1
|
van den Boomen C, Praat AC, Junge CMM, Kemner C. The effects of Covid-19 related policies on neurocognitive face processing in the first four years of life. Dev Cogn Neurosci 2025; 72:101506. [PMID: 39826353 PMCID: PMC11787029 DOI: 10.1016/j.dcn.2025.101506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/12/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
In response to Covid-19, western governments introduced policies that likely resulted in a reduced variety of facial input. This study investigated how this affected neural representations of face processing: speed of face processing; face categorization (differentiating faces from houses); and emotional face processing (differentiating happy, fearful, and neutral expressions), in infants (five or ten months old) and children (three years old). We compared participants tested before (total N = 462) versus during (total N = 473) the pandemic-related policies, and used electroencephalography to record brain activity. Event Related Potentials showed faster face processing in three-year-olds but not in infants during the policies. However, there were no meaningful differences between the two Covid-groups regarding face categorization, indicating that this fundamental process is resilient despite the reduced variety of input. In contrast, the processing of facial emotions was affected: across ages, while pre-pandemic children showed differential activity, during-pandemic children did not neurocognitively differentiate between happy and fearful expressions. This effect was primarily attributed to a reduced amplitude in response to happy faces. Given that these findings were present only in the later neural components (P400 and Nc), this suggests that post-pandemic children have a reduced familiarity or attention towards happy facial expressions.
Collapse
Affiliation(s)
- Carlijn van den Boomen
- Experimental Psychology, Helmholtz Institute Utrecht University, Utrecht 3584CS, the Netherlands.
| | - Anna C Praat
- Experimental Psychology, Helmholtz Institute Utrecht University, Utrecht 3584CS, the Netherlands
| | - Caroline M M Junge
- Experimental Psychology, Helmholtz Institute Utrecht University, Utrecht 3584CS, the Netherlands
| | - Chantal Kemner
- Experimental Psychology, Helmholtz Institute Utrecht University, Utrecht 3584CS, the Netherlands
| |
Collapse
|
2
|
Maimon A, Wald IY, Snir A, Ben Oz M, Amedi A. Perceiving depth beyond sight: Evaluating intrinsic and learned cues via a proof of concept sensory substitution method in the visually impaired and sighted. PLoS One 2024; 19:e0310033. [PMID: 39321152 PMCID: PMC11423994 DOI: 10.1371/journal.pone.0310033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
This study explores spatial perception of depth by employing a novel proof of concept sensory substitution algorithm. The algorithm taps into existing cognitive scaffolds such as language and cross modal correspondences by naming objects in the scene while representing their elevation and depth by manipulation of the auditory properties for each axis. While the representation of verticality utilized a previously tested correspondence with pitch, the representation of depth employed an ecologically inspired manipulation, based on the loss of gain and filtration of higher frequency sounds over distance. The study, involving 40 participants, seven of which were blind (5) or visually impaired (2), investigates the intrinsicness of an ecologically inspired mapping of auditory cues for depth by comparing it to an interchanged condition where the mappings of the two axes are swapped. All participants successfully learned to use the algorithm following a very brief period of training, with the blind and visually impaired participants showing similar levels of success for learning to use the algorithm as did their sighted counterparts. A significant difference was found at baseline between the two conditions, indicating the intuitiveness of the original ecologically inspired mapping. Despite this, participants were able to achieve similar success rates following the training in both conditions. The findings indicate that both intrinsic and learned cues come into play with respect to depth perception. Moreover, they suggest that by employing perceptual learning, novel sensory mappings can be trained in adulthood. Regarding the blind and visually impaired, the results also support the convergence view, which claims that with training, their spatial abilities can converge with those of the sighted. Finally, we discuss how the algorithm can open new avenues for accessibility technologies, virtual reality, and other practical applications.
Collapse
Affiliation(s)
- Amber Maimon
- Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- Computational Psychiatry and Neurotechnology Lab, Ben Gurion University, Be'er Sheva, Israel
| | - Iddo Yehoshua Wald
- Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
- Digital Media Lab, University of Bremen, Bremen, Germany
| | - Adi Snir
- Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
| | - Meshi Ben Oz
- Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
| | - Amir Amedi
- Baruch Ivcher Institute for Brain, Cognition, and Technology, Reichman University, Herzliya, Israel
| |
Collapse
|
3
|
Gilad-Gutnick S, Kurian GS, Gupta P, Shah P, Tiwari K, Ralekar C, Gandhi T, Ganesh S, Mathur U, Sinha P. Motion's privilege in recognizing facial expressions following treatment for blindness. Curr Biol 2024; 34:4047-4055.e3. [PMID: 39116886 PMCID: PMC11457836 DOI: 10.1016/j.cub.2024.07.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/30/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
In his 1872 monograph, Charles Darwin posited that "… the habit of expressing our feelings by certain movements, though now rendered innate, had been in some manner gradually acquired."1 Nearly 150 years later, researchers are still teasing apart innate versus experience-dependent contributions to expression recognition. Indeed, studies have shown that face detection is surprisingly resilient to early visual deprivation,2,3,4,5 pointing to plasticity that extends beyond dogmatic critical periods.6,7,8 However, it remains unclear whether such resilience extends to downstream processing, such as the ability to recognize facial expressions. The extent to which innate versus experience-dependent mechanisms contribute to this ability has yet to be fully explored.9,10,11,12,13 To investigate the impact of early visual experience on facial-expression recognition, we studied children with congenital cataracts who have undergone sight-correcting treatment14,15 and tracked their longitudinal skill acquisition as they gain sight late in life. We introduce and explore two potential facilitators of late-life plasticity: the availability of newborn-like coarse visual acuity prior to treatment16 and the privileged role of motion following treatment.4,17,18 We find that early visual deprivation does not preclude partial acquisition of facial-expression recognition. While rudimentary pretreatment vision is sufficient to allow a low level of expression recognition, it does not facilitate post-treatment improvements. Additionally, only children commencing vision with high visual acuity privilege the use of dynamic cues. We conclude that skipping typical visual experience early in development and introducing high-resolution imagery late in development restricts, but does not preclude, facial-expression skill acquisition and that the representational mechanisms driving this learning differ from those that emerge during typical visual development.
Collapse
Affiliation(s)
- Sharon Gilad-Gutnick
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Grace S Kurian
- University Hospital Centre and University of Lausanne (CHUV), Department of Radiology, Rue de Bugnon, CH-1011 Lausanne, Switzerland
| | - Priti Gupta
- Project Prakash, Dr. Shroff's Charity Eye Hospital, New Delhi 110002, India
| | - Pragya Shah
- Project Prakash, Dr. Shroff's Charity Eye Hospital, New Delhi 110002, India
| | - Kashish Tiwari
- Project Prakash, Dr. Shroff's Charity Eye Hospital, New Delhi 110002, India
| | - Chetan Ralekar
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Tapan Gandhi
- Indian Institute of Technology Delhi (IIT Delhi), Department of Electrical Engineering, IIT Delhi Main Rd., New Delhi 110016, India
| | - Suma Ganesh
- Department of Pediatric Ophthalmology, Dr. Shroff's Charity Eye Hospital, New Delhi 110002, India
| | - Umang Mathur
- Department of Pediatric Ophthalmology, Dr. Shroff's Charity Eye Hospital, New Delhi 110002, India
| | - Pawan Sinha
- Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
4
|
Amaral L, Thomas P, Amedi A, Striem-Amit E. Longitudinal stability of individual brain plasticity patterns in blindness. Proc Natl Acad Sci U S A 2024; 121:e2320251121. [PMID: 39078671 PMCID: PMC11317565 DOI: 10.1073/pnas.2320251121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/24/2024] [Indexed: 07/31/2024] Open
Abstract
The primary visual cortex (V1) in blindness is engaged in a wide spectrum of tasks and sensory modalities, including audition, touch, language, and memory. This widespread involvement raises questions regarding the constancy of its role and whether it might exhibit flexibility in its function over time, connecting to diverse network functions specific to task demands. This would suggest that reorganized V1 assumes a role like multiple-demand system regions. Alternatively, varying patterns of plasticity in blind V1 may be attributed to individual factors, with different blind individuals recruiting V1 preferentially for different functions. In support of this, we recently showed that V1 functional connectivity (FC) varies greatly across blind individuals. But do these represent stable individual patterns of plasticity, or are they driven more by instantaneous changes, like a multiple-demand system now inhabiting V1? Here, we tested whether individual FC patterns from the V1 of blind individuals are stable over time. We show that over two years, FC from the V1 is unique and highly stable in a small sample of repeatedly sampled congenitally blind individuals. Further, using multivoxel pattern analysis, we demonstrate that the unique reorganization patterns of these individuals allow decoding of participant identity. Together with recent evidence for substantial individual differences in V1 connectivity, this indicates that there may be a consistent role for V1 in blindness, which may differ for each individual. Further, it suggests that the variability in visual reorganization in blindness across individuals could be used to seek stable neuromarkers for sight rehabilitation and assistive approaches.
Collapse
Affiliation(s)
- Lénia Amaral
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC20057
| | - Peyton Thomas
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC20057
| | - Amir Amedi
- Ivcher School of Psychology, The Institute for Brain, Mind and Technology, Reichman University, Herzliya4610101, Israel
- The Ruth & Meir Rosenthal Brain Imaging Center, Reichman University, Herzliya4610101, Israel
| | - Ella Striem-Amit
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC20057
| |
Collapse
|
5
|
Christian LW, Opoku-Yamoah V, Rose K, Jones DA, McCulloch D, Irving EL, Leat SJ. Comparing paediatric optometric vision care in Canada over a 14-year period. Ophthalmic Physiol Opt 2024; 44:491-500. [PMID: 38317422 DOI: 10.1111/opo.13281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/07/2024]
Abstract
PURPOSE In Canada, teaching in paediatric eye care has increased in the past decade both within the optometry curriculum and as continuing education to optometrists. Paediatric vision care guidelines have also been established by North American optometric associations. This study examined whether this exposure was associated with changes in paediatric eye care in Canada over a 14-year period. METHODS Canadian optometrists were invited to participate in an anonymous 35-item survey in 2007 and 2021. The surveys sought to investigate optometrist's recommendations for first eye examinations, the number of paediatric patients seen in a typical week and preparedness to provide eye examinations to children. Response frequencies were determined for each survey item. RESULTS Across Canada, 133/1000 (13.3%) and 261/~6419 (~4.1%) optometrists responded to the survey in 2007 and 2021, respectively. No significant difference was found in the number of years practicing, days per week in practice and total number of patients seen per week. The modal age optometrists recommended children be seen for their first eye examination changed from 3-4 years in 2007 (53%) to 6-12 months in 2021 (61%). In 2007, 87% of respondents provided eye examinations to children <2 years, increasing to 94% in 2021 (p = 0.02). Despite a reduction in the recommended age between the two survey years, the most frequent age children were seen for their first eye examination was 3-4 years (30% in both surveys) and the most common age seen in a typical week remained unchanged (4-6 years-56% 2007; 66% 2021). CONCLUSION Although optometrists' willingness to provide paediatric eye care increased over the past 14 years, the number of children seen in a typical week did not change. Barriers to determine why more children are not being seen at an earlier age need to be investigated.
Collapse
Affiliation(s)
- Lisa W Christian
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Victor Opoku-Yamoah
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Kalpana Rose
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Deborah A Jones
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Daphne McCulloch
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Elizabeth L Irving
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Susan J Leat
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
6
|
Amaral L, Thomas P, Amedi A, Striem-Amit E. Longitudinal stability of individual brain plasticity patterns in blindness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565196. [PMID: 37986779 PMCID: PMC10659359 DOI: 10.1101/2023.11.01.565196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The primary visual cortex (V1) in individuals born blind is engaged in a wide spectrum of tasks and sensory modalities, including audition, touch, language, and memory. This widespread involvement raises questions regarding the constancy of its role and whether it might exhibit flexibility in its function over time, connecting to diverse network functions in response to task-specific demands. This would suggest that reorganized V1 takes on a role similar to cognitive multiple-demand system regions. Alternatively, it is possible that the varying patterns of plasticity observed in the blind V1 can be attributed to individual factors, whereby different blind individuals recruit V1 for different functions, highlighting the immense idiosyncrasy of plasticity. In support of this second account, we have recently shown that V1 functional connectivity varies greatly across blind individuals. But do these represent stable individual patterns of plasticity or merely instantaneous changes, for a multiple-demand system now inhabiting V1? Here we tested if individual connectivity patterns from the visual cortex of blind individuals are stable over time. We show that over two years, fMRI functional connectivity from the primary visual cortex is unique and highly stable in a small sample of repeatedly sampled congenitally blind individuals. Further, using multivoxel pattern analysis, we demonstrate that the unique reorganization patterns of these individuals allow decoding of participant identity. Together with recent evidence for substantial individual differences in visual cortex connectivity, this indicates there may be a consistent role for the visual cortex in blindness, which may differ for each individual. Further, it suggests that the variability in visual reorganization in blindness across individuals could be used to seek stable neuromarkers for sight rehabilitation and assistive approaches.
Collapse
Affiliation(s)
- Lénia Amaral
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Peyton Thomas
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Amir Amedi
- Ivcher School of Psychology, The Institute for Brain, Mind and Technology, Reichman University, Herzliya, Israel
- The Ruth & Meir Rosenthal Brain Imaging Center, Reichman University, Herzliya, Israel
| | - Ella Striem-Amit
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
7
|
Duffy KR, Bear MF, Patel NB, Das VE, Tychsen L. Human deprivation amblyopia: treatment insights from animal models. Front Neurosci 2023; 17:1249466. [PMID: 37795183 PMCID: PMC10545969 DOI: 10.3389/fnins.2023.1249466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Amblyopia is a common visual impairment that develops during the early years of postnatal life. It emerges as a sequela to eye misalignment, an imbalanced refractive state, or obstruction to form vision. All of these conditions prevent normal vision and derail the typical development of neural connections within the visual system. Among the subtypes of amblyopia, the most debilitating and recalcitrant to treatment is deprivation amblyopia. Nevertheless, human studies focused on advancing the standard of care for amblyopia have largely avoided recruitment of patients with this rare but severe impairment subtype. In this review, we delineate characteristics of deprivation amblyopia and underscore the critical need for new and more effective therapy. Animal models offer a unique opportunity to address this unmet need by enabling the development of unconventional and potent amblyopia therapies that cannot be pioneered in humans. Insights derived from studies using animal models are discussed as potential therapeutic innovations for the remediation of deprivation amblyopia. Retinal inactivation is highlighted as an emerging therapy that exhibits efficacy against the effects of monocular deprivation at ages when conventional therapy is ineffective, and recovery occurs without apparent detriment to the treated eye.
Collapse
Affiliation(s)
- Kevin R. Duffy
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Mark F. Bear
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Nimesh B. Patel
- College of Optometry, University of Houston, Houston, TX, United States
| | - Vallabh E. Das
- College of Optometry, University of Houston, Houston, TX, United States
| | - Lawrence Tychsen
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
8
|
Halfmann C, Rüland T, Müller F, Jehasse K, Kampa BM. Electrophysiological properties of layer 2/3 pyramidal neurons in the primary visual cortex of a retinitis pigmentosa mouse model ( rd10). Front Cell Neurosci 2023; 17:1258773. [PMID: 37780205 PMCID: PMC10540630 DOI: 10.3389/fncel.2023.1258773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
Retinal degeneration is one of the main causes of visual impairment and blindness. One group of retinal degenerative diseases, leading to the loss of photoreceptors, is collectively termed retinitis pigmentosa. In this group of diseases, the remaining retina is largely spared from initial cell death making retinal ganglion cells an interesting target for vision restoration methods. However, it is unknown how downstream brain areas, in particular the visual cortex, are affected by the progression of blindness. Visual deprivation studies have shown dramatic changes in the electrophysiological properties of visual cortex neurons, but changes on a cellular level in retinitis pigmentosa have not been investigated yet. Therefore, we used the rd10 mouse model to perform patch-clamp recordings of pyramidal neurons in layer 2/3 of the primary visual cortex to screen for potential changes in electrophysiological properties resulting from retinal degeneration. Compared to wild-type C57BL/6 mice, we only found an increase in intrinsic excitability around the time point of maximal retinal degeneration. In addition, we saw an increase in the current amplitude of spontaneous putative inhibitory events after a longer progression of retinal degeneration. However, we did not observe a long-lasting shift in excitability after prolonged retinal degeneration. Together, our results provide evidence of an intact visual cortex with promising potential for future therapeutic strategies to restore vision.
Collapse
Affiliation(s)
- Claas Halfmann
- Systems Neurophysiology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Thomas Rüland
- Systems Neurophysiology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
- Molecular and Cellular Physiology, Institute of Biological Information Processing (IBI-1), Forschungszentrum Jülich GmbH, Jülich, Germany
- Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany
| | - Frank Müller
- Molecular and Cellular Physiology, Institute of Biological Information Processing (IBI-1), Forschungszentrum Jülich GmbH, Jülich, Germany
- Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany
- Research Training Group 2610 Innoretvision, RWTH Aachen University, Aachen, Germany
| | - Kevin Jehasse
- Systems Neurophysiology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Björn M. Kampa
- Systems Neurophysiology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany
- Research Training Group 2610 Innoretvision, RWTH Aachen University, Aachen, Germany
- JARA BRAIN, Institute of Neuroscience and Medicine (INM-10), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
9
|
Opoku-Yamoah V, Christian LW, Irving EL, Jones D, McCulloch D, Rose K, Leat SJ. Validation of the Waterloo Differential Visual Acuity Test (WatDAT) and Comparison With Existing Pediatric Tests of Visual Acuity. Transl Vis Sci Technol 2023; 12:13. [PMID: 37733350 PMCID: PMC10517421 DOI: 10.1167/tvst.12.9.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023] Open
Abstract
Purpose The new Waterloo Differential Acuity Test (WatDAT) is designed to allow recognition visual acuity (VA) measurement in children before they can typically undertake matching tests. The study purpose was to validate WatDAT in adults with normal and reduced VA. Methods Eighty adults (18 to <40 years of age) participated (32 normal VA, 12 reduced VA, and 36 simulated reduced VA). Monocular VA was measured on two occasions in random order for WatDAT (versions with 3 and 5 distractors for Faces and Patti Pics house among circles), Lea Symbols, Kay Pictures and Patti Pics matching tests, Teller Acuity Cards, Cardiff Acuity Test, and Early Treatment Diabetic Retinopathy Study (ETDRS) letter chart. Pediatric tests were validated against ETDRS using limits of agreement (LoA), sensitivity, and specificity. The LoA for repeatability were also determined. Results WatDAT showed minimal bias compared with ETDRS, and LoAs, which were similar to pediatric matching tests (0.241-0.250). Both preferential looking tests showed higher bias and LoAs than ETDRS. Matching tests showed good agreement with ETDRS, except for Kay Pictures and Lea Uncrowded test, which overestimated VA. WatDAT showed high sensitivity (>0.96) and specificity (>0.79), which improved with criterion adjustment and were significantly higher than for the preferential looking tests. LoA for repeatability for WatDAT 3 Faces and WatDAT 5 Faces were comparable with the ETDRS. Conclusions WatDAT demonstrates good agreement and repeatability compared with the gold-standard ETDRS letter chart, and performed better than preferential looking tests, the alternative until a child can undertake a matching VA test. Translational Relevance Good validity of the Waterloo Differential Acuity Test was demonstrated in adults as a first step to showing its potential for detecting childhood visual disorders.
Collapse
Affiliation(s)
- Victor Opoku-Yamoah
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Lisa W. Christian
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Elizabeth L. Irving
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Deborah Jones
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Daphne McCulloch
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Kalpana Rose
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Susan J. Leat
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
10
|
Karasik LB, Adolph KE, Fernandes SN, Robinson SR, Tamis-LeMonda CS. Gahvora cradling in Tajikistan: Cultural practices and associations with motor development. Child Dev 2023; 94:1049-1067. [PMID: 37016553 PMCID: PMC10521344 DOI: 10.1111/cdev.13919] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 04/06/2023]
Abstract
In Tajikistan, infants are bound supine in a "gahvora" cradle that severely restricts movement. Does cradling affect motor development and body growth? In three studies (2013-2018), we investigated associations between time in the gahvora (within days and across age) and motor skills and flattened head dimensions in 8-24-month-old Tajik infants (N = 269, 133 girls, 136 boys)) and 4.3-5.1-year-old children (N = 91, 53 girls, 38 boys). Infants had later motor onset ages relative to World Health Organization standards and pronounced brachycephaly; cradling predicted walk onset age and the proficiency of sitting, crawling, and walking. By 4-5 years, children's motor skills were comparable with US norms. Cultural differences in early experiences offer a unique lens onto developmental processes and equifinality in development.
Collapse
Affiliation(s)
- Lana B. Karasik
- College of Staten Island & Graduate Center, CUNY, Staten Island, New York, USA
| | | | - Sara N. Fernandes
- College of Staten Island & Graduate Center, CUNY, Staten Island, New York, USA
- New York University, New York City, New York, USA
| | - Scott R. Robinson
- College of Staten Island & Graduate Center, CUNY, Staten Island, New York, USA
| | | |
Collapse
|
11
|
Yates TS, Ellis CT, Turk‐Browne NB. Face processing in the infant brain after pandemic lockdown. Dev Psychobiol 2023; 65:e22346. [PMID: 36567649 PMCID: PMC9877889 DOI: 10.1002/dev.22346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/13/2022] [Accepted: 10/10/2022] [Indexed: 12/14/2022]
Abstract
The role of visual experience in the development of face processing has long been debated. We present a new angle on this question through a serendipitous study that cannot easily be repeated. Infants viewed short blocks of faces during fMRI in a repetition suppression task. The same identity was presented multiple times in half of the blocks (repeat condition) and different identities were presented once each in the other half (novel condition). In adults, the fusiform face area (FFA) tends to show greater neural activity for novel versus repeat blocks in such designs, suggesting that it can distinguish same versus different face identities. As part of an ongoing study, we collected data before the COVID-19 pandemic and after an initial local lockdown was lifted. The resulting sample of 12 infants (9-24 months) divided equally into pre- and post-lockdown groups with matching ages and data quantity/quality. The groups had strikingly different FFA responses: pre-lockdown infants showed repetition suppression (novel > repeat), whereas post-lockdown infants showed the opposite (repeat > novel), often referred to as repetition enhancement. These findings provide speculative evidence that altered visual experience during the lockdown, or other correlated environmental changes, may have affected face processing in the infant brain.
Collapse
Affiliation(s)
| | - Cameron T. Ellis
- Department of PsychologyStanford UniversityStanfordCaliforniaUSA
| | - Nicholas B. Turk‐Browne
- Department of PsychologyYale UniversityNew HavenConnecticutUSA,Wu Tsai InstituteYale UniversityNew HavenConnecticutUSA
| |
Collapse
|
12
|
Bosten JM, Coen-Cagli R, Franklin A, Solomon SG, Webster MA. Calibrating Vision: Concepts and Questions. Vision Res 2022; 201:108131. [PMID: 37139435 PMCID: PMC10151026 DOI: 10.1016/j.visres.2022.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The idea that visual coding and perception are shaped by experience and adjust to changes in the environment or the observer is universally recognized as a cornerstone of visual processing, yet the functions and processes mediating these calibrations remain in many ways poorly understood. In this article we review a number of facets and issues surrounding the general notion of calibration, with a focus on plasticity within the encoding and representational stages of visual processing. These include how many types of calibrations there are - and how we decide; how plasticity for encoding is intertwined with other principles of sensory coding; how it is instantiated at the level of the dynamic networks mediating vision; how it varies with development or between individuals; and the factors that may limit the form or degree of the adjustments. Our goal is to give a small glimpse of an enormous and fundamental dimension of vision, and to point to some of the unresolved questions in our understanding of how and why ongoing calibrations are a pervasive and essential element of vision.
Collapse
Affiliation(s)
| | - Ruben Coen-Cagli
- Department of Systems Computational Biology, and Dominick P. Purpura Department of Neuroscience, and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx NY
| | | | - Samuel G Solomon
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, UK
| | | |
Collapse
|
13
|
Farahbakhsh M, Anderson EJ, Maimon-Mor RO, Rider A, Greenwood JA, Hirji N, Zaman S, Jones PR, Schwarzkopf DS, Rees G, Michaelides M, Dekker TM. A demonstration of cone function plasticity after gene therapy in achromatopsia. Brain 2022; 145:3803-3815. [PMID: 35998912 PMCID: PMC9679164 DOI: 10.1093/brain/awac226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Recent advances in regenerative therapy have placed the treatment of previously incurable eye diseases within arms' reach. Achromatopsia is a severe monogenic heritable retinal disease that disrupts cone function from birth, leaving patients with complete colour blindness, low acuity, photosensitivity and nystagmus. While successful gene-replacement therapy in non-primate models of achromatopsia has raised widespread hopes for clinical treatment, it was yet to be determined if and how these therapies can induce new cone function in the human brain. Using a novel multimodal approach, we demonstrate for the first time that gene therapy can successfully activate dormant cone-mediated pathways in children with achromatopsia (CNGA3- and CNGB3-associated, 10-15 years). To test this, we combined functional MRI population receptive field mapping and psychophysics with stimuli that selectively measure cone photoreceptor signalling. We measured cortical and visual cone function before and after gene therapy in four paediatric patients, evaluating treatment-related change against benchmark data from untreated patients (n = 9) and normal-sighted participants (n = 28). After treatment, two of the four children displayed strong evidence for novel cone-mediated signals in visual cortex, with a retinotopic pattern that was not present in untreated achromatopsia and which is highly unlikely to emerge by chance. Importantly, this change was paired with a significant improvement in psychophysical measures of cone-mediated visual function. These improvements were specific to the treated eye, and provide strong evidence for successful read-out and use of new cone-mediated information. These data show for the first time that gene replacement therapy in achromatopsia within the plastic period of development can awaken dormant cone-signalling pathways after years of deprivation. This reveals unprecedented neural plasticity in the developing human nervous system and offers great promise for emerging regenerative therapies.
Collapse
Affiliation(s)
- Mahtab Farahbakhsh
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Elaine J Anderson
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- UCL Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
- The Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK
| | - Roni O Maimon-Mor
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Andy Rider
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - John A Greenwood
- Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Nashila Hirji
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Moorfields Eye Hospital, London EC1V 2PD, UK
| | - Serena Zaman
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Moorfields Eye Hospital, London EC1V 2PD, UK
| | - Pete R Jones
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Division of Optometry and Visual Sciences; School of Health Sciences; City, University of London, London EC1V 0HB, UK
| | - D Samuel Schwarzkopf
- Experimental Psychology, University College London, London WC1H 0AP, UK
- School of Optometry and Vision Science, University of Auckland, Auckland 1023, New Zealand
| | - Geraint Rees
- UCL Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
- The Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Moorfields Eye Hospital, London EC1V 2PD, UK
| | - Tessa M Dekker
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Experimental Psychology, University College London, London WC1H 0AP, UK
| |
Collapse
|
14
|
May E, Arach P, Kishiki E, Geneau R, Maehara G, Sukhai M, Hamm LM. Learning to see after early and extended blindness: A scoping review. Front Psychol 2022; 13:954328. [PMID: 36389599 PMCID: PMC9648338 DOI: 10.3389/fpsyg.2022.954328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/26/2022] [Indexed: 10/03/2023] Open
Abstract
Purpose If an individual has been blind since birth due to a treatable eye condition, ocular treatment is urgent. Even a brief period of visual deprivation can alter the development of the visual system. The goal of our structured scoping review was to understand how we might better support children with delayed access to ocular treatment for blinding conditions. Method We searched MEDLINE, Embase and Global Health for peer-reviewed publications that described the impact of early (within the first year) and extended (lasting at least 2 years) bilateral visual deprivation. Results Of 551 reports independently screened by two authors, 42 studies met our inclusion criteria. Synthesizing extracted data revealed several trends. The data suggests persistent deficits in visual acuity, contrast sensitivity, global motion, and visual-motor integration, and suspected concerns for understanding complex objects and faces. There is evidence for resilience in color perception, understanding of simple shapes, discriminating between a face and non-face, and the perception of biological motion. There is currently insufficient data about specific (re)habilitation strategies to update low vision services, but there are several insights to guide future research in this domain. Conclusion This summary will help guide the research and services provision to help children learn to see after early and extended blindness.
Collapse
Affiliation(s)
- Eloise May
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | | | | | - Robert Geneau
- Kilimanjaro Centre for Community Ophthalmology, Moshi, Tanzania
- Division of Ophthalmology, University of Cape Town, Cape Town, South Africa
| | - Goro Maehara
- Department of Human Sciences, Kanagawa University, Yokohama, Japan
| | - Mahadeo Sukhai
- Accessibility, Research and International Affairs, Canadian National Institute for the Blind, Toronto, ON, Canada
- Department of Ophthalmology, Faculty of Health Sciences, School of Medicine, Queen's University, Kingston, ON, Canada
| | - Lisa M. Hamm
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Coleman C, Gillmeister H. Body image and self-perception in women with navel piercings. PLoS One 2022; 17:e0274099. [PMID: 36083973 PMCID: PMC9462717 DOI: 10.1371/journal.pone.0274099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/23/2022] [Indexed: 11/19/2022] Open
Abstract
The present study investigated how women’s body image and body-perceptual processes are affected by navel piercings, an embellishment of the abdominal region women often feel negatively about. We probed perceptual (response times), cognitive (surveys), affective (aesthetic ratings) and neural (event-related potentials, ERPs) facets of (own) body perception. We found that navel piercings are primarily motivated by the desire to enhance one’s body image, and can significantly improve bodily self-perception relative to before and to imagined removal of the piercing. Hence, body image concerns in women with navel piercings were found to be comparable to those of a control group; and their aesthetic ratings of other women’s abdomens only differed, positively, for images depicting navel piercings. ERPs indicated that the sight of navel piercings enhances early structural encoding of bodies as well as late emotional-motivational processes, especially in women with navel piercings. We further found a strong self-advantage in both cortical and behavioural responses during recognition of own and others’ abdomens, especially for images displaying the piercing. Altogether, findings suggest that navel piercings become strongly, and beneficially, integrated into women’s bodily self image. Such piercings may thus be seen as expressions of body care that can protect against self-harming thoughts and behaviours.
Collapse
Affiliation(s)
- Christine Coleman
- Department of Psychology and Centre for Brain Science, University of Essex, Colchester, United Kingdom
| | - Helge Gillmeister
- Department of Psychology and Centre for Brain Science, University of Essex, Colchester, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Rubio-Fernandez P, Shukla V, Bhatia V, Ben-Ami S, Sinha P. Head turning is an effective cue for gaze following: Evidence from newly sighted individuals, school children and adults. Neuropsychologia 2022; 174:108330. [PMID: 35843461 DOI: 10.1016/j.neuropsychologia.2022.108330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 03/24/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
In referential communication, gaze is often interpreted as a social cue that facilitates comprehension and enables word learning. Here we investigated the degree to which head turning facilitates gaze following. We presented participants with static pictures of a man looking at a target object in a first and third block of trials (pre- and post-intervention), while they saw short videos of the same man turning towards the target in the second block of trials (intervention). In Experiment 1, newly sighted individuals (treated for congenital cataracts; N = 8) benefited from the motion cues, both when comparing their initial performance with static gaze cues to their performance with dynamic head turning, and their performance with static cues before and after the videos. In Experiment 2, neurotypical school children (ages 5-10 years; N = 90) and adults (N = 30) also revealed improved performance with motion cues, although most participants had started to follow the static gaze cues before they saw the videos. Our results confirm that head turning is an effective social cue when interpreting new words, offering new insights for a pathways approach to development.
Collapse
Affiliation(s)
| | | | | | - Shlomit Ben-Ami
- Massachusetts Institute of Technology, USA; Tel Aviv University, Israel
| | | |
Collapse
|
17
|
Skelton AE, Maule J, Franklin A. Infant color perception: Insight into perceptual development. CHILD DEVELOPMENT PERSPECTIVES 2022; 16:90-95. [PMID: 35915666 PMCID: PMC9314692 DOI: 10.1111/cdep.12447] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A remarkable amount of perceptual development occurs in the first year after birth. In this article, we spotlight the case of color perception. We outline how within just 6 months, infants go from very limited detection of color as newborns to a more sophisticated perception of color that enables them to make sense of objects and the world around them. We summarize the evidence that by 6 months, infants can perceive the dimensions of color and categorize it, and have at least rudimentary mechanisms to keep color perceptually constant despite variation in illumination. In addition, infants' sensitivity to color relates to statistical regularities of color in natural scenes. We illustrate the contribution of these findings to understanding the development of perceptual skills such as discrimination, categorization, and constancy. We also discuss the relevance of the findings for broader questions about perceptual development and identify directions for research.
Collapse
Affiliation(s)
- Alice E Skelton
- The Sussex Colour Group & Baby Lab School of Psychology University of Sussex Brighton UK
| | - John Maule
- The Sussex Colour Group & Baby Lab School of Psychology University of Sussex Brighton UK
| | - Anna Franklin
- The Sussex Colour Group & Baby Lab School of Psychology University of Sussex Brighton UK
| |
Collapse
|
18
|
Visual perspective taking is not automatic in a simplified dot task: Evidence from newly sighted children, primary school children and adults. Neuropsychologia 2022; 172:108256. [DOI: 10.1016/j.neuropsychologia.2022.108256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/16/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022]
|
19
|
Gualtieri S, Finn AS. The Sweet Spot: When Children’s Developing Abilities, Brains, and Knowledge Make Them Better Learners Than Adults. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2022; 17:1322-1338. [PMID: 35404724 PMCID: PMC9442275 DOI: 10.1177/17456916211045971] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cognitive development is marked by age-related improvements across a number of domains, as young children perform worse than their older counterparts on most tasks. However, there are cases in which young children, and even infants, outperform older children and adults. So when, and why, does being young sometimes confer an advantage? This article provides a comprehensive examination of the peculiar cases in which younger children perform better. First, we outline the specific instances in which younger is better across domains, including mastering language, using probabilistic information, detecting causal relations, remembering certain information, and even solving problems. We then examine how children’s reduced cognitive abilities, ongoing brain development, more limited prior knowledge, and heightened tendency to explore benefits their learning, reasoning, perception, and memory from a mechanistic perspective. We hold that considering all of these factors together is essential for understanding the ways in which children’s learning is unique and that science has much to learn from a careful consideration of childhood.
Collapse
Affiliation(s)
| | - Amy S. Finn
- Department of Psychology, University of Toronto
| |
Collapse
|
20
|
Abstract
For four decades, investigations of the biological basis of critical periods in the developing mammalian visual cortex were dominated by study of the consequences of altered early visual experience in cats and nonhuman primates. The neural deficits thus revealed also provided insight into the origin and neural basis of human amblyopia that in turn motivated additional studies of humans with abnormal early visual input. Recent human studies point to deficits arising from alterations in all visual cortical areas and even in nonvisual cortical regions. As the new human data accumulated in parallel with a near-complete shift toward the use of rodent animal models for the study of neural mechanisms, it is now essential to review the human data and the earlier animal data obtained from cats and monkeys to infer general conclusions and to optimize future choice of the most appropriate animal model. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Donald E Mitchell
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada;
| | - Daphne Maurer
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada;
| |
Collapse
|
21
|
Oakes LM. The development of visual attention in infancy: A cascade approach. ADVANCES IN CHILD DEVELOPMENT AND BEHAVIOR 2022; 64:1-37. [PMID: 37080665 DOI: 10.1016/bs.acdb.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Visual attention develops rapidly and significantly during the first postnatal years. At birth, infants have poor visual acuity, poor head and neck control, and as a result have little autonomy over where and how long they look. Across the first year, the neural systems that support alerting, orienting, and endogenous attention develop, allowing infants to more effectively focus their attention on information in the environment important for processing. However, visual attention is a system that develops in the context of the whole child, and fully understanding this development requires understanding how attentional systems interact and how these systems interact with other systems across wide domains. By adopting a cascades framework we can better position the development of visual attention in the context of the whole developing child. Specifically, development builds, with previous achievements setting the stage for current development, and current development having cascading consequences on future development. In addition, development reflects changes in multiple domains, and those domains influence each other across development. Finally, development reflects and produces changes in the input that the visual system receives; understanding the changing input is key to fully understand the development of visual attention. The development of visual attention is described in this context.
Collapse
Affiliation(s)
- Lisa M Oakes
- Department of Psychology and Center for Mind and Brain, University of California, Davis, Davis, CA, United States.
| |
Collapse
|
22
|
Abstract
The auditory cortex of people with sensorineural hearing loss can be re-afferented using a cochlear implant (CI): a neural prosthesis that bypasses the damaged cells in the cochlea to directly stimulate the auditory nerve. Although CIs are the most successful neural prosthesis to date, some CI users still do not achieve satisfactory outcomes using these devices. To explain variability in outcomes, clinicians and researchers have increasingly focused their attention on neuroscientific investigations that examined how the auditory cortices respond to the electric signals that originate from the CI. This chapter provides an overview of the literature that examined how the auditory cortex changes its functional properties in response to inputs from the CI, in animal models and in humans. We focus first on the basic responses to sounds delivered through electrical hearing and, next, we examine the integrity of two fundamental aspects of the auditory system: tonotopy and processing of binaural cues. When addressing the effects of CIs in humans, we also consider speech-evoked responses. We conclude by discussing to what extent this neuroscientific literature can contribute to clinical practices and help to overcome variability in outcomes.
Collapse
Affiliation(s)
- Francesco Pavani
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy.
| | | |
Collapse
|
23
|
Bottari D, Berto M. Three factors to characterize plastic potential transitions in the visual system. Neurosci Biobehav Rev 2021; 126:444-446. [PMID: 33857578 DOI: 10.1016/j.neubiorev.2021.03.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 11/28/2022]
Abstract
A comprehensive understanding of brain-environment interactions is elusive even at the sensory level as neural plasticity waxes and wanes across the lifespan. Temporary and permanent visual deprivations remain pivotal approaches for studying the degree of experience-dependent plasticity of sensory functions. Natural models and experimental manipulations of visual experiences have contributed to uncovering some of the guiding principles that characterize transitions of plastic potentials in the human visual system. The existing literature regarding the neural plasticity associated with visual systems has been extensively discussed by two recent reviews articles (Röder et al., 2020; Castaldi et al., 2020) which provided an overview of different models of study and methods of investigations, gathering insights on both developing and adult brains. Here, we propose a framework of three main factors to characterize how the driving forces shaping visual circuits mutate, both quantitatively and qualitatively, between early development and adulthood.
Collapse
Affiliation(s)
- Davide Bottari
- Molecular Mind Lab, IMT School for Advanced Studies Lucca, Italy.
| | - Martina Berto
- Molecular Mind Lab, IMT School for Advanced Studies Lucca, Italy
| |
Collapse
|
24
|
Pant R, Guerreiro MJS, Ley P, Bottari D, Shareef I, Kekunnaya R, Röder B. The size-weight illusion is unimpaired in individuals with a history of congenital visual deprivation. Sci Rep 2021; 11:6693. [PMID: 33758328 PMCID: PMC7988063 DOI: 10.1038/s41598-021-86227-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 03/10/2021] [Indexed: 11/29/2022] Open
Abstract
Visual deprivation in childhood can lead to lifelong impairments in multisensory processing. Here, the Size-Weight Illusion (SWI) was used to test whether visuo-haptic integration recovers after early visual deprivation. Normally sighted individuals perceive larger objects to be lighter than smaller objects of the same weight. In Experiment 1, individuals treated for dense bilateral congenital cataracts (who had no patterned visual experience at birth), individuals treated for developmental cataracts (who had patterned visual experience at birth, but were visually impaired), congenitally blind individuals and normally sighted individuals had to rate the weight of manually explored cubes that differed in size (Small, Medium, Large) across two possible weights (350 g, 700 g). In Experiment 2, individuals treated for dense bilateral congenital cataracts were compared to sighted individuals in a similar task using a string set-up, which removed haptic size cues. In both experiments, indistinguishable SWI effects were observed across all groups. These results provide evidence that early aberrant vision does not interfere with the development of the SWI, and suggest a recovery of the integration of size and weight cues provided by the visual and haptic modality.
Collapse
Affiliation(s)
- Rashi Pant
- Biological Psychology and Neuropsychology, University of Hamburg, 20146, Hamburg, Germany.
| | - Maria J S Guerreiro
- Biological Psychology and Neuropsychology, University of Hamburg, 20146, Hamburg, Germany
| | - Pia Ley
- Biological Psychology and Neuropsychology, University of Hamburg, 20146, Hamburg, Germany
| | - Davide Bottari
- Biological Psychology and Neuropsychology, University of Hamburg, 20146, Hamburg, Germany.,Molecular Mind Lab, IMT School for Advanced Studies, 55100, Lucca, Italy
| | - Idris Shareef
- Child Sight Institute, Jasti V Ramanamma Children's Eye Care Center, LV Prasad Eye Institute, Hyderabad, Telangana, 500034, India
| | - Ramesh Kekunnaya
- Child Sight Institute, Jasti V Ramanamma Children's Eye Care Center, LV Prasad Eye Institute, Hyderabad, Telangana, 500034, India
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, University of Hamburg, 20146, Hamburg, Germany
| |
Collapse
|
25
|
Pascalis O, Fort M, Quinn PC. Development of face processing: are there critical or sensitive periods? Curr Opin Behav Sci 2020. [DOI: 10.1016/j.cobeha.2020.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Gandolfo M, Downing PE. Asymmetric visual representation of sex from human body shape. Cognition 2020; 205:104436. [PMID: 32919115 DOI: 10.1016/j.cognition.2020.104436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 01/21/2023]
Abstract
We efficiently infer others' states and traits from their appearance, and these inferences powerfully shape our social behaviour. One key trait is sex, which is strongly cued by the appearance of the body. What are the visual representations that link body shape to sex? Previous studies of visual sex judgment tasks find observers have a bias to report "male", particularly for ambiguous stimuli. This finding implies a representational asymmetry - that for the processes that generate a sex percept, the default output is "male", and "female" is determined by the presence of additional perceptual evidence. That is, female body shapes are positively coded by reference to a male default shape. This perspective makes a novel prediction in line with Treisman's studies of visual search asymmetries: female body targets should be more readily detected amongst male distractors than vice versa. Across 10 experiments (N = 32 each) we confirmed this prediction and ruled out alternative low-level explanations. The asymmetry was found with profile and frontal body silhouettes, frontal photographs, and schematised icons. Low-level confounds were controlled by balancing silhouette images for size and homogeneity, and by matching physical properties of photographs. The female advantage was nulled for inverted icons, but intact for inverted photographs, suggesting reliance on distinct cues to sex for different body depictions. Together, these findings demonstrate a principle of the perceptual coding that links bodily appearance with a significant social trait: the female body shape is coded as an extension of a male default. We conclude by offering a visual experience account of how these asymmetric representations arise in the first place.
Collapse
|
27
|
Scheller M, Proulx MJ, Haan M, Dahlmann‐Noor A, Petrini K. Late‐ but not early‐onset blindness impairs the development of audio‐haptic multisensory integration. Dev Sci 2020; 24:e13001. [DOI: 10.1111/desc.13001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/04/2020] [Accepted: 05/26/2020] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Michelle Haan
- Developmental Neurosciences Programme University College London London UK
| | - Annegret Dahlmann‐Noor
- NIHR Biomedical Research Centre Moorfields London UK
- Paediatric Service Moorfields Eye Hospital London UK
| | - Karin Petrini
- Department of Psychology University of Bath London UK
| |
Collapse
|
28
|
Bathelt J, Dale NJ, de Haan M, Clark CA. Brain structure in children with congenital visual disorders and visual impairment. Dev Med Child Neurol 2020; 62:125-131. [PMID: 31393613 PMCID: PMC6916268 DOI: 10.1111/dmcn.14322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2019] [Indexed: 12/29/2022]
Abstract
AIM To examine if congenital visual impairment is associated with differences in brain anatomy in children. METHOD Ten children (8-12y) with congenital disorders of the peripheral visual system with severe visual impairment (SVI; >0.8 logMAR) or mild-to-moderate visual impairment (MVI; 0.6-0.8 logMAR) were compared to 21 typically sighted comparison (TSC) children. Thalamus volume, grey matter density, white matter microstructure, and integrity of visual tracts were investigated in SVI, MVI, and TSC groups with anatomical and diffusion-weighted magnetic resonance imaging. RESULTS Compared to the TSC group, the SVI group had lower white matter integrity in tracts of the visual system (optic radiations: SVI 0.35±0.015, TSC 0.39±0.007 [p=0.022]; posterior corpus callosum: SVI 0.37±0.019; TSC 0.42±0.009 [p=0.033]) and lower left thalamus volume (SVI 4.37±0.087; TSC 4.99±0.339 [p=0.015]). Neuroanatomical differences were greater in the SVI group, while no consistent differences between the MVI and TSC group were observed. INTERPRETATION Posterior tracts of the visual system are compromised in children with congenital visual impairment versus those who are typically sighted. The severity of visual input appears to have affected neuroanatomical development as significant reductions were only found in the SVI group. WHAT THIS PAPER ADDS Severe visual impairment in mid-childhood is associated with reduced integrity of visual pathways and reduced thalamus volume.
Collapse
Affiliation(s)
- Joe Bathelt
- Department of PsychologyUniversity of AmsterdamAmsterdamthe Netherlands
| | - Naomi J Dale
- UCL Great Ormond Street Hospital Institute of Child HealthUniversity College LondonLondonUK,Great Ormond Street Hospital for ChildrenNHS Foundation TrustLondonUK
| | - Michelle de Haan
- UCL Great Ormond Street Hospital Institute of Child HealthUniversity College LondonLondonUK
| | - Chris A Clark
- UCL Great Ormond Street Hospital Institute of Child HealthUniversity College LondonLondonUK
| |
Collapse
|
29
|
Smith LB, Jayaraman S, Clerkin E, Yu C. The Developing Infant Creates a Curriculum for Statistical Learning. Trends Cogn Sci 2018. [PMID: 29519675 DOI: 10.1016/j.tics.2018.02.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
New efforts are using head cameras and eye-trackers worn by infants to capture everyday visual environments from the point of view of the infant learner. From this vantage point, the training sets for statistical learning develop as the sensorimotor abilities of the infant develop, yielding a series of ordered datasets for visual learning that differ in content and structure between timepoints but are highly selective at each timepoint. These changing environments may constitute a developmentally ordered curriculum that optimizes learning across many domains. Future advances in computational models will be necessary to connect the developmentally changing content and statistics of infant experience to the internal machinery that does the learning.
Collapse
Affiliation(s)
- Linda B Smith
- Psychological and Brain Sciences, Indiana University, 1101 East 10th Street, Bloomington, IN 47405, USA.
| | - Swapnaa Jayaraman
- Psychological and Brain Sciences, Indiana University, 1101 East 10th Street, Bloomington, IN 47405, USA
| | - Elizabeth Clerkin
- Psychological and Brain Sciences, Indiana University, 1101 East 10th Street, Bloomington, IN 47405, USA
| | - Chen Yu
- Psychological and Brain Sciences, Indiana University, 1101 East 10th Street, Bloomington, IN 47405, USA
| |
Collapse
|