1
|
Wang X, Wu H, Yu Z, Wu J, Lu C, Wei T, Chen Q. Plant viruses exploit insect salivary GAPDH to modulate plant defenses. Nat Commun 2024; 15:6918. [PMID: 39134555 PMCID: PMC11319438 DOI: 10.1038/s41467-024-51369-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Salivary proteins of insect herbivores can suppress plant defenses, but the roles of many remain elusive. One such protein is glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the saliva of the Recilia dorsalis (RdGAPDH) leafhopper, which is known to transmit rice gall dwarf virus (RGDV). Here we show that RdGAPDH was loaded into exosomes and released from salivary glands into the rice phloem through an exosomal pathway as R. dorsalis fed. In infected salivary glands of R. dorsalis, the virus upregulated the accumulation and subsequent release of exosomal RdGAPDH into the phloem. Once released, RdGAPDH consumed H2O2 in rice plants owing to its -SH groups reacting with H2O2. This reduction in H2O2 of rice plant facilitated R. dorsalis feeding and consequently promoted RGDV transmission. However, overoxidation of RdGAPDH could cause potential irreversible cytotoxicity to rice plants. In response, rice launched emergency defense by utilizing glutathione to S-glutathionylate the oxidization products of RdGAPDH. This process counteracts the potential cellular damage from RdGAPDH overoxidation, helping plant to maintain a normal phenotype. Additionally, salivary GAPDHs from other hemipterans vectors similarly suppressed H2O2 burst in plants. We propose a strategy by which plant viruses exploit insect salivary proteins to modulate plant defenses, thus enabling sustainable insect feeding and facilitating viral transmission.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Haibo Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhongkai Yu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jing Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chengcong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qian Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
2
|
Zeng T, Jaffar S, Xu Y, Qi Y. The Intestinal Immune Defense System in Insects. Int J Mol Sci 2022; 23:ijms232315132. [PMID: 36499457 PMCID: PMC9740067 DOI: 10.3390/ijms232315132] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Over a long period of evolution, insects have developed unique intestinal defenses against invasion by foreign microorganisms, including physical defenses and immune responses. The physical defenses of the insect gut consist mainly of the peritrophic matrix (PM) and mucus layer, which are the first barriers to pathogens. Gut microbes also prevent the colonization of pathogens. Importantly, the immune-deficiency (Imd) pathways produce antimicrobial peptides to eliminate pathogens; mechanisms related to reactive oxygen species are another important pathway for insect intestinal immunity. The janus kinase/STAT signaling pathway is involved in intestinal immunity by producing bactericidal substances and regulating tissue repair. Melanization can produce many bactericidal active substances into the intestine; meanwhile, there are multiple responses in the intestine to fight against viral and parasitic infections. Furthermore, intestinal stem cells (ISCs) are also indispensable in intestinal immunity. Only the coordinated combination of the intestinal immune defense system and intestinal tissue renewal can effectively defend against pathogenic microorganisms.
Collapse
|
3
|
Gut-Expressed Vitellogenin Facilitates the Movement of a Plant Virus across the Midgut Wall in Its Insect Vector. mSystems 2021; 6:e0058121. [PMID: 34100642 PMCID: PMC8269243 DOI: 10.1128/msystems.00581-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many viral pathogens of global importance to plant and animal health are persistently transmitted by insect vectors. Midgut of insects forms the first major barrier that these viruses encounter during their entry into the vectors. However, the vector ligand(s) involved in the movement of plant viruses across the midgut barrier remains largely uncharacterized. Begomoviruses, many of which are disease agents of some major crops worldwide, are persistently transmitted by whiteflies (Bemisia tabaci). Here, in order to identify whitefly midgut proteins that interact with a devastating begomovirus, tomato yellow leaf curl virus (TYLCV), we performed midgut-specific TYLCV coat protein (CP) immunoprecipitation followed by high-throughput mass spectrometry proteomic analysis. We find that vitellogenin (Vg), a critical insect reproductive protein that has been considered to be synthesized by the fat body, is also synthesized by and interacts with TYLCV CP in the whitefly midgut. TYLCV appears to be internalized into midgut epithelial cells as a complex with Vg through endocytosis. Virus-containing vesicles then deliver the virus-Vg complexes to early endosomes for intracellular transport. Systematic silencing of Vg or midgut-specific immune blocking of Vg inhibited virus movement across the midgut wall and decreased viral acquisition and transmission by whitefly. Our findings show that a functional Vg protein is synthesized in the midgut of an insect and suggest a novel Vg mechanism that facilitates virus movement across the midgut barrier of its insect vector. IMPORTANCE An essential step in the life cycle of many viruses is transmission to a new host by insect vectors, and one critical step in the transmission of persistently transmitted viruses is overcoming the midgut barrier to enter vectors and complete their cycle. Most viruses enter vector midgut epithelial cells via specific interaction between viral structural proteins and vector cell surface receptor complexes. Tomato yellow leaf curl virus (TYLCV) is persistently transmitted by the whitefly Bemisia tabaci between host plants. Here, we find that TYLCV coat protein interacts with vitellogenin (Vg) in the whitefly midgut. This interaction is required for the movement of the virus crossing the midgut wall and thus facilitates viral acquisition and transmission by whitefly. This study reveals a novel mechanism of virus overcoming the insect midgut barrier and provides new insights into the function of Vg beyond serving as nutrition for developing embryos in insects.
Collapse
|
4
|
Abstract
In nature, insects face a constant threat of infection by numerous exogeneous viruses, and their intestinal tracts are the predominant ports of entry. Insects can acquire these viruses orally during either blood feeding by hematophagous insects or sap sucking and foliage feeding by insect herbivores. However, the insect intestinal tract forms several physical and immunological barriers to defend against viral invasion, including cell intrinsic antiviral immunity, the peritrophic matrix and the mucin layer, and local symbiotic microorganisms. Whether an infection can be successfully established in the intestinal tract depends on the complex interactions between viruses and those barriers. In this review, we summarize recent progress on virus-intestinal tract interplay in insects, in which various underlying mechanisms derived from nutritional status, dynamics of symbiotic microorganisms, and virus-encoded components play intricate roles in the regulation of virus invasion in the intestinal tract, either directly or indirectly. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Enhao Ma
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
| | - Yibin Zhu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; .,Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518000, China.,Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Ziwen Liu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
| | - Taiyun Wei
- Vector-Borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; .,Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518000, China.,Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| |
Collapse
|
5
|
Spatiotemporal dynamics and quantitative analysis of phytoplasmas in insect vectors. Sci Rep 2020; 10:4291. [PMID: 32152370 PMCID: PMC7062745 DOI: 10.1038/s41598-020-61042-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/29/2020] [Indexed: 12/29/2022] Open
Abstract
Phytoplasmas are transmitted by insect vectors in a persistent propagative manner; however, detailed movements and multiplication patterns of phytoplasmas within vectors remain elusive. In this study, spatiotemporal dynamics of onion yellows (OY) phytoplasma in its vector Macrosteles striifrons were investigated by immunohistochemistry-based 3D imaging, whole-mount fluorescence staining, and real-time quantitative PCR. The results indicated that OY phytoplasmas entered the anterior midgut epithelium by seven days after acquisition start (daas), then moved to visceral muscles surrounding the midgut and to the hemocoel at 14-21 daas; finally, OY phytoplasmas entered into type III cells of salivary glands at 21-28 daas. The anterior midgut of the alimentary canal and type III cells of salivary glands were identified as the major sites of OY phytoplasma infection. Fluorescence staining further revealed that OY phytoplasmas spread along the actin-based muscle fibers of visceral muscles and accumulated on the surfaces of salivary gland cells. This accumulation would be important for phytoplasma invasion into salivary glands, and thus for successful insect transmission. This study demonstrates the spatiotemporal dynamics of phytoplasmas in insect vectors. The findings from this study will aid in understanding of the underlying mechanism of insect-borne plant pathogen transmission.
Collapse
|
6
|
Huo Y, Yu Y, Liu Q, Liu D, Zhang M, Liang J, Chen X, Zhang L, Fang R. Rice stripe virus hitchhikes the vector insect vitellogenin ligand-receptor pathway for ovary entry. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180312. [PMID: 30967014 DOI: 10.1098/rstb.2018.0312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is known that plant arboviruses infect insect vector cells by endocytosis; however, the cellular receptors that mediate endocytosis have not been well defined. In our recently published work and this study, by clarifying the vertical transmission mechanism of Rice stripe virus (RSV) in Laodelphax striatellus, we provide a novel paradigm for how arboviruses enter insect germ-line cells. Instead of direct interaction with a viral receptor, the virus binds to a secreted ligand protein, hitchhiking the ligand-receptor pathway to achieve cell entry. Vitellogenin (Vg) is an indispensable protein for embryo development that is synthesized extra-ovarially and taken up by germ-line cells through Vg receptor (VgR)-mediated endocytosis. After revealing that RSV invades L. striatellus ovary by a specific molecular interaction with the insect Vg in haemolymph, this study addressed VgR's function in mediating the RSV invasion of the germarium nurse cells, further confirming the ligand's receptor-mediated viral cell-invasion mechanism. Understanding the viral ovary-entry pathways in vectors will help to find suitable measures to block the trans-generation transmission of the viruses. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.
Collapse
Affiliation(s)
- Yan Huo
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China.,2 National Plant Gene Research Center , Beijing 100101 , People's Republic of China
| | - Yuanling Yu
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China.,2 National Plant Gene Research Center , Beijing 100101 , People's Republic of China.,3 University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Qing Liu
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China.,2 National Plant Gene Research Center , Beijing 100101 , People's Republic of China.,3 University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Da Liu
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China.,2 National Plant Gene Research Center , Beijing 100101 , People's Republic of China.,3 University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Mengting Zhang
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China.,2 National Plant Gene Research Center , Beijing 100101 , People's Republic of China.,3 University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Jingnan Liang
- 4 Public Technology Service Center, Institute of Microbiology , Beijing 100101, People's Republic of China
| | - Xiaoying Chen
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China.,2 National Plant Gene Research Center , Beijing 100101 , People's Republic of China
| | - Lili Zhang
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China.,2 National Plant Gene Research Center , Beijing 100101 , People's Republic of China
| | - Rongxiang Fang
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China.,2 National Plant Gene Research Center , Beijing 100101 , People's Republic of China
| |
Collapse
|
7
|
Chen Q, Wei T. Cell Biology During Infection of Plant Viruses in Insect Vectors and Plant Hosts. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:18-25. [PMID: 31729283 DOI: 10.1094/mpmi-07-19-0184-cr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plant viruses typically cause severe pathogenicity in plants, even resulting in the death of plants. Many pathogenic plant viruses are transmitted in a persistent manner via insect vectors. Interestingly, unlike in the plant hosts, persistent viruses are either nonpathogenic or show limited pathogenicity in their insect vectors, while taking advantage of the cellular machinery of insect vectors for completing their life cycles. This review discusses why persistent plant viruses are nonpathogenic or have limited pathogenicity to their insect vectors while being pathogenic to plants hosts. Current advances in cell biology of virus-insect vector interactions are summarized, including virus-induced inclusion bodies, changes of insect cellular ultrastructure, and immune response of insects to the viruses, especially autophagy and apoptosis. The corresponding findings of virus-plant interactions are compared. An integrated view of the balance strategy achieved by the interaction between viral attack and the immune response of insect is presented. Finally, we outline progress gaps between virus-insect and virus-plant interactions, thus highlighting the contributions of cultured cells to the cell biology of virus-insect interactions. Furthermore, future prospects of studying the cell biology of virus-vector interactions are presented.
Collapse
Affiliation(s)
- Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| |
Collapse
|
8
|
A Nonstructural Protein Responsible for Viral Spread of a Novel Insect Reovirus Provides a Safe Channel for Biparental Virus Transmission to Progeny. J Virol 2019; 93:JVI.00702-19. [PMID: 31092577 PMCID: PMC6639290 DOI: 10.1128/jvi.00702-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 01/02/2023] Open
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayama, is an important pest in the worldwide citrus industry. It is the vector of “Candidatus Liberibacter asiaticus,” the bacterial pathogen of Huanglongbing, which is currently considered the most destructive disease of citrus worldwide. DcRV was previously identified based on metagenomics surveys for virus discovery. Here, we found that this novel and persistent insect reovirus took advantage of a virus-encoded nonstructural protein, P10, for efficient vertical transmission from parents to progeny. P10 assembled into a virion-packaging tubular structure and was associated with oocytes of female D. citri and sperm of males. Consistent with this, knockdown of P10 for either male or female D. citri insects inhibited DcRV transmission to offspring. This tubular strategy for viral spread and biparental transmission might serve as a target for controlling viral vertical transmission and population expansion. Diaphorina citri reovirus (DcRV) was previously identified based on metagenomics surveys for virus discovery. Here, we demonstrated that DcRV induces persistent infection in its psyllid host, Diaphorina citri. DcRV was efficiently vertically passed to offspring in a biparental manner. Transmission electron microscopic and immunological analyses showed that the DcRV-encoded nonstructural protein P10 assembled into a virion-packaging tubular structure which is associated with the spread of DcRV throughout the bodies of D. citri insects. P10 tubules containing virions were associated with oocytes of female and sperm of male D. citri insects, suggesting a role in the highly efficient biparental transmission of DcRV. Knocking down P10 by RNA interference for males reduced the percentage of DcRV-infected progeny and for females reduced the viral accumulation in progeny. These results, for the first time, show that a nonstructural protein of a novel insect reovirus provides a safe and pivotal channel for virus spread and biparental transmission to progeny. IMPORTANCE The Asian citrus psyllid, Diaphorina citri Kuwayama, is an important pest in the worldwide citrus industry. It is the vector of “Candidatus Liberibacter asiaticus,” the bacterial pathogen of Huanglongbing, which is currently considered the most destructive disease of citrus worldwide. DcRV was previously identified based on metagenomics surveys for virus discovery. Here, we found that this novel and persistent insect reovirus took advantage of a virus-encoded nonstructural protein, P10, for efficient vertical transmission from parents to progeny. P10 assembled into a virion-packaging tubular structure and was associated with oocytes of female D. citri and sperm of males. Consistent with this, knockdown of P10 for either male or female D. citri insects inhibited DcRV transmission to offspring. This tubular strategy for viral spread and biparental transmission might serve as a target for controlling viral vertical transmission and population expansion.
Collapse
|
9
|
Zhao P, Sun X, Li P, Sun J, Yue Y, Wei J, Wei T, Jia D. Infection Characteristics of Rice Stripe Mosaic Virus in the Body of the Vector Leafhoppers. Front Microbiol 2019; 9:3258. [PMID: 30671049 PMCID: PMC6331539 DOI: 10.3389/fmicb.2018.03258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/14/2018] [Indexed: 11/13/2022] Open
Abstract
Rice stripe mosaic virus (RSMV), a novel species of Cytorhabdovirus, is transmitted by the leafhopper Recilia dorsalis in a persistent-propagative manner. In this study, we firstly confirmed that N protein of RSMV is a component of viroplasm and virion in vector culture cells of R. dorsalis. Confocal microscopy revealed that RSMV initially accumulated in epithelial cells of the filter chamber of R. dorsalis, from where it proceeded to the visceral muscles surrounding the filter chamber. Subsequently, RSMV spread quickly throughout the suspensory ligament to the salivary glands. Meanwhile, RSMV spread from the filter chamber to midgut, hindgut, esophagus, hemolymph, and central nervous system. We further observed that RSMV particles displayed as non-enveloped form when propagating in cytoplasm of different tissues, and became enveloped when spread within insect body by electron microscopy. Additionally, we found that the leafhopper Nephotettix virescens was also able to acquire and transmit RSMV. These results clarified the infection characteristics of RSMV in its leafhopper vectors, which will help guide the formulation of RSMV prevention and control strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dongsheng Jia
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
10
|
Qin F, Liu W, Wu N, Zhang L, Zhang Z, Zhou X, Wang X. Invasion of midgut epithelial cells by a persistently transmitted virus is mediated by sugar transporter 6 in its insect vector. PLoS Pathog 2018; 14:e1007201. [PMID: 30052679 PMCID: PMC6082570 DOI: 10.1371/journal.ppat.1007201] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/08/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023] Open
Abstract
Insect transmission is obligatory for persistently transmitted viruses because the vector insect is the only means of virus spread in nature. The insect midgut is the first major barrier limiting virus acquisition, but the mechanisms by which viruses are able to cross the cell membrane and then infect the midgut epithelial cells of the insect have not been elucidated completely. Here, we found that the outer capsid or nucleocapsid protein (NP) of three viruses can interact and colocalize with sugar transporter 6 that is highly expressed in the midgut of Laodelphax striatellus (LsST6). In contrast, LsST6 did not interact with the NP of rice grassy stunt virus, which cannot be transmitted by the same planthopper. LsST6 not only altered the cellular location of viral proteins and then colocalized with them in the cell membrane, but also mediated the entry of rice stripe virus (RSV) particles into Spodoptera frugiperda 9 (Sf9) cells that expressed the heterologous gene LsST6. We further showed that RSV particles initially bound to the cell membrane of midgut epithelial cells where it colocalized with LsST6, and then invaded the cytoplasm. When LsST6 expression was knocked down, viral titre, acquisition percentage and transmission efficiency of the treated insect decreased significantly, but virus replication was not affected. This work thus uncovered a strategy by which LsST6 mediates viral entry into midgut epithelial cells and leads to successful transmission by the insect vector.
Collapse
Affiliation(s)
- Faliang Qin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenwen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lu Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongkai Zhang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key laboratory of Agricultural Biotechnology, Kunming, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
11
|
Liu Y, Mao Q, Lan H, Wang H, Wei T, Chen Q. Investigation of alimentary canal ultrastructure following knockdown of the Dicer-2 gene in planthoppers reveals the potential pathogenicity of southern rice black streaked dwarf virus to its insect vector. Virus Res 2018; 244:117-127. [PMID: 29141205 DOI: 10.1016/j.virusres.2017.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 11/18/2022]
Abstract
An increasing number of studies are suggesting that plant viruses, including southern rice black-streaked dwarf virus (SRBSDV), can adversely affect biological characteristics of insect vectors by unknown mechanisms. To study the adverse effect of SRBSDV at cellular level on the insect vector, we promoted viral infection by the disruption of the small interfering RNA (siRNA) pathway. The transmission electron microscopy was utilized to describe the ultrastructural changes that occurred in insects when the core component of the siRNA pathway, Dicer-2, was knocked down. The increasing accumulation of SRBSDV in virus-infected vector, the white-backed planthoppers, caused severe cytopathology in the alimentary canal. Similar cytopathology changes in the midgut ultrastructure were characterized in the virus-infected incompetent vector, the small brown planthopper. These results not only add support to the existing evidence suggesting that the siRNA pathway has an antiviral effect, but also reveal the universal and potential ability of SRBSDV to cause damage to the insect tissues of both the vector and non-vector.
Collapse
Affiliation(s)
- Yuyan Liu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Qianzhuo Mao
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Hanhong Lan
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Haitao Wang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| |
Collapse
|
12
|
Li-Byarlay H, Pittendrigh BR, Murdock LL. Plant Defense Inhibitors Affect the Structures of Midgut Cells in Drosophila melanogaster and Callosobruchus maculatus. INTERNATIONAL JOURNAL OF INSECT SCIENCE 2016; 8:71-79. [PMID: 27594789 PMCID: PMC5005011 DOI: 10.4137/ijis.s28595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 06/06/2023]
Abstract
Plants produce proteins such as protease inhibitors and lectins as defenses against herbivorous insects and pathogens. However, no systematic studies have explored the structural responses in the midguts of insects when challenged with plant defensive proteins and lectins across different species. In this study, we fed two kinds of protease inhibitors and lectins to the fruit fly Drosophila melanogaster and alpha-amylase inhibitors and lectins to the cowpea bruchid Callosobruchus maculatus. We assessed the changes in midgut cell structures by comparing them with such structures in insects receiving normal diets or subjected to food deprivation. Using light and transmission electron microscopy in both species, we observed structural changes in the midgut peritrophic matrix as well as shortened microvilli on the surfaces of midgut epithelial cells in D. melanogaster. Dietary inhibitors and lectins caused similar lesions in the epithelial cells but not much change in the peritrophic matrix in both species. We also noted structural damages in the Drosophila midgut after six hours of starvation and changes were still present after 12 hours. Our study provided the first evidence of key structural changes of midguts using a comparative approach between a dipteran and a coleopteran. Our particular observation and discussion on plant-insect interaction and dietary stress are relevant for future mode of action studies of plant defensive protein in insect physiology.
Collapse
Affiliation(s)
- Hongmei Li-Byarlay
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
- The W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| | - Barry R. Pittendrigh
- Department of Entomology, Michigan State University, Natural Science Building, East Lansing MI, USA
| | - Larry L. Murdock
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|