1
|
Mishra L, Mishra M. Ribose-induced advanced glycation end products reduce the lifespan in Drosophila melanogaster by changing the redox state and down-regulating the Sirtuin genes. Biogerontology 2024; 26:28. [PMID: 39702854 DOI: 10.1007/s10522-024-10172-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Advanced Glycation End (AGE) products are one such factor that accumulates during aging and age-related diseases. However, how exogenous AGE compounds cause aging is an area that needs to be explored. Specifically, how an organ undergoes aging and aging-related phenomena that need further investigation. The intestine is the most exposed area to food substances. How AGEs affect the intestine in terms of aging need to be explored. Drosophila melanogaster, a well-known model organism, is used to decode aging and age-associated phenomena. In this study, we fed Ribose induced Advanced Glycation End products (Rib-AGE) to D. melanogaster to study the aging mechanism. The Rib-AGE-induced aging was checked in Drosophila. We found a series of changes in Rib-AGE-fed flies. Reactive oxygen species (ROS) and nitric oxide species (NOs) were higher in the Rib-AGE-fed flies, and the antioxidant level was lower. The intestinal permeability was altered. The microorganism load was higher inside the gut. The structural arrangement of the gut's microfilament was found to be damaged, and the nuclear shape was found to be irregular. Cell death within the gut was elevated in comparison to control. The food intake was found to be reduced. The relative mRNA expression of the Sirtuin 2 and Sirtuin 6 gene of D. melanogaster was downregulated in Rib-AGE-fed flies compared to the control. All these findings strongly suggest that Rib-AGE accelerates aging and age-related disorders in D. melanogaster.
Collapse
Affiliation(s)
- Lokanath Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, 769008, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, 769008, India.
| |
Collapse
|
2
|
Chen Y, Meng Z, Li Y, Liu S, Hu P, Luo E. Advanced glycation end products and reactive oxygen species: uncovering the potential role of ferroptosis in diabetic complications. Mol Med 2024; 30:141. [PMID: 39251935 PMCID: PMC11385660 DOI: 10.1186/s10020-024-00905-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Advanced glycation end products (AGEs) are a diverse range of compounds that are formed when free amino groups of proteins, lipids, and nucleic acids are carbonylated by reactive carbonyl species or glycosylated by reducing sugars. Hyperglycemia in patients with diabetes can cause an overabundance of AGEs. Excess AGEs are generally acknowledged as major contributing factors to the development of diabetic complications because of their ability to break down the extracellular matrix directly and initiate intracellular signaling pathways by binding to the receptor for advanced glycation end products (RAGE). Inflammation and oxidative stress are the two most well-defined pathophysiological states induced by the AGE-RAGE interaction. In addition to oxidative stress, AGEs can also inhibit antioxidative systems and disturb iron homeostasis, all of which may induce ferroptosis. Ferroptosis is a newly identified contributor to diabetic complications. This review outlines the formation of AGEs in individuals with diabetes, explores the oxidative damage resulting from downstream reactions of the AGE-RAGE axis, and proposes a novel connection between AGEs and the ferroptosis pathway. This study introduces the concept of a vicious cycle involving AGEs, oxidative stress, and ferroptosis in the development of diabetic complications.
Collapse
Affiliation(s)
- Yanchi Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zihan Meng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yong Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Pei Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Dorali Beni A, Bahramikia S. Pyrogallol experimentally and theoretically suppressed advanced glycation end products (AGEs) formation, as one of the mechanisms involved in the chronic complications of the diabetes. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:726-738. [PMID: 38006229 DOI: 10.1080/10286020.2023.2283478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
This study aimed to explore the inhibitory effect of pyrogallol on AGE formation in the bovine serum albumin (BSA)/glucose system for 21 days at 37 °C. The AGEs formation was measured in terms of Amadori products, total AGEs, argpyrimidine, and pentosidine. Molecular docking was used to investigate the interaction between pyrogallol and BSA. According to the results, in the presence of pyrogallol, the formation of pentosidine and argpyrimidine AGEs decreased. The molecular interaction studies demonstrated that pyrogallol has a high affinity towards arginine residues of albumin. Finally, results proved pyrogallol is a vigorous antiglycation compound and fruitful for AGE inhibition.
Collapse
Affiliation(s)
- Ashkan Dorali Beni
- Department of Biology, Faculty of Basic Sciences, Lorestan University, Khorramabad 6815144316, Iran
| | - Seifollah Bahramikia
- Department of Biology, Faculty of Basic Sciences, Lorestan University, Khorramabad 6815144316, Iran
| |
Collapse
|
4
|
Ferreira SS, Domingues MR, Barros C, Santos SA, Silvestre AJ, Silva AM, Nunes FM. Major anthocyanins in elderberry effectively trap methylglyoxal and reduce cytotoxicity of methylglyoxal in HepG2 cell line. Food Chem X 2022; 16:100468. [PMID: 36281231 PMCID: PMC9587298 DOI: 10.1016/j.fochx.2022.100468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/25/2022] [Accepted: 10/08/2022] [Indexed: 11/08/2022] Open
Abstract
The antiglycation effect of elderberries by methylglyoxal (MGO) trapping was studied. Cyanidin-3-glucoside and cyanidin-3-sambubioside were almost totally reacted with MGO. Quercetin-3-glucoside and quercetin-3-rutinoside trap MGO in less extent. Cyanidin-3,5-diglucoside and cyanidin-5-glucoside-3-sambubioside did not react. Elderberries phenols trap MGO decreasing the induced MGO cytotoxicity in HepG2 cells.
The accumulation of advanced glycation end-products (AGEs) in the body is implicated in numerous diseases, being methylglyoxal (MGO) one of the main precursors. One of the strategies to reduce AGEs accumulation might be acting in an early stage of glycation by trapping MGO. Thus, this work aimed to evaluate, for the first time, the potential of elderberries polyphenols to trap MGO, access the formation of MGO adducts, and evaluate the cytoprotection effect in HepG2 and Caco-2 cells. The results demonstrated that monoglycosylated anthocyanins (cyanidin-3-glucoside and cyanidin-3-sambubioside) are very efficient in trapping MGO, forming mono- and di-adducts. Quercetin-3-glucoside and quercetin-3-rutinoside reacted slowly, while diglycosylated anthocyanins did not react. The trapping of MGO by elderberry monoglycosylated anthocyanins significantly decreased the MGO cytotoxicity in HepG2 cells (∼70 % of cell viability), while the effect in Caco-2 cells was lower (∼50 %). Thus, elderberry phenolics present antiglycation potential by trapping MGO.
Collapse
Affiliation(s)
- Sandrine S. Ferreira
- Chemistry Research Center – Vila Real (CQ-VR), Food and Wine Chemistry Lab., University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal,Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - M. Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal,CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Cristina Barros
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Sónia A.O. Santos
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Armando J.D. Silvestre
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal,Department of Biology and Environment, UTAD, 5001-801 Vila Real, Portugal,Corresponding authors at: Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal (A. M. Silva). CQ-VR, Chemistry Research Centre, Food and Wine Chemistry Lab., Chemistry Department, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801; Vila Real, Portugal (F. M. Nunes).
| | - Fernando M. Nunes
- Chemistry Research Center – Vila Real (CQ-VR), Food and Wine Chemistry Lab., University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal,Department of Chemistry, UTAD, 5001-801 Vila Real, Portugal,Corresponding authors at: Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal (A. M. Silva). CQ-VR, Chemistry Research Centre, Food and Wine Chemistry Lab., Chemistry Department, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801; Vila Real, Portugal (F. M. Nunes).
| |
Collapse
|
5
|
Jia W, Ma R, Zhang R, Fan Z, Shi L. Synthetic-free compounds as the potential glycation inhibitors performed in in vitro chemical models: Molecular mechanisms and structure requirements. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Teng J, Zhang C, Xu Z, Li X, Xiao J. Preparation and characterization of the soybean protein isolate – chitosan oligosaccharide Maillard reaction products via wet‐heating. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Teng
- College of Food Science and Engineering Qingdao Agricultural University Qingdao People's Republic of China
| | - Chunzhi Zhang
- College of Food Science and Engineering Qingdao Agricultural University Qingdao People's Republic of China
| | - Zhenzhen Xu
- College of Food Science and Engineering Qingdao Agricultural University Qingdao People's Republic of China
- School of Food Science and Engineering South China University of Technology Guangzhou People's Republic of China
| | - Xiaodan Li
- College of Food Science and Engineering Qingdao Agricultural University Qingdao People's Republic of China
| | - Junxia Xiao
- College of Food Science and Engineering Qingdao Agricultural University Qingdao People's Republic of China
| |
Collapse
|
7
|
Advanced Glycation End-Products (AGEs): Formation, Chemistry, Classification, Receptors, and Diseases Related to AGEs. Cells 2022; 11:cells11081312. [PMID: 35455991 PMCID: PMC9029922 DOI: 10.3390/cells11081312] [Citation(s) in RCA: 260] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/27/2023] Open
Abstract
Advanced glycation end-products (AGEs) constitute a non-homogenous, chemically diverse group of compounds formed either exogeneously or endogeneously on the course of various pathways in the human body. In general, they are formed non-enzymatically by condensation between carbonyl groups of reducing sugars and free amine groups of nucleic acids, proteins, or lipids, followed by further rearrangements yielding stable, irreversible end-products. In the last decades, AGEs have aroused the interest of the scientific community due to the increasing evidence of their involvement in many pathophysiological processes and diseases, such as diabetes, cancer, cardiovascular, neurodegenerative diseases, and even infection with the SARS-CoV-2 virus. They are recognized by several cellular receptors and trigger many signaling pathways related to inflammation and oxidative stress. Despite many experimental research outcomes published recently, the complexity of their engagement in human physiology and pathophysiological states requires further elucidation. This review focuses on the receptors of AGEs, especially on the structural aspects of receptor-ligand interaction, and the diseases in which AGEs are involved. It also aims to present AGE classification in subgroups and to describe the basic processes leading to both exogeneous and endogeneous AGE formation.
Collapse
|