1
|
Maleszka R. Reminiscences on the honeybee genome project and the rise of epigenetic concepts in insect science. INSECT MOLECULAR BIOLOGY 2024; 33:444-456. [PMID: 38196200 DOI: 10.1111/imb.12888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024]
Abstract
The sequencing of the honeybee genome in 2006 was an important technological and logistic achievement experience. But what benefits have flown from the honeybee genome project? What does the annotated genomic assembly mean for the study of behavioural complexity and organismal function in honeybees? Here, I discuss several lines of research that have arisen from this project and highlight the rapidly expanding studies on insect epigenomics, emergent properties of royal jelly, the mechanism of nutritional control of development and the contribution of epigenomic regulation to the evolution of sociality. I also argue that the term 'insect epigenetics' needs to be carefully redefined to reflect the diversity of epigenomic toolkits in insects and the impact of lineage-specific innovations on organismal outcomes. The honeybee genome project helped pioneer advances in social insect molecular biology, and fuelled breakthrough research into the role of flexible epigenomic control systems in linking genotype to phenotype.
Collapse
Affiliation(s)
- Ryszard Maleszka
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
2
|
Phillips D, Noble D. Bubbling beyond the barrier: exosomal RNA as a vehicle for soma-germline communication. J Physiol 2024; 602:2547-2563. [PMID: 37936475 DOI: 10.1113/jp284420] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
'Weismann's barrier' has restricted theories of heredity to the transmission of genomic variation for the better part of a century. However, the discovery and elucidation of epigenetic mechanisms of gene regulation such as DNA methylation and histone modifications has renewed interest in studies on the inheritance of acquired traits and given them mechanistic plausibility. Although it is now clear that these mechanisms allow many environmentally acquired traits to be transmitted to the offspring, how phenotypic information is communicated from the body to its gametes has remained a mystery. Here, we discuss recent evidence that such communication is mediated by somatic RNAs that travel inside extracellular vesicles to the gametes where they reprogram the offspring epigenome and phenotype. How gametes learn about bodily changes has implications not only for the clinic, but also for evolutionary theory by bringing together intra- and intergenerational mechanisms of phenotypic plasticity and adaptation.
Collapse
Affiliation(s)
- Daniel Phillips
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Denis Noble
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Girard C. The tri-flow adaptiveness of codes in major evolutionary transitions. Biosystems 2024; 237:105133. [PMID: 38336225 DOI: 10.1016/j.biosystems.2024.105133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
Life codes increase in both number and variety with biological complexity. Although our knowledge of codes is constantly expanding, the evolutionary progression of organic, neural, and cultural codes in response to selection pressure remains poorly understood. Greater clarification of the selective mechanisms is achieved by investigating how major evolutionary transitions reduce spatiotemporal and energetic constraints on transmitting heritable code to offspring. Evolution toward less constrained flows is integral to enduring flow architecture everywhere, in both engineered and natural flow systems. Beginning approximately 4 billion years ago, the most basic level for transmitting genetic material to offspring was initiated by protocell division. Evidence from ribosomes suggests that protocells transmitted comma-free or circular codes, preceding the evolution of standard genetic code. This rudimentary information flow within protocells is likely to have first emerged within the geo-energetic and geospatial constraints of hydrothermal vents. A broad-gauged hypothesis is that major evolutionary transitions overcame such constraints with tri-flow adaptations. The interconnected triple flows incorporated energy-converting, spatiotemporal, and code-based informational dynamics. Such tri-flow adaptations stacked sequence splicing code on top of protein-DNA recognition code in eukaryotes, prefiguring the transition to sexual reproduction. Sex overcame the spatiotemporal-energetic constraints of binary fission with further code stacking. Examples are tubulin code and transcription initiation code in vertebrates. In a later evolutionary transition, language reduced metabolic-spatiotemporal constraints on inheritance by stacking phonetic, phonological, and orthographic codes. In organisms that reproduce sexually, each major evolutionary transition is shown to be a tri-flow adaptation that adds new levels of code-based informational exchange. Evolving biological complexity is also shown to increase the nongenetic transmissibility of code.
Collapse
Affiliation(s)
- Chris Girard
- Department of Global and Sociocultural Studies, Florida International University, Miami, FL 33199, United States.
| |
Collapse
|
4
|
Igamberdiev AU. Reflexive structure of the conscious subject and the origin of language codes. Biosystems 2023; 231:104983. [PMID: 37499739 DOI: 10.1016/j.biosystems.2023.104983] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The code paradigm in biological and social sciences arises to Aristotle. For conscious activity, Aristotle introduced the notion of reflexive self-awareness in sense perception. This reflexive process generates the codes that signify sensual perceptive events and constrain human behavior. Coding systems grow via the generation of hypertextual statements reflecting new meanings in the process defined by Marcello Barbieri as a codepoiesis. It results in the establishment of higher-level codes (metacodes) forming the semiotic screen that has a nature of the set of perceived objects internalized by the conscious subject in encoding the symbolic actions. The characteristic feature of the semiotic screen consists in its property of being shared between the communicating agents. A sufficient complexity of nervous system, through the appearance of mirror neurons that are fired both when a subject executes certain action and when he observes another subject performing a similar action, represents a prerequisite for the emergence of reflexive codes in evolution. The codes appearing as a result of reflexive awareness and establishing different sociotypes, span from the symbolic systems of art and music through the common language to the formal language of logic and mathematics. Social dynamics is based on the implementation of reflexive coding activity and results in the growth and decay of social systems and civilizations.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
5
|
Ivasyk I, Olivos-Cisneros L, Valdés-Rodríguez S, Droual M, Jang H, Schmitz RJ, Kronauer DJC. DNMT1 mutant ants develop normally but have disrupted oogenesis. Nat Commun 2023; 14:2201. [PMID: 37072475 PMCID: PMC10113331 DOI: 10.1038/s41467-023-37945-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/06/2023] [Indexed: 04/20/2023] Open
Abstract
Although DNA methylation is an important gene regulatory mechanism in mammals, its function in arthropods remains poorly understood. Studies in eusocial insects have argued for its role in caste development by regulating gene expression and splicing. However, such findings are not always consistent across studies, and have therefore remained controversial. Here we use CRISPR/Cas9 to mutate the maintenance DNA methyltransferase DNMT1 in the clonal raider ant, Ooceraea biroi. Mutants have greatly reduced DNA methylation, but no obvious developmental phenotypes, demonstrating that, unlike mammals, ants can undergo normal development without DNMT1 or DNA methylation. Additionally, we find no evidence of DNA methylation regulating caste development. However, mutants are sterile, whereas in wild-type ants, DNMT1 is localized to the ovaries and maternally provisioned into nascent oocytes. This supports the idea that DNMT1 plays a crucial but unknown role in the insect germline.
Collapse
Affiliation(s)
- Iryna Ivasyk
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA.
| | | | - Stephany Valdés-Rodríguez
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Marie Droual
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| | - Hosung Jang
- Department of Genetics, University of Georgia, Athens, GA, USA
| | | | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
6
|
de Carvalho CF. Epigenetic effects of climate change on insects. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101029. [PMID: 37028647 DOI: 10.1016/j.cois.2023.101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 05/10/2023]
Abstract
Climate change has been causing severe modifications to the environment that are predicted to aggravate in the future, which create critical challenges for insects to cope. Populations can respond to the changes depending on the standing genetic variation. Additionally, they could potentially rely on epigenetic mechanisms as a source of phenotypic variation. These mechanisms can influence gene regulation and can respond to the external environment, being implicated in phenotypic plasticity. Thus, epigenetic variation could be advantageous in changing, unpredictable environments. However, little is known about causal relationships between epigenetic marks and insects' phenotypes, and whether the effects are truly beneficial to the fitness. Empirical studies are now urgent to better understand whether epigenetic variation can help or hinder insect populations facing climate change.
Collapse
Affiliation(s)
- Clarissa F de Carvalho
- Dep. de Ecologia e Biologia Evolutiva, Federal University of São Paulo, Diadema 09972-270, Brazil.
| |
Collapse
|
7
|
Zhao Y, Hu J, Wu J, Li Z. ChIP-seq profiling of H3K4me3 and H3K27me3 in an invasive insect, Bactrocera dorsalis. Front Genet 2023; 14:1108104. [PMID: 36911387 PMCID: PMC9996634 DOI: 10.3389/fgene.2023.1108104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: While it has been suggested that histone modifications can facilitate animal responses to rapidly changing environments, few studies have profiled whole-genome histone modification patterns in invasive species, leaving the regulatory landscape of histone modifications in invasive species unclear. Methods: Here, we screen genome-wide patterns of two important histone modifications, trimethylated Histone H3 Lysine 4 (H3K4me3) and trimethylated Histone H3 Lysine 27 (H3K27me3), in adult thorax muscles of a notorious invasive pest, the Oriental fruit fly Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), using Chromatin Immunoprecipitation with high-throughput sequencing (ChIP-seq). Results: We identified promoters featured by the occupancy of H3K4me3, H3K27me3 or bivalent histone modifications that were respectively annotated with unique genes key to muscle development and structure maintenance. In addition, we found H3K27me3 occupied the entire body of genes, where the average enrichment was almost constant. Transcriptomic analysis indicated that H3K4me3 is associated with active gene transcription, and H3K27me3 is mostly associated with transcriptional repression. Importantly, we identified genes and putative motifs modified by distinct histone modification patterns that may possibly regulate flight activity. Discussion: These findings provide the first evidence of histone modification signature in B. dorsalis, and will be useful for future studies of epigenetic signature in other invasive insect species.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, College of Plant Protection, China Agricultural University, Beijing, China
| | - Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiajiao Wu
- Technology Center of Guangzhou Customs, Guangzhou, China
| | - Zhihong Li
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Bueno EM, McIlhenny CL, Chen YH. Cross-protection interactions in insect pests: Implications for pest management in a changing climate. PEST MANAGEMENT SCIENCE 2023; 79:9-20. [PMID: 36127854 PMCID: PMC10092685 DOI: 10.1002/ps.7191] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 05/20/2023]
Abstract
Agricultural insect pests display an exceptional ability to adapt quickly to natural and anthropogenic stressors. Emerging evidence suggests that frequent and varied sources of stress play an important role in driving protective physiological responses; therefore, intensively managed agroecosystems combined with climatic shifts might be an ideal crucible for stress adaptation. Cross-protection, where responses to one stressor offers protection against another type of stressor, has been well documented in many insect species, yet the molecular and epigenetic underpinnings that drive overlapping protective responses in insect pests remain unclear. In this perspective, we discuss cross-protection mechanisms and provide an argument for its potential role in increasing tolerance to a wide range of natural and anthropogenic stressors in agricultural insect pests. By drawing from existing literature on single and multiple stressor studies, we outline the processes that facilitate cross-protective interactions, including epigenetic modifications, which are understudied in insect stress responses. Finally, we discuss the implications of cross-protection for insect pest management, focusing on the consequences of cross-protection between insecticides and elevated temperatures associated with climate change. Given the multiple ways that insect pests are intensively managed in agroecosystems, we suggest that examining the role of multiple stressors can be important in understanding the wide adaptability of agricultural insect pests. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Erika M. Bueno
- Department of Plant and Soil ScienceUniversity of VermontBurlingtonVTUSA
| | - Casey L. McIlhenny
- Department of Plant and Soil ScienceUniversity of VermontBurlingtonVTUSA
| | - Yolanda H. Chen
- Department of Plant and Soil ScienceUniversity of VermontBurlingtonVTUSA
- Gund Institute for EnvironmentUniversity of VermontBurlingtonVTUSA
| |
Collapse
|
9
|
Mukherjee K, Dobrindt U. The emerging role of epigenetic mechanisms in insect defense against pathogens. CURRENT OPINION IN INSECT SCIENCE 2022; 49:8-14. [PMID: 34710642 DOI: 10.1016/j.cois.2021.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/11/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Insects resist infection by natural selection that favors the survival and reproduction of the fittest phenotypes. Although the genetic mechanisms mediating the evolution of insect resistance have been investigated, little is known about the contribution of epigenetic mechanisms. Gene expression in response to a pathogen selection pressure is regulated by different mechanisms affecting chromatin plasticity. Whether transgenerational inheritance of genome-wide epigenetic marks contributes to the heritable manifestation of insect resistance is presently debated. Here, we review the latest works on the contributions of chromatin remodeling to insect immunity and adaptation to pathogens. We highlight DNA methylation, histone acetylation, and microRNAs in mediating the transgenerational inherited transcriptional reprogramming of defense-related gene expression and the evolution of insect resistance.
Collapse
Affiliation(s)
- Krishnendu Mukherjee
- Institute of Hygiene, University of Muenster, Mendelstrasse 7, Muenster 48149, Germany.
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Muenster, Mendelstrasse 7, Muenster 48149, Germany.
| |
Collapse
|
10
|
Wedd L, Kucharski R, Maleszka R. DNA Methylation in Honey Bees and the Unresolved Questions in Insect Methylomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:159-176. [DOI: 10.1007/978-3-031-11454-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Choppin M, Feldmeyer B, Foitzik S. Histone acetylation regulates the expression of genes involved in worker reproduction in the ant Temnothorax rugatulus. BMC Genomics 2021; 22:871. [PMID: 34861814 PMCID: PMC8642982 DOI: 10.1186/s12864-021-08196-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/12/2021] [Indexed: 12/29/2022] Open
Abstract
Background In insect societies, queens monopolize reproduction while workers perform tasks such as brood care or foraging. Queen loss leads to ovary development and lifespan extension in workers of many ant species. However, the underlying molecular mechanisms of this phenotypic plasticity remain unclear. Recent studies highlight the importance of epigenetics in regulating plastic traits in social insects. Thus, we investigated the role of histone acetylation in regulating worker reproduction in the ant Temnothorax rugatulus. We removed queens from their colonies to induce worker fecundity, and either fed workers with chemical inhibitors of histone acetylation (C646), deacetylation (TSA), or the solvent (DMSO) as control. We monitored worker number for six weeks after which we assessed ovary development and sequenced fat body mRNA. Results Workers survived better in queenless colonies. They also developed their ovaries after queen removal in control colonies as expected, but not in colonies treated with the chemical inhibitors. Both inhibitors affected gene expression, although the inhibition of histone acetylation using C646 altered the expression of more genes with immunity, fecundity, and longevity functionalities. Interestingly, these C646-treated workers shared many upregulated genes with infertile workers from queenright colonies. We also identified one gene with antioxidant properties commonly downregulated in infertile workers from queenright colonies and both C646 and TSA-treated workers from queenless colonies. Conclusion Our results suggest that histone acetylation is involved in the molecular regulation of worker reproduction, and thus point to an important role of histone modifications in modulating phenotypic plasticity of life history traits in social insects. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08196-8.
Collapse
Affiliation(s)
- Marina Choppin
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany.
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Molecular Ecology, Senckenberg, Frankfurt, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
12
|
10-hydroxy-2E-decenoic acid (10HDA) does not promote caste differentiation in Melipona scutellaris stingless bees. Sci Rep 2021; 11:9882. [PMID: 33972627 PMCID: PMC8110752 DOI: 10.1038/s41598-021-89212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/16/2021] [Indexed: 02/03/2023] Open
Abstract
In bees from genus Melipona, differential feeding is not enough to fully explain female polyphenism. In these bees, there is a hypothesis that in addition to the environmental component (food), a genetic component is also involved in caste differentiation. This mechanism has not yet been fully elucidated and may involve epigenetic and metabolic regulation. Here, we verified that the genes encoding histone deacetylases HDAC1 and HDAC4 and histone acetyltransferase KAT2A were expressed at all stages of Melipona scutellaris, with fluctuations between developmental stages and castes. In larvae, the HDAC genes showed the same profile of Juvenile Hormone titers-previous reported-whereas the HAT gene exhibited the opposite profile. We also investigated the larvae and larval food metabolomes, but we did not identify the putative queen-fate inducing compounds, geraniol and 10-hydroxy-2E-decenoic acid (10HDA). Finally, we demonstrated that the histone deacetylase inhibitor 10HDA-the major lipid component of royal jelly and hence a putative regulator of honeybee caste differentiation-was unable to promote differentiation in queens in Melipona scutellaris. Our results suggest that epigenetic and hormonal regulations may act synergistically to drive caste differentiation in Melipona and that 10HDA is not a caste-differentiation factor in Melipona scutellaris.
Collapse
|
13
|
Hurd PJ, Grübel K, Wojciechowski M, Maleszka R, Rössler W. Novel structure in the nuclei of honey bee brain neurons revealed by immunostaining. Sci Rep 2021; 11:6852. [PMID: 33767244 PMCID: PMC7994413 DOI: 10.1038/s41598-021-86078-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/10/2021] [Indexed: 11/08/2022] Open
Abstract
In the course of a screen designed to produce antibodies (ABs) with affinity to proteins in the honey bee brain we found an interesting AB that detects a highly specific epitope predominantly in the nuclei of Kenyon cells (KCs). The observed staining pattern is unique, and its unfamiliarity indicates a novel previously unseen nuclear structure that does not colocalize with the cytoskeletal protein f-actin. A single rod-like assembly, 3.7-4.1 µm long, is present in each nucleus of KCs in adult brains of worker bees and drones with the strongest immuno-labelling found in foraging bees. In brains of young queens, the labelling is more sporadic, and the rod-like structure appears to be shorter (~ 2.1 µm). No immunostaining is detectable in worker larvae. In pupal stage 5 during a peak of brain development only some occasional staining was identified. Although the cellular function of this unexpected structure has not been determined, the unusual distinctiveness of the revealed pattern suggests an unknown and potentially important protein assembly. One possibility is that this nuclear assembly is part of the KCs plasticity underlying the brain maturation in adult honey bees. Because no labelling with this AB is detectable in brains of the fly Drosophila melanogaster and the ant Camponotus floridanus, we tentatively named this antibody AmBNSab (Apis mellifera Brain Neurons Specific antibody). Here we report our results to make them accessible to a broader community and invite further research to unravel the biological role of this curious nuclear structure in the honey bee central brain.
Collapse
Affiliation(s)
- Paul J Hurd
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| | - Kornelia Grübel
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Marek Wojciechowski
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Ryszard Maleszka
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia.
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
14
|
Pozo MI, Hunt BJ, Van Kemenade G, Guerra-Sanz JM, Wäckers F, Mallon EB, Jacquemyn H. The effect of DNA methylation on bumblebee colony development. BMC Genomics 2021; 22:73. [PMID: 33482723 PMCID: PMC7821684 DOI: 10.1186/s12864-021-07371-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Although around 1% of cytosines in bees' genomes are known to be methylated, less is known about methylation's effect on bee behavior and fitness. Chemically altered DNA methylation levels have shown clear changes in the dominance and reproductive behavior of workers in queen-less colonies, but the global effect of DNA methylation on caste determination and colony development remains unclear, mainly because of difficulties in controlling for genetic differences among experimental subjects in the parental line. Here, we investigated the effect of the methylation altering agent decitabine on the developmental rate of full bumblebee colonies. Whole genome bisulfite sequencing was used to assess differences in methylation status. RESULTS Our results showed fewer methylated loci in the control group. A total of 22 CpG loci were identified as significantly differentially methylated between treated and control workers with a change in methylation levels of 10% or more. Loci that were methylated differentially between groups participated in pathways including neuron function, oocyte regulation and metabolic processes. Treated colonies tended to develop faster, and therefore more workers were found at a given developmental stage. However, male production followed the opposite trend and it tended to be higher in control colonies. CONCLUSION Overall, our results indicate that altered methylation patterns resulted in an improved cooperation between workers, while there were no signs of abnormal worker dominance or caste determination.
Collapse
Affiliation(s)
- María I Pozo
- KU Leuven, Biology Department, Plant Population and Conservation Biology, B-3001, Heverlee, Belgium.
| | - Benjamin J Hunt
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | | | | | - Felix Wäckers
- Biobest Group, Research and Development, B-2260, Westerlo, Belgium
| | - Eamonn B Mallon
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Hans Jacquemyn
- KU Leuven, Biology Department, Plant Population and Conservation Biology, B-3001, Heverlee, Belgium
| |
Collapse
|
15
|
Lezcano ÓM, Sánchez-Polo M, Ruiz JL, Gómez-Díaz E. Chromatin Structure and Function in Mosquitoes. Front Genet 2020; 11:602949. [PMID: 33365050 PMCID: PMC7750206 DOI: 10.3389/fgene.2020.602949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/29/2020] [Indexed: 12/27/2022] Open
Abstract
The principles and function of chromatin and nuclear architecture have been extensively studied in model organisms, such as Drosophila melanogaster. However, little is known about the role of these epigenetic processes in transcriptional regulation in other insects including mosquitoes, which are major disease vectors and a worldwide threat for human health. Some of these life-threatening diseases are malaria, which is caused by protozoan parasites of the genus Plasmodium and transmitted by Anopheles mosquitoes; dengue fever, which is caused by an arbovirus mainly transmitted by Aedes aegypti; and West Nile fever, which is caused by an arbovirus transmitted by Culex spp. In this contribution, we review what is known about chromatin-associated mechanisms and the 3D genome structure in various mosquito vectors, including Anopheles, Aedes, and Culex spp. We also discuss the similarities between epigenetic mechanisms in mosquitoes and the model organism Drosophila melanogaster, and advocate that the field could benefit from the cross-application of state-of-the-art functional genomic technologies that are well-developed in the fruit fly. Uncovering the mosquito regulatory genome can lead to the discovery of unique regulatory networks associated with the parasitic life-style of these insects. It is also critical to understand the molecular interactions between the vectors and the pathogens that they transmit, which could hold the key to major breakthroughs on the fight against mosquito-borne diseases. Finally, it is clear that epigenetic mechanisms controlling mosquito environmental plasticity and evolvability are also of utmost importance, particularly in the current context of globalization and climate change.
Collapse
Affiliation(s)
| | | | - José L. Ruiz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Elena Gómez-Díaz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
16
|
Villagra C, Frías-Lasserre D. Epigenetic Molecular Mechanisms in Insects. NEOTROPICAL ENTOMOLOGY 2020; 49:615-642. [PMID: 32514997 DOI: 10.1007/s13744-020-00777-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Insects are the largest animal group on Earth both in biomass and diversity. Their outstanding success has inspired genetics and developmental research, allowing the discovery of dynamic process explaining extreme phenotypic plasticity and canalization. Epigenetic molecular mechanisms (EMMs) are vital for several housekeeping functions in multicellular organisms, regulating developmental, ontogenetic trajectories and environmental adaptations. In Insecta, EMMs are involved in the development of extreme phenotypic divergences such as polyphenisms and eusocial castes. Here, we review the history of this research field and how the main EMMs found in insects help to understand their biological processes and diversity. EMMs in insects confer them rapid response capacity allowing insect either to change with plastic divergence or to keep constant when facing different stressors or stimuli. EMMs function both at intra as well as transgenerational scales, playing important roles in insect ecology and evolution. We discuss on how EMMs pervasive influences in Insecta require not only the control of gene expression but also the dynamic interplay of EMMs with further regulatory levels, including genetic, physiological, behavioral, and environmental among others, as was earlier proposed by the Probabilistic Epigenesis model and Developmental System Theory.
Collapse
Affiliation(s)
- C Villagra
- Instituto de Entomología, Univ Metropolitana de Ciencias de la Educación, Santiago, Chile.
| | - D Frías-Lasserre
- Instituto de Entomología, Univ Metropolitana de Ciencias de la Educación, Santiago, Chile
| |
Collapse
|
17
|
A hypothetical trivalent epigenetic code that affects the nature of human ESCs. PLoS One 2020; 15:e0238742. [PMID: 32911515 PMCID: PMC7482980 DOI: 10.1371/journal.pone.0238742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
It has been suggested that DNA methylation can work in concert with other epigenetic factors, leading to changes in cellular phenotypes. For example, DNA demethylation modifications producing 5-hydroxymethylcytosine (5hmC) are thought to interact with histone modifications to influence the acquisition of embryonic stem cell (ESC) potency. However, the mechanism by which this occurs is still unknown. Thus, we systematically analysed the co-occurrence of DNA and histone modifications at genic regions as well as their relationship with ESC-specific expression using a number of heterogeneous public datasets. From a set of 19 epigenetic factors, we found remarkable co-occurrence of 5hmC and H4K8ac, accompanied by H3K4me1. This enrichment was more prominent at gene body regions. The results were confirmed using data obtained from different detection methods and species. Our analysis shows that these marks work cooperatively to influence ESC-specific gene expression. We also found that this trivalent mark is relatively enriched in genes related with immunity, which is a bit specific in ESCs. We propose that a trivalent epigenetic mark, composed of 5hmC, H4K8ac and H3K4me1, regulates gene expression and modulates the nature of human ESCs as a novel epigenetic code.
Collapse
|
18
|
Li T, Chen B, Yang P, Wang D, Du B, Kang L. Long Non-coding RNA Derived from lncRNA-mRNA Co-expression Networks Modulates the Locust Phase Change. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:664-678. [PMID: 32866667 PMCID: PMC8377017 DOI: 10.1016/j.gpb.2020.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/14/2020] [Accepted: 05/31/2020] [Indexed: 12/19/2022]
Abstract
Long non-coding RNAs (lncRNAs) regulate various biological processes ranging from gene expression to animal behavior. Although protein-coding genes, microRNAs, and neuropeptides play important roles in the regulation of phenotypic plasticity in migratory locust, empirical studies on the function of lncRNAs in this process remain limited. Here, we applied high-throughput RNA-seq to compare the expression patterns of lncRNAs and mRNAs in the time course of locust phase change. We found that lncRNAs responded more rapidly at the early stages of phase transition. Functional annotations demonstrated that early changed lncRNAs employed different pathways in isolation and crowding phases to cope with changes in the population density. Two overlapping hub lncRNA loci in the crowding and isolation networks were screened for functional verification. One of them, LNC1010057, was validated as a potential regulator of locust phase change. This work offers insights into the molecular mechanism underlying locust phase change and expands the scope of lncRNA functions in animal behavior.
Collapse
Affiliation(s)
- Ting Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Chen
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Pengcheng Yang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Depin Wang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baozhen Du
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Le Kang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; College of Life Sciences, Hebei University, Baoding 071002, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
19
|
Exploring DNA Methylation Diversity in the Honey Bee Brain by Ultra-Deep Amplicon Sequencing. EPIGENOMES 2020; 4:epigenomes4020010. [PMID: 34968244 PMCID: PMC8594699 DOI: 10.3390/epigenomes4020010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 02/04/2023] Open
Abstract
Understanding methylation dynamics in organs or tissues containing many different cell types is a challenging task that cannot be efficiently addressed by the low-depth bisulphite sequencing of DNA extracted from such sources. Here we explored the feasibility of ultra-deep bisulphite sequencing of long amplicons to reveal the brain methylation patterns in three selected honey bee genes analysed across five distinct conditions on the Illumina MiSeq platform. By combing 15 libraries in one run we achieved a very high sequencing depth of 240,000–340,000 reads per amplicon, suggesting that most of the cell types in the honey bee brain, containing approximately 1 million neurons, are represented in this dataset. We found a small number of gene-specific patterns for each condition in individuals of different ages and performing distinct tasks with 80–90% of those were represented by no more than a dozen patterns. One possibility is that such a small number of frequent patterns is the result of differentially methylated epialleles, whereas the rare and less frequent patterns reflect activity-dependent modifications. The condition-specific methylation differences within each gene appear to be position-dependent with some CpGs showing significant changes and others remaining stable in a methylated or non-methylated state. Interestingly, no significant loss of methylation was detected in very old individuals. Our findings imply that these diverse patterns represent a special challenge in the analyses of DNA methylation in complex tissues and organs that cannot be investigated by low-depth genome-wide bisulphite sequencing. We conclude that ultra-deep sequencing of gene-specific amplicons combined with genotyping of differentially methylated epialleles is an effective way to facilitate more advanced neuro-epigenomic studies in honey bees and other insects.
Collapse
|
20
|
Claudio-Piedras F, Recio-Tótoro B, Condé R, Hernández-Tablas JM, Hurtado-Sil G, Lanz-Mendoza H. DNA Methylation in Anopheles albimanus Modulates the Midgut Immune Response Against Plasmodium berghei. Front Immunol 2020; 10:3025. [PMID: 31993053 PMCID: PMC6970940 DOI: 10.3389/fimmu.2019.03025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Epigenetic mechanisms such as DNA methylation and histone post-translational modifications are fundamental for the phenotypic plasticity of insects during their interaction with the environment. In response to environmental cues, the methylation pattern in DNA is dynamically remodeled to achieve an epigenetic control of gene expression. DNA methylation is the focus of study in insects for its evolutionarily conserved character; however, there is scant knowledge about the epigenetic regulation in vector mosquitoes, especially during their infection by parasites. The aim of the present study was to evaluate the participation of DNA methylation in the immune response of Anopheles albimanus to a Plasmodium infection. For this, we first investigated the presence of a fully functional DNA methylation system in A. albimanus by assessing its potential role in larval development. Subsequently, we evaluated the transcriptional response to Plasmodium berghei of two mosquito phenotypes with different degrees of susceptibility to the parasite, in a scenario where their global DNA methylation had been pharmacologically inhibited. Our study revealed that A. albimanus has a functional DNA methylation system that is essential to larval viability, and that is also responsive to feeding and parasite challenges. The pharmacological erasure of the methylome with azacytidine or decitabine abolished the divergent responses of both mosquito phenotypes, leading to a transcriptionally similar response upon parasite challenge. This response was more specific, and the infection load in both phenotypes was lowered. Our findings suggest that DNA methylation may constitute a key factor in vector competence, and a promising target for preventing malaria transmission.
Collapse
Affiliation(s)
| | | | | | | | | | - Humberto Lanz-Mendoza
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| |
Collapse
|
21
|
Zhang V, Kucharski R, Landers C, Richards SN, Bröer S, Martin RE, Maleszka R. Characterization of a Dopamine Transporter and Its Splice Variant Reveals Novel Features of Dopaminergic Regulation in the Honey Bee. Front Physiol 2019; 10:1375. [PMID: 31736791 PMCID: PMC6838227 DOI: 10.3389/fphys.2019.01375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/17/2019] [Indexed: 11/25/2022] Open
Abstract
Dopamine is an important neuromodulator involved in reward-processing, movement control, motivational responses, and other aspects of behavior in most animals. In honey bees (Apis mellifera), the dopaminergic system has been implicated in an elaborate pheromonal communication network between individuals and in the differentiation of females into reproductive (queen) and sterile (worker) castes. Here we have identified and characterized a honey bee dopamine transporter (AmDAT) and a splice variant lacking exon 3 (AmDATΔex3). Both transcripts are present in the adult brain and antennae as well as at lower levels within larvae and ovaries. When expressed separately in the Xenopus oocyte system, AmDAT localizes to the oocyte surface whereas the splice variant is retained at an internal membrane. Oocytes expressing AmDAT exhibit a 12-fold increase in the uptake of [3H]dopamine relative to non-injected oocytes, whereas the AmDATΔex3-expressing oocytes show no change in [3H]dopamine transport. Electrophysiological measurements of AmDAT activity revealed it to be a high-affinity, low-capacity transporter of dopamine. The transporter also recognizes noradrenaline as a major substrate and tyramine as a minor substrate, but does not transport octopamine, L-Dopa, or serotonin. Dopamine transport via AmDAT is inhibited by cocaine in a reversible manner, but is unaffected by octopamine. Co-expression of AmDAT and AmDATΔex3 in oocytes results in a substantial reduction in AmDAT-mediated transport, which was also detected as a significant decrease in the level of AmDAT protein. This down-regulatory effect is not attributable to competition with AmDATΔex3 for ER ribosomes, nor to a general inhibition of the oocyte's translational machinery. In vivo, the expression of both transcripts shows a high level of inter-individual variability. Gene-focused, ultra-deep amplicon sequencing detected methylation of the amdat locus at ten 5'-C-phosphate-G-3' dinucleotides (CpGs), but only in 5-10% of all reads in whole brains or antennae. These observations, together with the localization of the amdat transcript to a few clusters of dopaminergic neurons, imply that amdat methylation is positively linked to its transcription. Our findings suggest that multiple cellular mechanisms, including gene splicing and epigenomic communication systems, may be adopted to increase the potential of a conserved gene to contribute to lineage-specific behavioral outcomes.
Collapse
Affiliation(s)
- Vicky Zhang
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Robert Kucharski
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
- Faculty of Science and Technology, University of Canberra, Bruce, ACT, Australia
| | - Courtney Landers
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Sashika N. Richards
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Stefan Bröer
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Rowena E. Martin
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Ryszard Maleszka
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
22
|
Harris KD, Lloyd JPB, Domb K, Zilberman D, Zemach A. DNA methylation is maintained with high fidelity in the honey bee germline and exhibits global non-functional fluctuations during somatic development. Epigenetics Chromatin 2019; 12:62. [PMID: 31601251 PMCID: PMC6786280 DOI: 10.1186/s13072-019-0307-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/25/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA methylation of active genes, also known as gene body methylation, is found in many animal and plant genomes. Despite this, the transcriptional and developmental role of such methylation remains poorly understood. Here, we explore the dynamic range of DNA methylation in honey bee, a model organism for gene body methylation. RESULTS Our data show that CG methylation in gene bodies globally fluctuates during honey bee development. However, these changes cause no gene expression alterations. Intriguingly, despite the global alterations, tissue-specific CG methylation patterns of complete genes or exons are rare, implying robust maintenance of genic methylation during development. Additionally, we show that CG methylation maintenance fluctuates in somatic cells, while reaching maximum fidelity in sperm cells. Finally, unlike universally present CG methylation, we discovered non-CG methylation specifically in bee heads that resembles such methylation in mammalian brain tissue. CONCLUSIONS Based on these results, we propose that gene body CG methylation can oscillate during development if it is kept to a level adequate to preserve function. Additionally, our data suggest that heightened non-CG methylation is a conserved regulator of animal nervous systems.
Collapse
Affiliation(s)
- Keith D Harris
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - James P B Lloyd
- Center for RNA Systems Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, 6009, Australia
| | - Katherine Domb
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - Daniel Zilberman
- Department of Cell and Developmental Biology, John Innes Center, Norwich, UK.
| | - Assaf Zemach
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978, Tel-Aviv, Israel.
| |
Collapse
|
23
|
Yagound B, Smith NMA, Buchmann G, Oldroyd BP, Remnant EJ. Unique DNA Methylation Profiles Are Associated with cis-Variation in Honey Bees. Genome Biol Evol 2019; 11:2517-2530. [PMID: 31406991 PMCID: PMC6740151 DOI: 10.1093/gbe/evz177] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 02/07/2023] Open
Abstract
DNA methylation is an important epigenetic modification that mediates diverse processes such as cellular differentiation, phenotypic plasticity, and genomic imprinting. Mounting evidence suggests that local DNA sequence variation can be associated with particular DNA methylation states, indicating that the interplay between genetic and epigenetic factors may contribute synergistically to the phenotypic complexity of organisms. Social insects such as ants, bees, and wasps have extensive phenotypic plasticity manifested in their different castes, and this plasticity has been associated with variation in DNA methylation. Yet, the influence of genetic variation on DNA methylation state remains mostly unknown. Here we examine the importance of sequence-specific methylation at the genome-wide level, using whole-genome bisulfite sequencing of the semen of individual honey bee males. We find that individual males harbor unique DNA methylation patterns in their semen, and that genes that are more variable at the epigenetic level are also more likely to be variable at the genetic level. DNA sequence variation can affect DNA methylation by modifying CG sites directly, but can also be associated with local variation in cis that is not CG-site specific. We show that covariation in sequence polymorphism and DNA methylation state contributes to the individual-specificity of epigenetic marks in social insects, which likely promotes their retention across generations, and their capacity to influence evolutionary adaptation.
Collapse
Affiliation(s)
- Boris Yagound
- Behaviour and Genetics of Social Insects Laboratory, School of Life and Environmental Sciences, University of Sydney, Australia
| | - Nicholas M A Smith
- Behaviour and Genetics of Social Insects Laboratory, School of Life and Environmental Sciences, University of Sydney, Australia
| | - Gabriele Buchmann
- Behaviour and Genetics of Social Insects Laboratory, School of Life and Environmental Sciences, University of Sydney, Australia
| | - Benjamin P Oldroyd
- Behaviour and Genetics of Social Insects Laboratory, School of Life and Environmental Sciences, University of Sydney, Australia
| | - Emily J Remnant
- Behaviour and Genetics of Social Insects Laboratory, School of Life and Environmental Sciences, University of Sydney, Australia
| |
Collapse
|
24
|
RNA editing is abundant and correlates with task performance in a social bumblebee. Nat Commun 2019; 10:1605. [PMID: 30962428 PMCID: PMC6453909 DOI: 10.1038/s41467-019-09543-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/15/2019] [Indexed: 12/17/2022] Open
Abstract
Colonies of the bumblebee Bombus terrestris are characterized by wide phenotypic variability among genetically similar full-sister workers, suggesting a major role for epigenetic processes. Here, we report a high level of ADAR-mediated RNA editing in the bumblebee, despite the lack of an ADAR1-homolog. We identify 1.15 million unique genomic sites, and 164 recoding sites residing in 100 protein coding genes, including ion channels, transporters, and receptors predicted to affect brain function and behavior. Some edited sites are similarly edited in other insects, cephalopods and even mammals. The global editing level of protein coding and non-coding transcripts weakly correlates with task performance (brood care vs. foraging), but not affected by dominance rank or juvenile hormone known to influence physiology and behavior. Taken together, our findings show that brain editing levels are high in naturally behaving bees, and may be regulated by relatively short-term effects associated with brood care or foraging activities.
Collapse
|
25
|
Sommerlandt FMJ, Brockmann A, Rössler W, Spaethe J. Immediate early genes in social insects: a tool to identify brain regions involved in complex behaviors and molecular processes underlying neuroplasticity. Cell Mol Life Sci 2019; 76:637-651. [PMID: 30349993 PMCID: PMC6514070 DOI: 10.1007/s00018-018-2948-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/25/2018] [Accepted: 10/15/2018] [Indexed: 01/31/2023]
Abstract
Social insects show complex behaviors and master cognitive tasks. The underlying neuronal mechanisms, however, are in most cases only poorly understood due to challenges in monitoring brain activity in freely moving animals. Immediate early genes (IEGs) that get rapidly and transiently expressed following neuronal stimulation provide a powerful tool for detecting behavior-related neuronal activity in vertebrates. In social insects, like honey bees, and in insects in general, this approach is not yet routinely established, even though these genes are highly conserved. First studies revealed a vast potential of using IEGs as neuronal activity markers to analyze the localization, function, and plasticity of neuronal circuits underlying complex social behaviors. We summarize the current knowledge on IEGs in social insects and provide ideas for future research directions.
Collapse
Affiliation(s)
- Frank M J Sommerlandt
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Axel Brockmann
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, 560065, India
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Johannes Spaethe
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
26
|
Glastad KM, Hunt BG, Goodisman MAD. Epigenetics in Insects: Genome Regulation and the Generation of Phenotypic Diversity. ANNUAL REVIEW OF ENTOMOLOGY 2019; 64:185-203. [PMID: 30285490 DOI: 10.1146/annurev-ento-011118-111914] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Epigenetic inheritance is fundamentally important to cellular differentiation and developmental plasticity. In this review, we provide an introduction to the field of molecular epigenetics in insects. Epigenetic information is passed across cell divisions through the methylation of DNA, the modification of histone proteins, and the activity of noncoding RNAs. Much of our knowledge of insect epigenetics has been gleaned from a few model species. However, more studies of epigenetic information in traditionally nonmodel taxa will help advance our understanding of the developmental and evolutionary significance of epigenetic inheritance in insects. To this end, we also provide a brief overview of techniques for profiling and perturbing individual facets of the epigenome. Doing so in diverse cellular, developmental, and taxonomic contexts will collectively help shed new light on how genome regulation results in the generation of diversity in insect form and function.
Collapse
Affiliation(s)
- Karl M Glastad
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Brendan G Hunt
- Department of Entomology, University of Georgia, Griffin, Georgia 30223, USA;
| | - Michael A D Goodisman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;
| |
Collapse
|
27
|
Epigenetics and Epigenomics. Mol Biol 2019. [DOI: 10.1016/b978-0-12-813288-3.00022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Provataris P, Meusemann K, Niehuis O, Grath S, Misof B. Signatures of DNA Methylation across Insects Suggest Reduced DNA Methylation Levels in Holometabola. Genome Biol Evol 2018; 10:1185-1197. [PMID: 29697817 PMCID: PMC5915941 DOI: 10.1093/gbe/evy066] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2018] [Indexed: 12/20/2022] Open
Abstract
It has been experimentally shown that DNA methylation is involved in the regulation of gene expression and the silencing of transposable element activity in eukaryotes. The variable levels of DNA methylation among different insect species indicate an evolutionarily flexible role of DNA methylation in insects, which due to a lack of comparative data is not yet well-substantiated. Here, we use computational methods to trace signatures of DNA methylation across insects by analyzing transcriptomic and genomic sequence data from all currently recognized insect orders. We conclude that: 1) a functional methylation system relying exclusively on DNA methyltransferase 1 is widespread across insects. 2) DNA methylation has potentially been lost or extremely reduced in species belonging to springtails (Collembola), flies and relatives (Diptera), and twisted-winged parasites (Strepsiptera). 3) Holometabolous insects display signs of reduced DNA methylation levels in protein-coding sequences compared with hemimetabolous insects. 4) Evolutionarily conserved insect genes associated with housekeeping functions tend to display signs of heavier DNA methylation in comparison to the genomic/transcriptomic background. With this comparative study, we provide the much needed basis for experimental and detailed comparative analyses required to gain a deeper understanding on the evolution and function of DNA methylation in insects.
Collapse
Affiliation(s)
- Panagiotis Provataris
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Karen Meusemann
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
- Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University Freiburg, Freiburg (Brsg.), Germany
- Australian National Insect Collection, CSIRO National Research Collections Australia, Acton, Australian Capital Territory, Australia
| | - Oliver Niehuis
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
- Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University Freiburg, Freiburg (Brsg.), Germany
| | - Sonja Grath
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
- Corresponding authors: E-mails: ;
| | - Bernhard Misof
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
- Corresponding authors: E-mails: ;
| |
Collapse
|
29
|
Tan MK, Goh FN, Tan HTW. Consistent Between-Individual Differences in Foraging Performance in a Floriphilic Katydid in Response to Different Choices. ENVIRONMENTAL ENTOMOLOGY 2018; 47:918-926. [PMID: 29878088 DOI: 10.1093/ee/nvy087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
The neural constraint hypothesis is one of the central ideas for the understanding of insect-plant interaction but there are still knowledge gaps in the data for foraging behavior and the performance of herbivores, and particularly florivores. We used a floriphilic katydid, Phaneroptera brevis (Serville, 1838) (Orthoptera: Tettigoniidae) and a naturalized weed, Bidens pilosa L. (Asteraceae) in caged experiments in an insectary to answer these questions: 1) How does the foraging performance of the floriphilic katydid vary when exposed to a choice in the number of capitula and types of florets of B. pilosa? 2) Does the foraging performance of the katydid, when exposed to multiple choices, improve with time, and are between-individual differences in foraging performance consistent? We observed that having more choices in the floret types and number of capitula is generally associated with a reduced foraging performance of the katydids. Floret types and number of capitula, however, did not have an interactive effect on foraging performance. We also found that the differences in foraging performance in response to choice tend to be consistent between katydids but each katydid became more efficient and decisive over time. That learning and experience can improve the foraging performance of the katydid has provided us with some insights as to how a continuum of efficient and inefficient katydids can be maintained in a population.
Collapse
Affiliation(s)
- Ming Kai Tan
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| | - Fang Ni Goh
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| | - Hugh Tiang Wah Tan
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
30
|
Taylor D, Bentley MA, Sumner S. Social wasps as models to study the major evolutionary transition to superorganismality. CURRENT OPINION IN INSECT SCIENCE 2018; 28:26-32. [PMID: 30551764 DOI: 10.1016/j.cois.2018.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 06/09/2023]
Abstract
The major evolutionary transition to superorganismality has taken place several times in the insects. Although there has been much consideration of the ultimate evolutionary explanations for superorganismality, we know relatively little about what proximate mechanisms constrain or promote this major transition. Here, we propose that Vespid wasps represent an understudied, but potentially very useful, model system for studying the mechanisms underpinning superorganismality. We highlight how there is an abundance of behavioural data for many wasp species, confirming their utility in studies of social evolution; however, there is a sparsity of genomic data from which we can test proximate and ultimate hypotheses on this major evolutionary transition.
Collapse
Affiliation(s)
- Daisy Taylor
- Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
| | - Michael A Bentley
- Centre for Biodiversity & Environment Research, Department of Genetics, Evolution & Environment, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Seirian Sumner
- Centre for Biodiversity & Environment Research, Department of Genetics, Evolution & Environment, University College London, Gower Street, London WC1E 6BT, United Kingdom.
| |
Collapse
|
31
|
Søvik E, Berthier P, Klare WP, Helliwell P, Buckle ELS, Plath JA, Barron AB, Maleszka R. Cocaine Directly Impairs Memory Extinction and Alters Brain DNA Methylation Dynamics in Honey Bees. Front Physiol 2018; 9:79. [PMID: 29487536 PMCID: PMC5816933 DOI: 10.3389/fphys.2018.00079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 01/22/2018] [Indexed: 12/11/2022] Open
Abstract
Drug addiction is a chronic relapsing behavioral disorder. The high relapse rate has often been attributed to the perseverance of drug-associated memories due to high incentive salience of stimuli learnt under the influence of drugs. Drug addiction has also been interpreted as a memory disorder since drug associated memories are unusually enduring and some drugs, such as cocaine, interfere with neuroepigenetic machinery known to be involved in memory processing. Here we used the honey bee (an established invertebrate model for epigenomics and behavioral studies) to examine whether or not cocaine affects memory processing independently of its effect on incentive salience. Using the proboscis extension reflex training paradigm we found that cocaine strongly impairs consolidation of extinction memory. Based on correlation between the observed effect of cocaine on learning and expression of epigenetic processes, we propose that cocaine interferes with memory processing independently of incentive salience by directly altering DNA methylation dynamics. Our findings emphasize the impact of cocaine on memory systems, with relevance for understanding how cocaine can have such an enduring impact on behavior.
Collapse
Affiliation(s)
- Eirik Søvik
- Department of Science and Mathematics, Volda University College, Volda, Norway
| | - Pauline Berthier
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - William P Klare
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Paul Helliwell
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Edwina L S Buckle
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Jenny A Plath
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ryszard Maleszka
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
32
|
Beyond Royalactin and a master inducer explanation of phenotypic plasticity in honey bees. Commun Biol 2018; 1:8. [PMID: 30271895 PMCID: PMC6123742 DOI: 10.1038/s42003-017-0004-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/06/2017] [Indexed: 12/26/2022] Open
Abstract
Distinct female castes produced from one genotype are the trademark of a successful evolutionary invention in eusocial insects known as reproductive division of labour. In honey bees, fertile queens develop from larvae fed a complex diet called royal jelly. Recently, one protein in royal jelly, dubbed Royalactin, was deemed to be the exclusive driver of queen bee determination. However, this notion has not been universally accepted. Here I critically evaluate this line of research and argue that the sheer complexity of creating alternate phenotypes from one genotype cannot be reduced to a single dietary component. An acceptable model of environmentally driven caste differentiation should include the facets of dynamic thinking, such as the concepts of attractor states and genetic hierarchical networks. In honeybees, genotypically identical females develop into queens or sterile workers, depending on their diets. In this review, Ryszard Maleszka discusses the controversial role of the royal jelly protein Royalactin in caste determination and provides a framework for moving beyond the master inducer concept.
Collapse
|
33
|
Wang W, Ashby R, Ying H, Maleszka R, Forêt S. Contrasting Sex-and Caste-Dependent piRNA Profiles in the Transposon Depleted Haplodiploid Honeybee Apis mellifera. Genome Biol Evol 2018; 9:1341-1356. [PMID: 28472327 PMCID: PMC5452642 DOI: 10.1093/gbe/evx087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2017] [Indexed: 12/12/2022] Open
Abstract
Protecting genome integrity against transposable elements is achieved by intricate molecular mechanisms involving PIWI proteins, their associated small RNAs (piRNAs), and epigenetic modifiers such as DNA methylation. Eusocial bees, in particular the Western honeybee, Apis mellifera, have one of the lowest contents of transposable elements in the animal kingdom, and, unlike other animals with a functional DNA methylation system, appear not to methylate their transposons. This raises the question of whether the PIWI machinery has been retained in this species. Using comparative genomics, mass spectrometry, and expressional profiling, we present seminal evidence that the piRNA system is conserved in honeybees. We show that honey bee piRNAs contain a 2'-O-methyl modification at the 3' end, and have a bias towards a 5' terminal U, which are signature features of their biogenesis. Both piRNA repertoire and expression levels are greater in reproductive individuals than in sterile workers. Haploid males, where the detrimental effects of transposons are dominant, have the greatest piRNA levels, but surprisingly, the highest expression of transposons. These results show that even in a transposon-depleted species, the piRNA system is required to guard the vulnerable haploid genome and reproductive castes against transposon-associated genomic instability. This also suggests that dosage plays an important role in the regulation of transposons and piRNAs expression in haplo-diploid systems.
Collapse
Affiliation(s)
- Weiwen Wang
- Research School of Biology, Australian National University, Acton, ACT, Australia
| | - Regan Ashby
- Research School of Biology, Australian National University, Acton, ACT, Australia.,Centre for Research in Therapeutic Solutions, Health Research Institute, Faculty of Education, Science, Technology and Mathematics, University of Canberra, ACT, Australia
| | - Hua Ying
- Research School of Biology, Australian National University, Acton, ACT, Australia
| | - Ryszard Maleszka
- Research School of Biology, Australian National University, Acton, ACT, Australia
| | - Sylvain Forêt
- Research School of Biology, Australian National University, Acton, ACT, Australia.,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
34
|
de Menezes MF, Nicola F, Vital da Silva IR, Vizuete A, Elsner VR, Xavier LL, Gonçalves CAS, Netto CA, Mestriner RG. Glial fibrillary acidic protein levels are associated with global histone H4 acetylation after spinal cord injury in rats. Neural Regen Res 2018; 13:1945-1952. [PMID: 30233068 PMCID: PMC6183034 DOI: 10.4103/1673-5374.239443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Emerging evidence has suggested global histone H4 acetylation status plays an important role in neural plasticity. For instance, the imbalance of this epigenetic marker has been hypothesized as a key factor for the development and progression of several neurological diseases. Likewise, astrocytic reactivity - a well-known process that markedly influences the tissue remodeling after a central nervous system injury - is crucial for tissue remodeling after spinal cord injury (SCI). However, the linkage between the above-mentioned mechanisms after SCI remains poorly understood. We sought to investigate the relation between both glial fibrillary acidic protein (GFAP) and S100 calcium-binding protein B (S100B) (astrocytic reactivity classical markers) and global histone H4 acetylation levels. Sixty-one male Wistar rats (aged ~3 months) were divided into the following groups: sham; 6 hours post-SCI; 24 hours post-SCI; 48 hours post-SCI; 72 hours post-SCI; and 7 days post-SCI. The results suggested that GFAP, but not S100B was associated with global histone H4 acetylation levels. Moreover, global histone H4 acetylation levels exhibited a complex pattern after SCI, encompassing at least three clearly defined phases ( first phase: no changes in the 6, 24 and 48 hours post-SCI groups; second phase: increased levels in the 72 hours post-SCI group; and a third phase: return to levels similar to control in the 7 days post-SCI group). Overall, these findings suggest global H4 acetylation levels exhibit distinct patterns of expression during the first week post-SCI, which may be associated with GFAP levels in the perilesional tissue. Current data encourage studies using H4 acetylation as a possible biomarker for tissue remodeling after spinal cord injury.
Collapse
Affiliation(s)
- Mayara Ferraz de Menezes
- Neurorehabilitation and Neural Repair Research Group; Graduate Program in Cellular and Molecular Biology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fabrício Nicola
- Department of Biochemistry, Basic Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ivy Reichert Vital da Silva
- Graduate Program in Biosciences and Rehabilitation, Centro Universitário Metodista IPA, Porto Alegre, RS, Brazil
| | - Adriana Vizuete
- Department of Biochemistry, Basic Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Viviane Rostirola Elsner
- Graduate Program in Biosciences and Rehabilitation, Centro Universitário Metodista IPA, Porto Alegre, RS, Brazil
| | - Léder Leal Xavier
- Neurorehabilitation and Neural Repair Research Group; Graduate Program in Cellular and Molecular Biology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Carlos Alexandre Netto
- Department of Biochemistry, Basic Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Régis Gemerasca Mestriner
- Neurorehabilitation and Neural Repair Research Group; Graduate Program in Cellular and Molecular Biology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
35
|
Kucharski R, Maleszka J, Maleszka R. A possible role of DNA methylation in functional divergence of a fast evolving duplicate gene encoding odorant binding protein 11 in the honeybee. Proc Biol Sci 2017; 283:rspb.2016.0558. [PMID: 27358363 DOI: 10.1098/rspb.2016.0558] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/09/2016] [Indexed: 12/26/2022] Open
Abstract
Although gene duplication is seen as the main path to evolution of new functions, molecular mechanisms by which selection favours the gain versus loss of newly duplicated genes and minimizes the fixation of pseudo-genes are not well understood. Here, we investigate in detail a duplicate honeybee gene obp11 belonging to a fast evolving insect gene family encoding odorant binding proteins (OBPs). We report that obp11 is expressed only in female bees in rare antennal sensilla basiconica in contrast to its tandem partner obp10 that is expressed in the brain in both females and males (drones). Unlike all other obp genes in the honeybee, obp11 is methylated suggesting that functional diversification of obp11 and obp10 may have been driven by an epigenetic mechanism. We also show that increased methylation in drones near one donor splice site that correlates with higher abundance of a transcript variant encoding a truncated OBP11 protein is one way of controlling its contrasting expression. Our data suggest that like in mammals and plants, DNA methylation in insects may contribute to functional diversification of proteins produced from duplicated genes, in particular to their subfunctionalization by generating complementary patterns of expression.
Collapse
Affiliation(s)
- R Kucharski
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - J Maleszka
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - R Maleszka
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
36
|
Ramirez-Esquivel F, Leitner NE, Zeil J, Narendra A. The sensory arrays of the ant, Temnothorax rugatulus. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:552-563. [PMID: 28347859 DOI: 10.1016/j.asd.2017.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/22/2017] [Accepted: 03/22/2017] [Indexed: 06/06/2023]
Abstract
Individual differences in response thresholds to task-related stimuli may be one mechanism driving task allocation among social insect workers. These differences may arise at various stages in the nervous system. We investigate variability in the peripheral nervous system as a simple mechanism that can introduce inter-individual differences in sensory information. In this study we describe size-dependent variation of the compound eyes and the antennae in the ant Temnothorax rugatulus. Head width in T. rugatulus varies between 0.4 and 0.7 mm (2.6-3.8 mm body length). But despite this limited range of worker sizes we find sensory array variability. We find that the number of ommatidia and of some, but not all, antennal sensilla types vary with head width. The antennal array of T. rugatulus displays the full complement of sensillum types observed in other species of ants, although at much lower quantities than other, larger, studied species. In addition, we describe what we believe to be a new type of sensillum in hymenoptera that occurs on the antennae and on all body segments. T. rugatulus has apposition compound eyes with 45-76 facets per eye, depending on head width, with average lens diameters of 16.5 μm, rhabdom diameters of 5.7 μm and inter-ommatidial angles of 16.8°. The optical system of T. rugatulus ommatidia is severely under focussed, but the absolute sensitivity of the eyes is unusually high. We discuss the functional significance of these findings and the extent to which the variability of sensory arrays may correlate with task allocation.
Collapse
Affiliation(s)
| | - Nicole E Leitner
- Department of Ecology and Evolutionary Biology, University of Arizona, PO Box 210088, Tucson, AZ 85721-0088, USA.
| | - Jochen Zeil
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.
| | - Ajay Narendra
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
37
|
Mason PH, Maleszka R, Dominguez D. JF. Another stage of development: Biological degeneracy and the study of bodily ageing. Mech Ageing Dev 2017; 163:46-51. [DOI: 10.1016/j.mad.2016.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/20/2016] [Indexed: 02/07/2023]
|
38
|
Wedd L, Ashby R, Foret S, Maleszka R. Developmental and loco-like effects of a swainsonine-induced inhibition of α-mannosidase in the honey bee, Apis mellifera. PeerJ 2017; 5:e3109. [PMID: 28321369 PMCID: PMC5357340 DOI: 10.7717/peerj.3109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/20/2017] [Indexed: 01/24/2023] Open
Abstract
Background Deficiencies in lysosomal a-mannosidase (LAM) activity in animals, caused either by mutations or by consuming toxic alkaloids, lead to severe phenotypic and behavioural consequences. Yet, epialleles adversely affecting LAM expression exist in the honey bee population suggesting that they might be beneficial in certain contexts and cannot be eliminated by natural selection. Methods We have used a combination of enzymology, molecular biology and metabolomics to characterise the catalytic properties of honey bee LAM (AmLAM) and then used an indolizidine alkaloid swainsonine to inhibit its activity in vitro and in vivo. Results We show that AmLAM is inhibited in vitro by swainsonine albeit at slightly higher concentrations than in other animals. Dietary exposure of growing larvae to swainsonine leads to pronounced metabolic changes affecting not only saccharides, but also amino acids, polyols and polyamines. Interestingly, the abundance of two fatty acids implicated in epigenetic regulation is significantly reduced in treated individuals. Additionally, swainsonie causes loco-like symptoms, increased mortality and a subtle decrease in the rate of larval growth resulting in a subsequent developmental delay in pupal metamorphosis. Discussion We consider our findings in the context of cellular LAM function, larval development, environmental toxicity and colony-level impacts. The observed developmental heterochrony in swainsonine-treated larvae with lower LAM activity offer a plausible explanation for the existence of epialleles with impaired LAM expression. Individuals carrying such epialleles provide an additional level of epigenetic diversity that could be beneficial for the functioning of a colony whereby more flexibility in timing of adult emergence might be useful for task allocation.
Collapse
Affiliation(s)
- Laura Wedd
- Research School of Biology, Australian National University , Canberra , Australia
| | - Regan Ashby
- Research School of Biology, Australian National University, Canberra, Australia; Centre for Research in Therapeutic Solutions, Health Research Institute, Faculty of Education, Science, Technology and Mathematics, University of Canberra, Canberra, Australia
| | - Sylvain Foret
- Research School of Biology, Australian National University , Canberra , Australia
| | - Ryszard Maleszka
- Research School of Biology, Australian National University , Canberra , Australia
| |
Collapse
|
39
|
Becker N, Kucharski R, Rössler W, Maleszka R. Age-dependent transcriptional and epigenomic responses to light exposure in the honey bee brain. FEBS Open Bio 2016; 6:622-39. [PMID: 27398303 PMCID: PMC4932443 DOI: 10.1002/2211-5463.12084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/02/2016] [Accepted: 05/09/2016] [Indexed: 01/21/2023] Open
Abstract
Light is a powerful environmental stimulus of special importance in social honey bees that undergo a behavioral transition from in-hive to outdoor foraging duties. Our previous work has shown that light exposure induces structural neuronal plasticity in the mushroom bodies (MBs), a brain center implicated in processing inputs from sensory modalities. Here, we extended these analyses to the molecular level to unravel light-induced transcriptomic and epigenomic changes in the honey bee brain. We have compared gene expression in brain compartments of 1- and 7-day-old light-exposed honey bees with age-matched dark-kept individuals. We have found a number of differentially expressed genes (DEGs), both novel and conserved, including several genes with reported roles in neuronal plasticity. Most of the DEGs show age-related changes in the amplitude of light-induced expression and are likely to be both developmentally and environmentally regulated. Some of the DEGs are either known to be methylated or are implicated in epigenetic processes suggesting that responses to light exposure are at least partly regulated at the epigenome level. Consistent with this idea light alters the DNA methylation pattern of bgm, one of the DEGs affected by light exposure, and the expression of microRNA miR-932. This confirms the usefulness of our approach to identify candidate genes for neuronal plasticity and provides evidence for the role of epigenetic processes in driving the molecular responses to visual stimulation.
Collapse
Affiliation(s)
- Nils Becker
- Behavioral Physiology and Sociobiology Biozentrum University of Würzburg Germany
| | - Robert Kucharski
- Research School of Biology The Australian National University Acton Australia
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology Biozentrum University of Würzburg Germany
| | - Ryszard Maleszka
- Research School of Biology The Australian National University Acton Australia
| |
Collapse
|
40
|
|
41
|
Wedd L, Maleszka R. DNA Methylation and Gene Regulation in Honeybees: From Genome-Wide Analyses to Obligatory Epialleles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:193-211. [DOI: 10.1007/978-3-319-43624-1_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|