1
|
Li X, Khan I, Han R, Huang G, Xia W, Yin L, Leong WK, Su L, Law BYK, Wong VKW, Wu Q, Guo X, Hsiao WLW. Gynostemma pentaphyllum saponins shield mice from peanut allergy by modulation of gut microbiota: A novel approach for peanut allergy management. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156101. [PMID: 39522254 DOI: 10.1016/j.phymed.2024.156101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Food allergies, particularly peanut (PN) allergies, are a growing concern, with fatal anaphylaxis incidents often reported. While palforzia is the sole FDA-approved drug for managing PN allergies, it is not universally effective. PURPOSE This study aimed to investigate the potential of Gynostemma pentaphyllum saponins (GpS) as a novel therapeutic agent for PN allergy through modulation of gut microbiota, addressing the limitations of current treatments. METHODS To elucidate the role of GpS on peanut allergy, we first built a PN-sensitized C57BL/6J model mice. Through comprehensive sequencing analysis, we identified Parabacteroides distasonis as a key bacterium triggering PN sensitization. Employing the same mouse model, GpS was evaluated for its effects on anaphylactic symptoms, serum immunoglobulin levels, and allergy-related biomarkers. 16S rRNA sequencing and transcriptomic analysis were applied to investigate the impact of GpS on the host's gut epithelium and microbiome. RESULTS GpS treatment effectively reduced anaphylactic symptoms in PN-sensitized mice, as shown by decreased IgG1, total IgE, and PN-specific IgE levels. It also modulated the immune response by suppressing proinflammatory cytokines (IL-1β, IFN-γ, IL-21) and chemokines (CCL5, CCL12, CCL17, CCL22), while enhancing anti-inflammatory cytokines (IL-4, IL-10, IL-12, IL-13). Fecal microbial transplant from GpS-treated Model mice to PN-sensitized mice displayed anti-peanut allergy effects. Additionally, the administration of GpS-enhanced bacteria (Clostridium aldenese or Lactobacillus murinus), alleviated anaphylactic symptoms and reduced serum allergy markers in PN-sensitized mice. CONCLUSION To conclude, we revealed the intestinal environment, signaling molecules, mucosal cytokines, and commensal microbial profiles in the peanut-sensitized mouse model. We further presented evidence for the protective effect of GpS against PN allergen sensitization by downregulating a series of food-allergy-associated biomarkers and cytokines via the modulation of gut bacteria. More importantly, supported by both in vitro and in vivo experiments, we demonstrated that the protective effect of GpS against PN-allergy is through the enhancement of two commensal bacteria, Clostridium aldenese, and Lactobacillus murinus.
Collapse
Affiliation(s)
- Xiaoang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ruixuan Han
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Guoxin Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Wenrui Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lin Yin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Wai Kit Leong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lu Su
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Qiang Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiaoling Guo
- Foshan Maternal and Child Health Research Institute, Foshan Women and Children's Hospital Affiliated to Southern Medical University, Foshan, China
| | - W L Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Foshan Maternal and Child Health Research Institute, Foshan Women and Children's Hospital Affiliated to Southern Medical University, Foshan, China.
| |
Collapse
|
2
|
Guo Y, Liu Y, Rui B, Lei Z, Ning X, Liu Y, Li M. Crosstalk between the gut microbiota and innate lymphoid cells in intestinal mucosal immunity. Front Immunol 2023; 14:1171680. [PMID: 37304260 PMCID: PMC10249960 DOI: 10.3389/fimmu.2023.1171680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
The human gastrointestinal mucosa is colonized by thousands of microorganisms, which participate in a variety of physiological functions. Intestinal dysbiosis is closely associated with the pathogenesis of several human diseases. Innate lymphoid cells (ILCs), which include NK cells, ILC1s, ILC2s, ILC3s and LTi cells, are a type of innate immune cells. They are enriched in the mucosal tissues of the body, and have recently received extensive attention. The gut microbiota and its metabolites play important roles in various intestinal mucosal diseases, such as inflammatory bowel disease (IBD), allergic disease, and cancer. Therefore, studies on ILCs and their interaction with the gut microbiota have great clinical significance owing to their potential for identifying pharmacotherapy targets for multiple related diseases. This review expounds on the progress in research on ILCs differentiation and development, the biological functions of the intestinal microbiota, and its interaction with ILCs in disease conditions in order to provide novel ideas for disease treatment in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming Li
- *Correspondence: Yinhui Liu, ; Ming Li,
| |
Collapse
|
3
|
Chen C, Liu C, Zhang K, Xue W. The role of gut microbiota and its metabolites short-chain fatty acids in food allergy. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
4
|
Gu S, Yang D, Liu C, Xue W. The role of probiotics in prevention and treatment of food allergy. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Bai J, Zhao X, Zhang M, Xia X, Yang A, Chen H. Gut microbiota: A target for prebiotics and probiotics in the intervention and therapy of food allergy. Crit Rev Food Sci Nutr 2022; 64:3623-3637. [PMID: 36218372 DOI: 10.1080/10408398.2022.2133079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food allergy has become a major public health problem all over the world. Evidence showed that allergic reactions induced by food proteins often lead to disturbances in the gut microbiota (symbiotic bacteria). Gut microbiota plays an important role in maintaining the balance between intestinal immune tolerance and allergic reactions. Dietary intervention has gradually become an important method for the prevention and treatment of allergic diseases, and changing the composition of gut microbiota through oral intake of prebiotics and probiotics may serve as a new effective adjuvant treatment measure for allergic diseases. In this paper, the main mechanism of food allergy based on intestinal immunity was described firstly. Then, the clinical and experimental evidence showed that different prebiotics and probiotics affect food allergy by changing the structure and composition of gut microbiota was summarized. Moreover, the molecular mechanism in which the gut microbiota and their metabolites may directly or indirectly regulate the immune system or intestinal epithelial barrier function to affect food immune tolerance of host were also reviewed to help in the development of food allergy prevention and treatment strategies based on prebiotics and probiotics.
Collapse
Affiliation(s)
- Jing Bai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Xiaoli Zhao
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Maolin Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Xinlei Xia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Anshu Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Yang H, Qu Y, Gao Y, Sun S, Wu R, Wu J. Research Progress on the Correlation between the Intestinal Microbiota and Food Allergy. Foods 2022; 11:foods11182913. [PMID: 36141041 PMCID: PMC9498665 DOI: 10.3390/foods11182913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
The increasing incidence of food allergy is becoming a substantial public health concern. Increasing evidence suggests that alterations in the composition of the intestinal microbiota play a part in the development of food allergy. Additionally, the application of probiotics to correct gut microbiota imbalances and regulate food allergy has become a research hotspot. However, the mechanism by which the gut microbiota regulates food allergy and the efficacy of probiotics are still in the preliminary exploration stage, and there are no clear and specific conclusions. The aim of this review is to provide information regarding the immune mechanism underlying food allergy, the correlation between the intestinal microbiota and food allergy, a detailed description of causation, and mechanisms by which the intestinal microbiota regulates food allergy. Subsequently, we highlight how probiotics modulate the gut microbiome–immune axis to alleviate food allergy. This study will contribute to the dovetailing of bacterial therapeutics with immune system in allergic individuals to prevent food allergy and ameliorate food allergy symptoms.
Collapse
Affiliation(s)
| | | | | | | | - Rina Wu
- Correspondence: or ; Tel./Fax: +86-24-88487161
| | | |
Collapse
|
7
|
Yang T, Li C, Xue W, Huang L, Wang Z. Natural immunomodulating substances used for alleviating food allergy. Crit Rev Food Sci Nutr 2021; 63:2407-2425. [PMID: 34494479 DOI: 10.1080/10408398.2021.1975257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Food allergy is a serious health problem affecting more than 10% of the human population worldwide. Medical treatments for food allergy remain limited because immune therapy is risky and costly, and anti-allergic drugs have many harmful side effects and can cause drug dependence. In this paper, we review natural bioactive substances capable of alleviating food allergy. The sources of the anti-allergic substances reviewed include plants, animals, and microbes, and the types of substances include polysaccharides, oligosaccharides, polyphenols, phycocyanin, polyunsaturated fatty acids, flavonoids, terpenoids, quinones, alkaloids, phenylpropanoids, and probiotics. We describe five mechanisms involved in anti-allergic activities, including binding with epitopes located in allergens, affecting the gut microbiota, influencing intestinal epithelial cells, altering antigen presentation and T cell differentiation, and inhibiting the degranulation of effector cells. In the discussion, we present the limitations of existing researches as well as promising advances in the development of anti-allergic foods and/or immunomodulating food ingredients that can effectively prevent or alleviate food allergy. This review provides a reference for further research on anti-allergic materials and their hyposensitizing mechanisms.
Collapse
Affiliation(s)
- Tian Yang
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, China
| | - Cheng Li
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, China
| | - Wentong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Linjuan Huang
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, China
| | - Zhongfu Wang
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, China
| |
Collapse
|
8
|
Łoś-Rycharska E, Gołębiewski M, Grzybowski T, Rogalla-Ładniak U, Krogulska A. The microbiome and its impact on food allergy and atopic dermatitis in children. Postepy Dermatol Alergol 2020; 37:641-650. [PMID: 33240001 PMCID: PMC7675070 DOI: 10.5114/ada.2019.90120] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/29/2019] [Indexed: 01/23/2023] Open
Abstract
Food allergy (FA) affects 4-10% of children, especially children with atopic dermatitis (AD). During infancy the gut microbiome may determine both the course of FA and tolerance to food allergens. Analogically, the skin microbiome changes in the course of AD. Most studies have associated FA with a lower abundance and diversity of Lactobacillales and Clostridiales, but greater numbers of Enterobacterales, while AD in children has been associated with lower numbers of Staphylococcus epidermidis and S. hominis but an abundance of S. aureus and Streptococcus species. An understanding of the impact of the microbiome on the clinical course of FA and AD may allow for the development of new models of allergy treatment and prevention.
Collapse
Affiliation(s)
- Ewa Łoś-Rycharska
- Department of Paediatrics, Allergology and Gastroenterology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Marcin Gołębiewski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Torun, Poland
- Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Torun, Poland
| | - Tomasz Grzybowski
- Chair of Forensic Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Urszula Rogalla-Ładniak
- Chair of Forensic Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Aneta Krogulska
- Department of Paediatrics, Allergology and Gastroenterology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| |
Collapse
|
9
|
Lemoine L, Dieckmann R, Al Dahouk S, Vincze S, Luch A, Tralau T. Microbially competent 3D skin: a test system that reveals insight into host-microbe interactions and their potential toxicological impact. Arch Toxicol 2020; 94:3487-3502. [PMID: 32681188 PMCID: PMC7502063 DOI: 10.1007/s00204-020-02841-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023]
Abstract
The skin`s microbiome is predominantly commensalic, harbouring a metabolic potential far exceeding that of its host. While there is clear evidence that bacteria-dependent metabolism of pollutants modulates the toxicity for the host there is still a lack of models for investigating causality of microbiome-associated pathophysiology or toxicity. We now report on a biologically characterised microbial-skin tissue co-culture that allows studying microbe-host interactions for extended periods of time in situ. The system is based on a commercially available 3D skin model. In a proof-of-concept, this model was colonised with single and mixed cultures of two selected skin commensals. Two different methods were used to quantify the bacteria on the surface of the skin models. While Micrococcus luteus established a stable microbial-skin tissue co-culture, Pseudomonas oleovorans maintained slow continuous growth over the 8-day cultivation period. A detailed skin transcriptome analysis showed bacterial colonisation leading to up to 3318 significant changes. Additionally, FACS, ELISA and Western blot analyses were carried out to analyse secretion of cytokines and growth factors. Changes found in colonised skin varied depending on the bacterial species used and comprised immunomodulatory functions, such as secretion of IL-1α/β, Il-6, antimicrobial peptides and increased gene transcription of IL-10 and TLR2. The colonisation also influenced the secretion of growth factors such as VFGFA and FGF2. Notably, many of these changes have already previously been associated with the presence of skin commensals. Concomitantly, the model gained first insights on the microbiome's influence on skin xenobiotic metabolism (i.e., CYP1A1, CYP1B1 and CYP2D6) and olfactory receptor expression. The system provides urgently needed experimental access for assessing the toxicological impact of microbiome-associated xenobiotic metabolism in situ.
Collapse
Affiliation(s)
- Lisa Lemoine
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany.
- Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.
| | - Ralf Dieckmann
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, 12277, Berlin, Germany
| | - Sascha Al Dahouk
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, 12277, Berlin, Germany
| | - Szilvia Vincze
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, 12277, Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Tewes Tralau
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| |
Collapse
|
10
|
[Immunological background and pathomechanisms of food allergies]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2017; 59:723-31. [PMID: 27177897 DOI: 10.1007/s00103-016-2346-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Recent advances in immunology have greatly improved our understanding of the pathomechanisms of food allergies. Food allergies are caused and maintained by complex interactions of the innate and adaptive immune system involving antigen-presenting cells (APC), T cells, group 2 innate lymphoid cells (ILC2), epithelial cells (EC) and effectors cells. Additionally, epigenetic factors, the intestinal microbiome and nutritional factors modulating the gastrointestinal lymphatic tissue probably have a significant impact on allergy development. However, why certain individuals develop tolerance while others mount allergic responses, the factors defining the allergenicity of food proteins, as well as the immunological mechanisms triggering allergy development have yet to be analyzed in detail.
Collapse
|
11
|
Influence of microbiome and diet on immune responses in food allergy models. ACTA ACUST UNITED AC 2016; 17-18:71-80. [PMID: 29967644 DOI: 10.1016/j.ddmod.2016.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The intestinal immune system is intimately connected with the vast array of microbes present within the gut and the diversity of food components that are consumed daily. The discovery of novel molecular mechanisms, which mediate host-microbe-nutrient communication, have highlighted the important roles played by microbes and dietary factors in influencing mucosal inflammatory and allergic responses. In this review, we summarize the recent important findings in this field, which are important for food allergy and particularly relevant to animal models of food allergy.
Collapse
|
12
|
Neeland MR, Martino DJ, Allen KJ. The role of gene-environment interactions in the development of food allergy. Expert Rev Gastroenterol Hepatol 2016; 9:1371-8. [PMID: 26357960 DOI: 10.1586/17474124.2015.1084873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The rates of IgE-mediated food allergy have increased globally, particularly in developed countries. The rising incidence is occurring more rapidly than changes to the genome sequence would allow, suggesting that environmental exposures that alter the immune response play an important role. Genetic factors may also be used to predict an increased predisposition to these environmental risk factors, giving rise to the concept of gene-environment interactions, whereby differential risk of environmental exposures is mediated through the genome. Increasing evidence also suggests a role for epigenetic mechanisms, which are sensitive to environmental exposures, in the development of food allergy. This paper discusses the current state of knowledge regarding the environmental and genetic risk factors for food allergy and how environmental exposures may interact with immune genes to modify disease risk or outcome.
Collapse
Affiliation(s)
- Melanie R Neeland
- a 1 Centre of Food and Allergy Research, Murdoch Childrens Research Institute, The Royal Children's Hospital, 50 Flemington Road, Parkville 3052, Victoria, Australia
| | - David J Martino
- a 1 Centre of Food and Allergy Research, Murdoch Childrens Research Institute, The Royal Children's Hospital, 50 Flemington Road, Parkville 3052, Victoria, Australia.,b 2 Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | | |
Collapse
|
13
|
Mudde ACA, Lexmond WS, Blumberg RS, Nurko S, Fiebiger E. Eosinophilic esophagitis: published evidences for disease subtypes, indications for patient subpopulations, and how to translate patient observations to murine experimental models. World Allergy Organ J 2016; 9:23. [PMID: 27458501 PMCID: PMC4947322 DOI: 10.1186/s40413-016-0114-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/01/2016] [Indexed: 02/06/2023] Open
Abstract
Eosinophilic esophagitis (EoE) is a chronic inflammatory disorder of the esophagus and commonly classified as a Th2-type allergy. Major advances in our understanding of the EoE pathophysiology have recently been made, but clinicians struggle with highly unpredictable therapy responses indicative of phenotypic diversity within the patient population. Here, we summarize evidences for the existence of EoE subpopulations based on diverse inflammatory characteristics of the esophageal tissue in EoE. Additionally, clinical characteristics of EoE patients support the concept of disease subtypes. We conclude that clinical and experimental evidences indicate that EoE is an umbrella term for conditions that are unified by esophageal eosinophilia but that several disease subgroups with various inflammatory esophageal patterns and/or different clinical features exist. We further discuss strategies to study the pathophysiologic differences as observed in EoE patients in murine experimental EoE. Going forward, models of EoE that faithfully mimic EoE subentities as defined in humans will be essential because mechanistic studies on triggers which regulate the onset of diverse EoE subpopulations are not feasible in patients. Understanding how and why different EoE phenotypes develop will be a first and fundamental step to establish strategies that integrate individual variations of the EoE pathology into personalized therapy.
Collapse
Affiliation(s)
- Anne C A Mudde
- Department of Medicine, Harvard Medical School, and Division of Gastroenterology and Nutrition, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115 USA
| | - Willem S Lexmond
- Department of Medicine, Harvard Medical School, and Division of Gastroenterology and Nutrition, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115 USA
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA USA
| | - Samuel Nurko
- Department of Medicine, Harvard Medical School, and Division of Gastroenterology and Nutrition, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115 USA ; Center for Motility and Functional Gastrointestinal Disorders, Boston, MA USA ; Eosinophilic Gastrointestinal Disease Center, Boston Children's Hospital, Boston, MA USA
| | - Edda Fiebiger
- Department of Medicine, Harvard Medical School, and Division of Gastroenterology and Nutrition, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115 USA
| |
Collapse
|
14
|
Martino DJ, Saffery R, Allen KJ, Prescott SL. Epigenetic modifications: mechanisms of disease and biomarkers of food allergy. Curr Opin Immunol 2016; 42:9-15. [PMID: 27218660 DOI: 10.1016/j.coi.2016.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 04/27/2016] [Accepted: 05/05/2016] [Indexed: 01/20/2023]
Abstract
The rise in IgE-mediated food allergy in recent times is the likely result of gene-environment interactions mediated via epigenetic pathways. As epigenetic modifications, including DNA methylation, are at the interface between the environment and the genome, they may be ideal biomarkers of modifiable disease pathways. High-throughput methylation profiling of immune cell subtypes or whole blood from patients allows the identification of disease specific epigenetic variants. If faithfully tracking with disease parameters, these 'signatures' may have clinical applications as biomarkers of disease or therapeutic response. Development of such tools will depend on a number of factors, including determining the most appropriate experimental approach, analysis methodology, patient groups, and informative target cells/tissues. Here we discuss these potential applications and their implications for food allergy practise.
Collapse
Affiliation(s)
- David J Martino
- Murdoch Childrens Research Institute, The University of Melbourne Department of Paediatrics, Royal Children's Hospital, Melbourne, Australia; The University of Melbourne, Department of Paediatrics, Australia; Telethon Institute for Child Health Research, Australia; University of Western Australia, Department of Paediatrics, Australia; IN-FLAME International Inflammation Network, Australia
| | - Richard Saffery
- Murdoch Childrens Research Institute, The University of Melbourne Department of Paediatrics, Royal Children's Hospital, Melbourne, Australia; The University of Melbourne, Department of Paediatrics, Australia
| | - Katrina J Allen
- Murdoch Childrens Research Institute, The University of Melbourne Department of Paediatrics, Royal Children's Hospital, Melbourne, Australia; The University of Melbourne, Department of Paediatrics, Australia; University of Manchester, Institute of Inflammation and Repair, Australia; IN-FLAME International Inflammation Network, Australia
| | - Susan L Prescott
- Murdoch Childrens Research Institute, The University of Melbourne Department of Paediatrics, Royal Children's Hospital, Melbourne, Australia; Telethon Institute for Child Health Research, Australia; University of Western Australia, Department of Paediatrics, Australia; IN-FLAME International Inflammation Network, Australia.
| |
Collapse
|
15
|
Alcocer MJC, Ares SDLC, López-Calleja I. Recent advances in food allergy. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2016. [DOI: 10.1590/1981-6723.4716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Summary Food allergy is a public health issue that has significantly increased worldwide in the past decade, affecting consumers’ quality of life and making increasing demands on health service resources. Despite recent advances in many areas of diagnosis and treatment, our general knowledge of the basic mechanisms of the disease remain limited i.e., not at pace with the exponential number of new cases and the explosion of new technologies. Many important key questions remain: What defines a major allergen? Why do some individuals develop food allergies and others do not? Which are the environmental factors? Could the environmental factors be monitored through epigenetics or modified by changes in the microbiome? Can tolerance to food be induced? Why are some foods more likely to trigger allergies than others? Does the route and timing of exposure have any role on sensitization? These and many other related questions remain unanswered. In this short review some of these topics are addressed in the light of recent advances in the area.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Eosinophilic esophagitis (EoE) is a chronic allergic disease triggered by food allergens with an increasing prevalence. This review highlights recent research advances in EoE with a focus on the literature of the past 18 months. RECENT FINDINGS The incidence of EoE in the black population is higher than previously suggested. A novel locus spanning CAPN14 is associated with EoE. Diagnostic tests utilizing an analysis of EoE-specific transcriptome have been improved. Standardized EoE symptom score systems have been established. Treatment trials show the promise and limitations of allergen avoidance, antiinflammatory reagents, and anti-interleukin-13 antibodies. Insights into disease mechanisms highlight the role of invariant natural killer T cells and group 2 innate immune cells. Epithelial barrier protein desmoglein 1, bone morphogenetic protein antagonist follistatin, neurotrophic tyrosine kinase receptor type 1, and CAPN14 have been defined as new potential therapeutic targets in EoE as regulators of the inflammatory interleukin-13-axis. The role of IgG4 in the disease mechanisms has been suggested. SUMMARY Genetic predisposition influenced by environmental factors increases EoE susceptibility. Research identifying the critical events leading to allergen sensitization and the esophagus-specific responses that drive EoE is evolving, and will lead to a better understanding of EoE and new therapeutic approaches for the disease.
Collapse
|