1
|
Sharma SR, Karim S. Tick Saliva and the Alpha-Gal Syndrome: Finding a Needle in a Haystack. Front Cell Infect Microbiol 2021; 11:680264. [PMID: 34354960 PMCID: PMC8331069 DOI: 10.3389/fcimb.2021.680264] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/29/2021] [Indexed: 01/01/2023] Open
Abstract
Ticks and tick-borne diseases are significant public health concerns. Bioactive molecules in tick saliva facilitate prolonged blood-feeding and transmission of tick-borne pathogens to the vertebrate host. Alpha-gal syndrome (AGS), a newly reported food allergy, is believed to be induced by saliva proteins decorated with a sugar molecule, the oligosaccharide galactose-⍺-1,3-galactose (α-gal). This syndrome is characterized by an IgE antibody-directed hypersensitivity against α-gal. The α-gal antigen was discovered in the salivary glands and saliva of various tick species including, the Lone Star tick (Amblyomma americanum). The underlying immune mechanisms linking tick bites with α-gal-specific IgE production are poorly understood and are crucial to identify and establish novel treatments for this disease. This article reviews the current understanding of AGS and its involvement with tick species.
Collapse
Affiliation(s)
- Surendra Raj Sharma
- Center for Molecular and Cellular Biology, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Shahid Karim
- Center for Molecular and Cellular Biology, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
2
|
Karasuyama H, Miyake K, Yoshikawa S. Immunobiology of Acquired Resistance to Ticks. Front Immunol 2020; 11:601504. [PMID: 33154758 PMCID: PMC7591762 DOI: 10.3389/fimmu.2020.601504] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/30/2020] [Indexed: 11/13/2022] Open
Abstract
Ticks are blood-sucking arthropods of great importance in the medical and veterinary fields worldwide. They are considered second only to mosquitos as vectors of pathogenic microorganisms that can cause serious infectious disorders, such as Lyme borreliosis and tick-borne encephalitis. Hard (Ixodid) ticks feed on host animals for several days and inject saliva together with pathogens to hosts during blood feeding. Some animal species can acquire resistance to blood-feeding by ticks after a single or repeated tick infestation, resulting in decreased weights and numbers of engorged ticks or the death of ticks in subsequent infestations. Importantly, this acquired tick resistance (ATR) can reduce the risk of pathogen transmission from pathogen-infected ticks to hosts. This is the basis for the development of tick antigen-targeted vaccines to forestall tick infestation and tick-borne diseases. Accumulation of basophils is detected in the tick re-infested skin lesion of animals showing ATR, and the ablation of basophils abolishes ATR in mice and guinea pigs, illustrating the critical role for basophils in the expression of ATR. In this review article, we provide a comprehensive overview of recent advances in our understanding of the cellular and molecular mechanisms responsible for the development and manifestation of ATR, with a particular focus on the role of basophils.
Collapse
Affiliation(s)
- Hajime Karasuyama
- Inflammation, Infection and Immunity Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kensuke Miyake
- Inflammation, Infection and Immunity Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Soichiro Yoshikawa
- Department of Cellular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
3
|
Platts-Mills TAE, Commins SP, Biedermann T, van Hage M, Levin M, Beck LA, Diuk-Wasser M, Jappe U, Apostolovic D, Minnicozzi M, Plaut M, Wilson JM. On the cause and consequences of IgE to galactose-α-1,3-galactose: A report from the National Institute of Allergy and Infectious Diseases Workshop on Understanding IgE-Mediated Mammalian Meat Allergy. J Allergy Clin Immunol 2020; 145:1061-1071. [PMID: 32057766 DOI: 10.1016/j.jaci.2020.01.047] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/16/2022]
Abstract
The mammalian meat allergy known as the "α-Gal syndrome" relates to IgE specific for galactose-α-1,3-galactose (α-Gal), an oligosaccharide that is present in cells and tissues of nonprimate mammals. The recognition of delayed reactions to food derived from mammals in patients with IgE to α-Gal and also the association with tick bites have been increasing worldwide. In 2018, the National Institute of Allergy and Infectious Diseases, Division of Allergy, Immunology and Transplantation, sponsored a workshop on this emerging tick-related disease. International experts from the fields of tick biology, allergy, immunology, infectious disease, and dermatology discussed the current state of our understanding of this emerging medical condition. The participants provided suggestions for specific research priorities and for the development of resources to advance our knowledge of the mechanisms, diagnosis, management, and prevention of this allergic disease. This publication is a summary of the workshop and the panel's recommendations are presented herein.
Collapse
Affiliation(s)
| | - Scott P Commins
- Departments of Medicine & Pediatrics, University of North Carolina, Chapel Hill, NC
| | - Tilo Biedermann
- Department of Dermatology and Allergy, Technical University of Munich and Unit Clinical Allergology (EKA), Helmholtz Zentrum München, Munich, Germany
| | - Marianne van Hage
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Michael Levin
- Division of Paediatric Allergy, University of Cape Town, Cape Town, South Africa
| | - Lisa A Beck
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY
| | - Maria Diuk-Wasser
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Research Center Borstel, Airway Research, Center North (ARCN), Member of the German Center for Lung Research, Borstel, Germany; Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Lübeck, Lübeck, Germany
| | - Danijela Apostolovic
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Michael Minnicozzi
- Division of Allergy, Immunology and Transplantation, Allergy, Asthma and Airway Biology Branch, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Md
| | - Marshall Plaut
- Division of Allergy, Immunology and Transplantation, Allergy, Asthma and Airway Biology Branch, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Md
| | - Jeffrey M Wilson
- Division of Allergy & Clinical Immunology, University of Virginia, Charlottesville, Va
| |
Collapse
|
4
|
Bullard R, Sharma SR, Das PK, Morgan SE, Karim S. Repurposing of Glycine-Rich Proteins in Abiotic and Biotic Stresses in the Lone-Star Tick ( Amblyomma americanum). Front Physiol 2019; 10:744. [PMID: 31275163 PMCID: PMC6591454 DOI: 10.3389/fphys.2019.00744] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/31/2019] [Indexed: 11/15/2022] Open
Abstract
Tick feeding requires the secretion of a huge number of pharmacologically dynamic proteins and other molecules which are vital for the formation of the cement cone, the establishment of the blood pool and to counter against the host immune response. Glycine-rich proteins (GRP) are found in many organisms and can function in a variety of cellular processes and structures. The functional characterization of the GRPs in the tick salivary glands has not been elucidated. GRPs have been found to play a role in the formation of the cement cone; however, new evidence suggests repurposing of GRPs in the tick physiology. In this study, an RNA interference approach was utilized to silence two glycine-rich protein genes expressed in early phase of tick feeding to determine their functional role in tick hematophagy, cement cone structure, and microbial homeostasis within the tick host. Additionally, the transcriptional regulation of GRPs was determined after exposure to biotic and abiotic stresses including cold and hot temperature, injury, and oxidative stress. This caused a significant up-regulation of AamerSigP-34358, Aam-40766, AamerSigP-39259, and Aam-36909. Our results suggest ticks repurpose these proteins and further functional characterization of GRPs may help to design novel molecular strategies to disrupt the homeostasis and the pathogen transmission.
Collapse
Affiliation(s)
- Rebekah Bullard
- Department of Cell and Molecular Biology, School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States.,Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Surendra Raj Sharma
- Department of Cell and Molecular Biology, School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Pradipta Kumar Das
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Sarah E Morgan
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Shahid Karim
- Department of Cell and Molecular Biology, School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
5
|
Cabezas-Cruz A, Hodžić A, Román-Carrasco P, Mateos-Hernández L, Duscher GG, Sinha DK, Hemmer W, Swoboda I, Estrada-Peña A, de la Fuente J. Environmental and Molecular Drivers of the α-Gal Syndrome. Front Immunol 2019; 10:1210. [PMID: 31214181 PMCID: PMC6554561 DOI: 10.3389/fimmu.2019.01210] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022] Open
Abstract
The α-Gal syndrome (AGS) is a type of allergy characterized by an IgE antibody (Ab) response against the carbohydrate Galα1-3Galβ1-4GlcNAc-R (α-Gal), which is present in glycoproteins from tick saliva and tissues of non-catarrhine mammals. Recurrent tick bites induce high levels of anti-α-Gal IgE Abs that mediate delayed hypersensitivity to consumed red meat products in humans. This was the first evidence that tick glycoproteins play a major role in allergy development with the potential to cause fatal delayed anaphylaxis to α-Gal-containing foods and drugs and immediate anaphylaxis to tick bites. Initially, it was thought that the origin of tick-derived α-Gal was either residual blood meal mammalian glycoproteins containing α-Gal or tick gut bacteria producing this glycan. However, recently tick galactosyltransferases were shown to be involved in α-Gal synthesis with a role in tick and tick-borne pathogen life cycles. The tick-borne pathogen Anaplasma phagocytophilum increases the level of tick α-Gal, which potentially increases the risk of developing AGS after a bite by a pathogen-infected tick. Two mechanisms might explain the production of anti-α-Gal IgE Abs after tick bites. The first mechanism proposes that the α-Gal antigen on tick salivary proteins is presented to antigen-presenting cells and B-lymphocytes in the context of Th2 cell-mediated immunity induced by tick saliva. The second mechanism is based on the possibility that tick salivary prostaglandin E2 triggers Immunoglobulin class switching to anti-α-Gal IgE-producing B cells from preexisting mature B cells clones producing anti-α-Gal IgM and/or IgG. Importantly, blood group antigens influence the capacity of the immune system to produce anti-α-Gal Abs which in turn impacts individual susceptibility to AGS. The presence of blood type B reduces the capacity of the immune system to produce anti-α-Gal Abs, presumably due to tolerance to α-Gal, which is very similar in structure to blood group B antigen. Therefore, individuals with blood group B and reduced levels of anti-α-Gal Abs have lower risk to develop AGS. Specific immunity to tick α-Gal is linked to host immunity to tick bites. Basophil activation and release of histamine have been implicated in IgE-mediated acquired protective immunity to tick infestations and chronic itch. Basophil reactivity was also found to be higher in patients with AGS when compared to asymptomatic α-Gal sensitized individuals. In addition, host resistance to tick infestation is associated with resistance to tick-borne pathogen infection. Anti-α-Gal IgM and IgG Abs protect humans against vector-borne pathogens and blood group B individuals seem to be more susceptible to vector-borne diseases. The link between blood groups and anti-α-Gal immunity which in turn affects resistance to vector-borne pathogens and susceptibility to AGS, suggests a trade-off between susceptibility to AGS and protection to some infectious diseases. The understanding of the environmental and molecular drivers of the immune mechanisms involved in AGS is essential to developing tools for the diagnosis, control, and prevention of this growing health problem.
Collapse
Affiliation(s)
- Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Adnan Hodžić
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Lourdes Mateos-Hernández
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Georg Gerhard Duscher
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Deepak Kumar Sinha
- Biology Center, Institute of Parasitology, Czech Academy of Sciences, Ceské Budějovice, Czechia
| | | | - Ines Swoboda
- Molecular Biotechnology Section, University of Applied Sciences, Vienna, Austria
| | | | - José de la Fuente
- SaBio, Instituto de Investigación de Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
6
|
van Nunen SA. Tick-induced allergies: mammalian meat allergy and tick anaphylaxis. Med J Aust 2019; 208:316-321. [PMID: 29642819 DOI: 10.5694/mja17.00591] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/27/2017] [Indexed: 01/01/2023]
Abstract
Mammalian meat allergy after tick bites and tick anaphylaxis are the most serious tick-induced allergies. They are often severe, should be largely avoidable and offer fascinating insights into the development and prevention of allergies. Australian clinicians reported the first cases of tick anaphylaxis and discovered the association between tick bites and the development of mammalian meat allergy. The subsequent finding of the allergen epitope within the meat responsible for the allergic reaction, α-gal (galactose-α-1,3-galactose), stimulated further interest in this emergent allergy. Reports of mammalian meat allergy associated with bites from several tick species have now come from every continent where humans are bitten by ticks. The number of diagnosed patients has continued to rise. Clinically, mammalian meat allergy and tick anaphylaxis present quite differently. The prominent role of cofactors in triggering episodes of mammalian meat allergy can make its diagnosis difficult. Management of mammalian meat allergy is complicated by the manifold potential therapeutic implications due to the widespread distribution of the mammalian meat allergen, α-gal. Exposures to α-gal-containing medications have proved lethal in a minority of people, and fatal tick anaphylaxis has been reported in Australia. Prevention of tick bites is prudent and practicable; killing the tick in situ is crucial to both primary and secondary prevention of allergic reactions. Mechanisms in the development of mammalian meat allergy constitute a paradigm for how allergies might arise.
Collapse
|
7
|
Pali‐Schöll I, Blank S, Verhoeckx K, Mueller RS, Janda J, Marti E, Seida AA, Rhyner C, DeBoer DJ, Jensen‐Jarolim E. EAACI position paper: Comparing insect hypersensitivity induced by bite, sting, inhalation or ingestion in human beings and animals. Allergy 2019; 74:874-887. [PMID: 30644576 DOI: 10.1111/all.13722] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 01/08/2023]
Abstract
Adverse reactions to insects occur in both human and veterinary patients. Systematic comparison may lead to improved recommendations for prevention and treatment in all species. In this position paper, we summarize the current knowledge on insect allergy induced via stings, bites, inhalation or ingestion, and compare reactions in companion animals to those in people. With few exceptions, the situation in human insect allergy is better documented than in animals. We focus on a review of recent literature and give overviews of the epidemiology and clinical signs. We discuss allergen sources and allergenic molecules to the extent described, and aspects of diagnosis, prophylaxis, management and therapy.
Collapse
Affiliation(s)
- Isabella Pali‐Schöll
- Comparative Medicine The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna Medical University of Vienna and University of Vienna Vienna Austria
- Institute of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Simon Blank
- Center of Allergy and Environment (ZAUM) Member of the German Center of Lung Research (DZL) Technical University of Munich and Helmholtz Center Munich Munich Germany
| | - Kitty Verhoeckx
- Department of Dermatology/Allergology University Medical Center Utrecht Utrecht The Netherlands
- TNO Zeist The Netherlands
| | - Ralf S. Mueller
- Centre for Clinical Veterinary Medicine Ludwig Maximilian University Munich Munich Germany
| | - Jozef Janda
- Faculty of Science Charles University Prague Czech Republic
| | - Eliane Marti
- Department of Clinical Research and Veterinary Public Health Vetsuisse Faculty University of Berne Berne Switzerland
| | - Ahmed A. Seida
- Department of Microbiology and Immunology Faculty of Veterinary Medicine Cairo University Cairo Egypt
| | - Claudio Rhyner
- Swiss Institute of Allergy and Asthma Research (SIAF) Davos Switzerland
| | - Douglas J. DeBoer
- School of Veterinary Medicine University of Wisconsin Madison Wisconsin
| | - Erika Jensen‐Jarolim
- Comparative Medicine The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna Medical University of Vienna and University of Vienna Vienna Austria
- Institute of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| |
Collapse
|
8
|
Wilson JM, Schuyler AJ, Workman L, Gupta M, James HR, Posthumus J, McGowan EC, Commins SP, Platts-Mills TAE. Investigation into the α-Gal Syndrome: Characteristics of 261 Children and Adults Reporting Red Meat Allergy. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:2348-2358.e4. [PMID: 30940532 DOI: 10.1016/j.jaip.2019.03.031] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/09/2019] [Accepted: 03/13/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Red meat allergy has historically been understood as a rare disease of atopic children, but the discovery of the "α-Gal syndrome," which relates to IgE to the oligosaccharide galactose-α-1,3-galactose (α-Gal), has challenged that notion. OBJECTIVE To describe the clinical and immunologic characteristics of a large group of subjects with self-reported allergy to mammalian meat. METHODS This was an observational study of 261 children and adults (range, 5-82 years) who presented for evaluation for allergic reactions to mammalian meat. Results were based on serum assays and a detailed questionnaire. RESULTS α-Gal specific IgE ≥ 0.35 IU/mL was detected in 245 subjects and symptom onset occurred ≥2 hours after eating mammalian meat in 211 (81%). Component testing supported a diagnosis of α-Gal syndrome in 95%, pork-cat syndrome in 1.9%, and primary beef allergy in 1.1%. Urticaria was reported by 93%, anaphylaxis by 60%, and gastrointestinal symptoms by 64%. Levels of IgE and IgG specific to α-Gal were similar in subjects who reported early- or delayed-onset symptoms, and in those with and without anaphylaxis. Levels of α-Gal specific IgE and severity of reactions were similar among those with and without traditional atopy, and among children (n = 35) and adults (n = 226). Blood group B trended toward being under-represented among α-Gal-sensitized subjects; however, α-Gal specific IgE titers were high in symptomatic cases with B-antigen. CONCLUSIONS The α-Gal syndrome is a regionally common form of food allergy that has a characteristic but not universal delay in symptom onset, includes gastrointestinal symptoms, can develop at any time in life, and is equally common in otherwise nonatopic individuals.
Collapse
Affiliation(s)
- Jeffrey M Wilson
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Va
| | - Alexander J Schuyler
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Va
| | - Lisa Workman
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Va
| | - Monica Gupta
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Va
| | - Hayley R James
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Va
| | | | - Emily C McGowan
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Va
| | - Scott P Commins
- Division of Rheumatology, Allergy and Immunology, University of North Carolina, Chapel Hill, NC.
| | | |
Collapse
|
9
|
Karasuyama H, Tabakawa Y, Ohta T, Wada T, Yoshikawa S. Crucial Role for Basophils in Acquired Protective Immunity to Tick Infestation. Front Physiol 2018; 9:1769. [PMID: 30581391 PMCID: PMC6293010 DOI: 10.3389/fphys.2018.01769] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/23/2018] [Indexed: 11/21/2022] Open
Abstract
Ticks are blood-sucking arthropods that can transmit various pathogenic organisms to host animals and humans, causing serious infectious diseases including Lyme disease. Tick feeding induces innate and acquired immune responses in host animals, depending on the combination of different species of animals and ticks. Acquired tick resistance (ATR) can diminish the chance of pathogen transmission from infected ticks to the host. Hence, the elucidation of cellular and molecular mechanism underlying ATR is important for the development of efficient anti-tick vaccines. In this review article, we briefly overview the history of studies on ATR and summarize recent findings, particularly focusing on the role for basophils in the manifestation of ATR. In several animal species, including cattle, guinea pigs, rabbits and mice, basophil accumulation is observed at the tick re-infestation site, even though the frequency of basophils among cellular infiltrates varies in different animal species, ranging from approximately 3% in mice to 70% in guinea pigs. Skin-resident, memory CD4+ T cells contribute to the recruitment of basophils to the tick re-infestation site through production of IL-3 in mice. Depletion of basophils before the tick re-infestation abolishes ATR in guinea pigs infested with Amblyomma americanum and mice infested with Haemaphysalis longicornis, demonstrating the crucial role of basophils in the manifestation of ATR. The activation of basophils via IgE and its receptor FcεRI is essential for ATR in mice. Histamine released from activated basophils functions as an important effector molecule in murine ATR, probably through promotion of epidermal hyperplasia which interferes with tick attachment or blood feeding in the skin. Accumulating evidence suggests the following scenario. The 1st tick infestation triggers the production of IgE against tick saliva antigens in the host, and blood-circulating basophils bind such IgE on the cell surface via FcεRI. In the 2nd infestation, IgE-armed basophils are recruited to tick-feeding sites and stimulated by tick saliva antigens to release histamine that promotes epidermal hyperplasia, contributing to ATR. Further studies are needed to clarify whether this scenario in mice can be applied to ATR in other animal species and humans.
Collapse
Affiliation(s)
- Hajime Karasuyama
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuya Tabakawa
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takuya Ohta
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Wada
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Division of Molecular Medicine, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Soichiro Yoshikawa
- Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
10
|
Huschek G, Bönick J, Löwenstein Y, Sievers S, Rawel H. Quantification of allergenic plant traces in baked products by targeted proteomics using isotope marked peptides. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.07.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Cabezas-Cruz A, Mateos-Hernández L, Pérez-Cruz M, Valdés JJ, Mera IGFD, Villar M, de la Fuente J. Regulation of the Immune Response to α-Gal and Vector-borne Diseases. Trends Parasitol 2015; 31:470-476. [DOI: 10.1016/j.pt.2015.06.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 05/18/2015] [Accepted: 06/24/2015] [Indexed: 11/26/2022]
|
12
|
Woodfolk JA, Commins SP, Schuyler AJ, Erwin EA, Platts-Mills TAE. Allergens, sources, particles, and molecules: Why do we make IgE responses? Allergol Int 2015; 64:295-303. [PMID: 26433525 PMCID: PMC5406225 DOI: 10.1016/j.alit.2015.06.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 12/16/2022] Open
Abstract
Allergens are foreign proteins or glycoproteins that are the target of IgE antibody responses in humans. The relationship between subsequent exposure and the allergic symptoms is often or usually obvious; however, there is increasing evidence that in asthma, atopic dermatitis and some forms of food allergy the induction of symptoms is delayed or chronic. The primary exposure to inhaled allergens is to the particles, which are capable of carrying allergens in the air. Thus, the response reflects not only the properties of the proteins, but also the biological properties of the other constituents of the particle. This is best understood in relation to the mite fecal particles in which the contents include many different immunologically active substances. Allergic disease first became a major problem over 100 years ago, and for many years sensitization to pollens was the dominant form of these diseases. The rise in pediatric asthma correlates best with the move of children indoors, which started in 1960 and was primarily driven by indoor entertainment for children. While the causes of the increase are not simple they include both a major increase in sensitization to indoor allergens and the complex consequences of inactivity. Most recently, there has also been an increase in food allergy. Understanding this has required a reappraisal of the importance of the skin as a route for sensitization. Overall, understanding allergic diseases requires knowing about the sources, the particles and the routes of exposure as well as the properties of the individual allergens.
Collapse
Affiliation(s)
- Judith A Woodfolk
- Asthma and Allergic Diseases Center, University of Virginia Health System, Charlottesville, VA, United States
| | - Scott P Commins
- Asthma and Allergic Diseases Center, University of Virginia Health System, Charlottesville, VA, United States
| | - Alexander J Schuyler
- Asthma and Allergic Diseases Center, University of Virginia Health System, Charlottesville, VA, United States
| | - Elizabeth A Erwin
- Asthma and Allergic Diseases Center, University of Virginia Health System, Charlottesville, VA, United States
| | - Thomas A E Platts-Mills
- Asthma and Allergic Diseases Center, University of Virginia Health System, Charlottesville, VA, United States.
| |
Collapse
|
13
|
Rispens T. IgE antibodies specific to alpha-gal: an example of clinically relevant cross-reactive anti-carbohydrate antibodies. Clin Exp Allergy 2015; 44:1008-11. [PMID: 25052776 DOI: 10.1111/cea.12351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- T Rispens
- Sanquin Research, Amsterdam, The Netherlands; Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
14
|
van Nunen S. Tick-induced allergies: mammalian meat allergy, tick anaphylaxis and their significance. Asia Pac Allergy 2015; 5:3-16. [PMID: 25653915 PMCID: PMC4313755 DOI: 10.5415/apallergy.2015.5.1.3] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 12/21/2022] Open
Abstract
Serious tick-induced allergies comprise mammalian meat allergy following tick bites and tick anaphylaxis. Mammalian meat allergy is an emergent allergy, increasingly prevalent in tick-endemic areas of Australia and the United States, occurring worldwide where ticks are endemic. Sensitisation to galactose-α-1,3-galactose (α-Gal) has been shown to be the mechanism of allergic reaction in mammalian meat allergy following tick bite. Whilst other carbohydrate allergens have been identified, this allergen is unique amongst carbohydrate food allergens in provoking anaphylaxis. Treatment of mammalian meat anaphylaxis involves avoidance of mammalian meat and mammalian derived products in those who also react to gelatine and mammalian milks. Before initiating treatment with certain therapeutic agents (e.g., cetuximab, gelatine-containing substances), a careful assessment of the risk of anaphylaxis, including serological analysis for α-Gal specific-IgE, should be undertaken in any individual who works, lives, volunteers or recreates in a tick endemic area. Prevention of tick bites may ameliorate mammalian meat allergy. Tick anaphylaxis is rare in countries other than Australia. Tick anaphylaxis is secondarily preventable by prevention and appropriate management of tick bites. Analysis of tick removal techniques in tick anaphylaxis sufferers offers insights into primary prevention of both tick and mammalian meat anaphylaxis. Recognition of the association between mammalian meat allergy and tick bites has established a novel cause and effect relationship between an environmental exposure and subsequent development of a food allergy, directing us towards examining environmental exposures as provoking factors pivotal to the development of other food allergies and refocusing our attention upon causation of allergy in general.
Collapse
Affiliation(s)
- Sheryl van Nunen
- Department of Clinical Immunology and Allergy, Royal North Shore Hospital and Sydney Medical School-Northern, St Leonards NSW 2065, Australia
| |
Collapse
|
15
|
Cabezas-Cruz A, Valdés J, de la Fuente J. Cancer research meets tick vectors for infectious diseases. THE LANCET. INFECTIOUS DISEASES 2014; 14:916-7. [DOI: 10.1016/s1473-3099(14)70902-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
van Nunen S. Galactose-Alpha-1,3-Galactose, Mammalian Meat and Anaphylaxis: A World-Wide Phenomenon? CURRENT TREATMENT OPTIONS IN ALLERGY 2014. [DOI: 10.1007/s40521-014-0022-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|