM1 receptors, or by preventing the interaction between toxins and adhesions. Here, we intend to review the mechanisms that probiotic bacteria use to eliminate and degrade microbial toxins.
Collapse
Affiliation(s)
- Abdolamir Ghadaksaz
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Somayeh Mousavi Nodoushan
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Vanak Sq. Molasadra St, Tehran, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Vanak Sq. Molasadra St, Tehran, Iran
| | - Elham Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-E-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Vanak Sq. Molasadra St, Tehran, Iran.
| |
Collapse
|
19
|
Khaneghah AM. Editorial overview: Mycotoxins in food products: current challenges and perspectives. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Piotrowska M. Microbiological Decontamination of Mycotoxins: Opportunities and Limitations. Toxins (Basel) 2021; 13:toxins13110819. [PMID: 34822603 PMCID: PMC8619243 DOI: 10.3390/toxins13110819] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
The contamination of food and feeds with mycotoxins poses a global health risk to humans and animals, with major economic consequences. Good agricultural and manufacturing practices can help control mycotoxin contamination. Since these actions are not always effective, several methods of decontamination have also been developed, including physical, chemical, and biological methods. Biological decontamination using microorganisms has revealed new opportunities. However, these biological methods require legal regulations and more research before they can be used in food production. Currently, only selected biological methods are acceptable for the decontamination of feed. This review discusses the literature on the use of microorganisms to remove mycotoxins and presents their possible mechanisms of action. Special attention is given to Saccharomyces cerevisiae yeast and lactic acid bacteria, and the use of yeast cell wall derivatives.
Collapse
Affiliation(s)
- Małgorzata Piotrowska
- Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, 90-530 Lodz, Poland
| |
Collapse
|
21
|
Fakhri Y, Sarafraz M, Nematollahi A, Ranaei V, Soleimani-Ahmadi M, Thai VN, Mousavi Khaneghah A. A global systematic review and meta-analysis of concentration and prevalence of mycotoxins in birds' egg. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59542-59550. [PMID: 34505242 DOI: 10.1007/s11356-021-16136-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
In the current study, the concentration and prevalence of birds' egg's mycotoxins among 11 articles (66 studies) based on countries, part of eggs, and type of mycotoxins subgroups were meta-analyses using a random-effect model. The order of mycotoxin according to concentration of mycotoxin was Deoxynivalenol (20.083 μg/kg) > Zearalenone (2.065 μg/kg) > Enniatin (1.120 μg/kg) > Total aflatoxin (0.371 μg/kg) > Beauvericin (0.223 μg/kg) > Ochratoxins (0.087 μg/kg) > Citrinin (0.010 μg/kg). Further, the mycotoxins' concentration in the yolk part (2.070 μg/kg) was higher than the mixed eggs (0.283 μg/kg). The rank order of mycotoxin based on country was China (14.990 μg/kg) > Cameroon (7.594 μg/kg) > Thailand (1.870 μg/kg) > Finland (0.920 μg/kg) > Iran (0.312 μg/kg) > Jordan (0.202 μg/kg) > Belgium (0.183 μg/kg) > Spain ( South Korea ( DON (85.00%) > AFT (20.15%) > OT (16.00%). The overall prevalence of mycotoxin was equal to 29.65%. Also, the concentration of mycotoxins in China and Cameroon was higher than in other countries. Therefore, the monitoring programs to reduce mycotoxins in bird eggs consumed in some countries such as China and Cameroon should be considered.
Collapse
Affiliation(s)
- Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mansour Sarafraz
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amene Nematollahi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Vahid Ranaei
- Social Determinants in Health Promotion Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Moussa Soleimani-Ahmadi
- Social Determinants in Health Promotion Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Van Nam Thai
- Ho Chi Minh City University of Technology (HUTECH) 475A, Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City, Vietnam.
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Caixa Postal: 6121, CEP: 13083-862, Campinas, São Paulo, Brazil
| |
Collapse
|
22
|
Mycotoxin bioaccessibility in baby food through in vitro digestion: an overview focusing on risk assessment. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
The mycotoxins in edible oils: An overview of prevalence, concentration, toxicity, detection and decontamination techniques. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Akhila PP, Sunooj KV, Aaliya B, Navaf M, Sudheesh C, Sabu S, Sasidharan A, Mir SA, George J, Mousavi Khaneghah A. Application of electromagnetic radiations for decontamination of fungi and mycotoxins in food products: A comprehensive review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|