1
|
Sember E, Chennakesavula R, Beard B, Opoola M, Hwangbo DS. Dietary restriction fails to extend lifespan of Drosophila model of Werner syndrome. G3 (BETHESDA, MD.) 2024; 14:jkae056. [PMID: 38491858 PMCID: PMC11075538 DOI: 10.1093/g3journal/jkae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
Werner syndrome (WS) is a rare genetic disease in humans, caused by mutations in the WRN gene that encodes a protein containing helicase and exonuclease domains. WS is characterized by symptoms of accelerated aging in multiple tissues and organs, involving increased risk of cancer, heart failure, and metabolic dysfunction. These conditions ultimately lead to the premature mortality of patients with WS. In this study, using the null mutant flies (WRNexoΔ) for the gene WRNexo (CG7670), homologous to the exonuclease domain of WRN in humans, we examined how diets affect the lifespan, stress resistance, and sleep/wake patterns of a Drosophila model of WS. We observed that dietary restriction (DR), one of the most robust nongenetic interventions to extend lifespan in animal models, failed to extend the lifespan of WRNexoΔ mutant flies and even had a detrimental effect in females. Interestingly, the mean lifespan of WRNexoΔ mutant flies was not reduced on a protein-rich diet compared to that of wild-type (WT) flies. Compared to WT control flies, the mutant flies also exhibited altered responses to DR in their resistance to starvation and oxidative stress, as well as changes in sleep/wake patterns. These findings show that the WRN protein is necessary for mediating the effects of DR and suggest that the exonuclease domain of WRN plays an important role in metabolism in addition to its primary role in DNA-repair and genome stability.
Collapse
Affiliation(s)
- Eileen Sember
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | | | - Breanna Beard
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Mubaraq Opoola
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Dae-Sung Hwangbo
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
2
|
Yang Z, Guo Z, Gong C, Xia J, Hu Y, Zhong J, Yang X, Xie W, Wang S, Wu Q, Ye W, Liu B, Zhou X, Turlings TCJ, Zhang Y. Two horizontally acquired bacterial genes steer the exceptionally efficient and flexible nitrogenous waste cycling in whiteflies. SCIENCE ADVANCES 2024; 10:eadi3105. [PMID: 38306427 PMCID: PMC10836729 DOI: 10.1126/sciadv.adi3105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Nitrogen is an essential element for all life on earth. Nitrogen metabolism, including excretion, is essential for growth, development, and survival of plants and animals alike. Several nitrogen metabolic processes have been described, but the underlying molecular mechanisms are unclear. Here, we reveal a unique process of nitrogen metabolism in the whitefly Bemisia tabaci, a global pest. We show that it has acquired two bacterial uricolytic enzyme genes, B. tabaci urea carboxylase (BtUCA) and B. tabaci allophanate hydrolase (BtAtzF), through horizontal gene transfer. These genes operate in conjunction to not only coordinate an efficient way of metabolizing nitrogenous waste but also control B. tabaci's exceptionally flexible nitrogen recycling capacity. Its efficient nitrogen processing explains how this important pest can feed on a vast spectrum of plants. This finding provides insight into how the hijacking of microbial genes has allowed whiteflies to develop a highly economic and stable nitrogen metabolism network and offers clues for pest management strategies.
Collapse
Affiliation(s)
- Zezhong Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Zhaojiang Guo
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cheng Gong
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jixing Xia
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuan Hu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Zhong
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaoli Wang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenfeng Ye
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Baiming Liu
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
3
|
Sun Z, Liu Y, Hou A, Han A, Yan C, Sun J. Transcriptome and gut microbiota analyses reveal a possible mechanism underlying rifampin-mediated interruption of the larval development of chironomid Propsilocerus akamusi (Diptera: Chironomidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115467. [PMID: 37716071 DOI: 10.1016/j.ecoenv.2023.115467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
Chironomids, the most abundant insect group found in freshwater habitats, are known to be pollution tolerate and serve as important bioindicators of contaminant stress. Gut microbiota has recently been shown to potentially provide a number of beneficial services to insect hosts. However, the antibiotic-mediated interruption of chironomid gut microbial community and its subsequent influence on host body are still unclear. In the present study, the effects of rifampin on chironomid larvae were investigated at both transcriptome and microbiome level to assess the relationship between gut bacteria and associated genes. Our data indicated that the rifampin-induced imbalance of gut ecosystem could inhibit the development of chironomid larvae via decreasing the body weight, body length and larval eclosion rate during 96-h treatment. Both the community structure and taxonomic composition were significantly altered due to the invasion of rifampin in digestive tracts. The relative abundance of phylum Deferribacterota and Bacteroidota were dramatically increased with rifampin exposure. A set of genes involved in amino acid synthesis as well as xenobiotic metabolism pathways were greatly changed and proved to have tight correlation with certain genus. Bacterial genus Tyzzerella was positively correlated with detoxifying PaCYP6GF1 and PaCYP9HL1 genes. This study provides a reference for understanding the environmental risks of antibiotic and aims to accelerate new biological insights into the effects of antibiotic on the fitness of chironomids and into the microbe mediated-regulatory mechanism of aquatic insects.
Collapse
Affiliation(s)
- Zeyang Sun
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Yue Liu
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Aoran Hou
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Anqi Han
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Chuncai Yan
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China.
| | - Jinsheng Sun
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China.
| |
Collapse
|
4
|
Rau V, Flatt T, Korb J. The remoulding of dietary effects on the fecundity / longevity trade-off in a social insect. BMC Genomics 2023; 24:244. [PMID: 37147612 PMCID: PMC10163710 DOI: 10.1186/s12864-023-09335-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND In many organisms increased reproductive effort is associated with a shortened life span. This trade-off is reflected in conserved molecular pathways that link nutrient-sensing with fecundity and longevity. Social insect queens apparently defy the fecundity / longevity trade-off as they are both, extremely long-lived and highly fecund. Here, we have examined the effects of a protein-enriched diet on these life-history traits and on tissue-specific gene expression in a termite species of low social complexity. RESULTS On a colony level, we did not observe reduced lifespan and increased fecundity, effects typically seen in solitary model organisms, after protein enrichment. Instead, on the individual level mortality was reduced in queens that consumed more of the protein-enriched diet - and partially also in workers - while fecundity seemed unaffected. Our transcriptome analyses supported our life-history results. Consistent with life span extension, the expression of IIS (insulin/insulin-like growth factor 1 signalling) components was reduced in fat bodies after protein enrichment. Interestingly, however, genes involved in reproductive physiology (e.g., vitellogenin) were largely unaffected in fat body and head transcriptomes. CONCLUSION These results suggest that IIS is decoupled from downstream fecundity-associated pathways, which can contribute to the remoulding of the fecundity/longevity trade-off in termites as compared to solitary insects.
Collapse
Affiliation(s)
- Veronika Rau
- Evolutionary Biology & Ecology, University of Freiburg, Hauptstrasse 1, 79104, Freiburg (Brsg.), Germany.
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Judith Korb
- Evolutionary Biology & Ecology, University of Freiburg, Hauptstrasse 1, 79104, Freiburg (Brsg.), Germany.
- RIEL, Charles Darwin University Casuarina Campus, Ellengowan Drive, Darwin, NT0811, Australia.
| |
Collapse
|
5
|
Zakharenko LP, Petrovskii DV, Bobrovskikh MA, Gruntenko NE, Yakovleva EY, Markov AV, Putilov AA. Motus Vita Est: Fruit Flies Need to Be More Active and Sleep Less to Adapt to Either a Longer or Harder Life. Clocks Sleep 2023; 5:98-115. [PMID: 36975551 PMCID: PMC10047790 DOI: 10.3390/clockssleep5010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/15/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Background: Activity plays a very important role in keeping bodies strong and healthy, slowing senescence, and decreasing morbidity and mortality. Drosophila models of evolution under various selective pressures can be used to examine whether increased activity and decreased sleep duration are associated with the adaptation of this nonhuman species to longer or harder lives. Methods: For several years, descendants of wild flies were reared in a laboratory without and with selection pressure. To maintain the “salt” and “starch” strains, flies from the wild population (called “control”) were reared on two adverse food substrates. The “long-lived” strain was maintained through artificial selection for late reproduction. The 24 h patterns of locomotor activity and sleep in flies from the selected and unselected strains (902 flies in total) were studied in constant darkness for at least, 5 days. Results: Compared to the control flies, flies from the selected strains demonstrated enhanced locomotor activity and reduced sleep duration. The most profound increase in locomotor activity was observed in flies from the starch (short-lived) strain. Additionally, the selection changed the 24 h patterns of locomotor activity and sleep. For instance, the morning and evening peaks of locomotor activity were advanced and delayed, respectively, in flies from the long-lived strain. Conclusion: Flies become more active and sleep less in response to various selection pressures. These beneficial changes in trait values might be relevant to trade-offs among fitness-related traits, such as body weight, fecundity, and longevity.
Collapse
Affiliation(s)
- Lyudmila P. Zakharenko
- Department of Insect Genetics, Institute of Cytology and Genetics of the Siberian Branch, The Russian Academy of Sciences, Novosibirsk 630000, Russia
| | - Dmitrii V. Petrovskii
- Department of Insect Genetics, Institute of Cytology and Genetics of the Siberian Branch, The Russian Academy of Sciences, Novosibirsk 630000, Russia
| | - Margarita A. Bobrovskikh
- Department of Insect Genetics, Institute of Cytology and Genetics of the Siberian Branch, The Russian Academy of Sciences, Novosibirsk 630000, Russia
| | - Nataly E. Gruntenko
- Department of Insect Genetics, Institute of Cytology and Genetics of the Siberian Branch, The Russian Academy of Sciences, Novosibirsk 630000, Russia
| | | | - Alexander V. Markov
- Department of Biological Evolution, The Moscow State University, Moscow 101000, Russia
- Borisyak Paleontological Institute of the Russian Academy of Sciences, Moscow 101000, Russia
| | - Arcady A. Putilov
- Research Group for Math-Modeling of Biomedical Systems, Research Institute for Molecular Biology and Biophysics of the Federal Research Centre for Fundamental and Translational Medicine, Novosibirsk 630000, Russia
- Laboratory of Sleep/Wake Neurobiology, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow 101000, Russia
- Correspondence: ; Tel.: +49-30-53674643 or +49-30-61290031
| |
Collapse
|
6
|
Yu J, Guo X, Zheng S, Zhang W. A dedicate sensorimotor circuit enables fine texture discrimination by active touch. PLoS Genet 2023; 19:e1010562. [PMID: 36649336 PMCID: PMC9882754 DOI: 10.1371/journal.pgen.1010562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/27/2023] [Accepted: 12/08/2022] [Indexed: 01/18/2023] Open
Abstract
Active touch facilitates environments exploration by voluntary, self-generated movements. However, the neural mechanisms underlying sensorimotor control for active touch are poorly understood. During foraging and feeding, Drosophila gather information on the properties of food (texture, hardness, taste) by constant probing with their proboscis. Here we identify a group of neurons (sd-L neurons) on the fly labellum that are mechanosensitive to labellum displacement and synapse onto the sugar-sensing neurons via axo-axonal synapses to induce preference to harder food. These neurons also feed onto the motor circuits that control proboscis extension and labellum spreading to provide on-line sensory feedback critical for controlling the probing processes, thus facilitating ingestion of less liquified food. Intriguingly, this preference was eliminated in mated female flies, reflecting an elevated need for softer food. Our results propose a sensorimotor circuit composed of mechanosensory, gustatory and motor neurons that enables the flies to select ripe yet not over-rotten food by active touch.
Collapse
Affiliation(s)
- Jie Yu
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xuan Guo
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Shen Zheng
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Wei Zhang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
7
|
Xue H, Zhao Y, Wang L, Zhu X, Zhang K, Li D, Ji J, Niu L, Cui J, Luo J, Gao X. Regulation of amino acid metabolism in Aphis gossypii parasitized by Binodoxys communis. Front Nutr 2022; 9:1006253. [PMID: 36245483 PMCID: PMC9558109 DOI: 10.3389/fnut.2022.1006253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
The vast majority of parasitoids are capable of precise and meticulous regulation of nutrition and metabolism within the host. An important building block of life, amino acids are critical to the development of parasitoids. To date, research on how parasitoids regulate host amino acid metabolism remains limited. In this study, Aphis gossypii and its dominant parasitoid Binodoxys communis were used as a study system to explore how parasitism may change the regulation of amino acids in A. gossypii with UHPLC-MS/MS and RT-qPCR techniques. Here, for the first 8 h of parasitism the abundance of almost all amino acids in cotton aphids increased, and after 16 h most of the amino acids decreased. An amino acid of parasitic syndrome, the content of Tyr increased gradually after being parasitized. The expression of genes related to amino acid metabolism increased significantly in early stages of parasitism and then significantly decreased gradually. At the same time, the abundance of Buchnera, a cotton aphid specific symbiont increased significantly. Our comprehensive analyses reveal impacts of B. communis on the amino acid regulatory network in cotton aphid from three aspects: amino acid metabolism, gene expression, and bacterial symbionts. Therefore, this research provides an important theoretical basis for parasitoid nutritional regulation in host, which is highly significant as it may inform the artificial reproduction of parasitoids and the biological control of insect pests.
Collapse
Affiliation(s)
- Hui Xue
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yunyun Zhao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Li Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiangzhen Zhu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Kaixin Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Dongyang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jichao Ji
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Lin Niu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jinjie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Jinjie Cui,
| | - Junyu Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Junyu Luo,
| | - Xueke Gao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Xueke Gao,
| |
Collapse
|
8
|
Li Y, Wang S, Wang S, Wang S, Tang B, Liu F. Involvement of glucose transporter 4 in ovarian development and reproductive maturation of Harmonia axyridis (Coleoptera: Coccinellidae). INSECT SCIENCE 2022; 29:691-703. [PMID: 34516727 PMCID: PMC9298200 DOI: 10.1111/1744-7917.12972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/21/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Glucose is vital to embryogenesis, as are glucose transporters. Glucose transporter 4 (Glut4) is one of the glucose transporters, which is involved in rapid uptake of glucose by various cells and promotes glucose homeostasis. Although energy metabolism in insect reproduction is well known, the molecular mechanism of Glut4 in insect reproduction is poorly understood. We suspect that Glut4 is involved in maintaining glucose concentrations in the ovaries and affecting vitellogenesis, which is critical for subsequent oocyte maturation and insect fertility. Harmonia axyridis (Pallas) is a model organism for genetic research and a natural enemy of insect pests. We studied the influence of the Glut4 gene on the reproduction and development of H. axyridis using RNA interference technology. Reverse transcription quantitative polymerase chain reaction analysis revealed that HaGlut4 was most highly expressed in adults. Knockdown of the HaGlut4 gene reduced the transcript levels of HaGlut4, and the weight and number of eggs produced significantly decreased. In addition, the transcript levels of vitellogenin receptor and vitellogenin in the fat bodies and the ovaries of H. axyridis decreased after the interference of Glut4, and decreased the triglyceride, fatty acid, total amino acid and adenosine triphosphate content of H. axyridis. This resulted in severe blockage of ovary development and reduction of yolk formation; there was no development of ovarioles in the developing oocytes. These changes indicate that a lack of HaGlut4 can impair ovarian development and oocyte maturation and result in decreased fecundity.
Collapse
Affiliation(s)
- Yan Li
- College of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsu225009China
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouZhejiang310036China
| | - Sha‐Sha Wang
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouZhejiang310036China
| | - Su Wang
- Institute of Plant and Environment ProtectionBeijing Academy of Agricultural and Forestry SciencesBeijing100097China
| | - Shi‐Gui Wang
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouZhejiang310036China
| | - Bin Tang
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouZhejiang310036China
| | - Fang Liu
- College of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsu225009China
| |
Collapse
|
9
|
Gautrey SL, Simons MJP. Amino acid availability is not essential for lifespan extension by dietary restriction in the fly. J Gerontol A Biol Sci Med Sci 2022; 77:2181-2185. [PMID: 35486979 DOI: 10.1093/gerona/glac100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 11/12/2022] Open
Abstract
Dietary restriction (DR) is one of the most potent ways to extend health- and lifespan. Key progress in understanding the mechanisms of DR, and ageing more generally, was made when dietary protein, and more specifically essential amino acids (EAA), were identified as the dietary component to restrict to obtain DR's health and lifespan benefits. This role of dietary amino acids has influenced work on ageing mechanisms, especially in nutrient sensing, e.g. Tor and insulin(-like) signalling networks. Experimental biology in Drosophila melanogaster has been instrumental in generating and confirming the hypothesis that EAA availability is important in ageing. Here, we expand on previous work testing the involvement of EAA in DR through large scale (N=6,238) supplementation experiments across four diets and two genotypes in female flies. Surprisingly, we find that EAA are not essential to DR's lifespan benefits. Importantly, we do identify the fecundity benefits of EAA supplementation suggesting the supplemented EAA were bioavailable. Furthermore, we find that the effects of amino acids on lifespan vary by diet and genetic line studied and that at our most restricted diet fecundity is constrained by other nutrients than EAA. We suggest that DR for optimal health is a concert of nutritional effects, orchestrated by genetic, dietary and other environmental interactions. Our results question the universal importance of amino acid availability in the biology of ageing and DR.
Collapse
Affiliation(s)
- Sarah L Gautrey
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Mirre J P Simons
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| |
Collapse
|
10
|
Li G, Zheng X, Zhu Y, Long Y, Xia X. Bacillus symbiont drives alterations in intestinal microbiota and circulating metabolites of lepidopteran host. Environ Microbiol 2022; 24:4049-4064. [PMID: 35191580 DOI: 10.1111/1462-2920.15934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/01/2021] [Accepted: 02/08/2022] [Indexed: 12/01/2022]
Abstract
The symbiotic association between bacterial symbionts and insect hosts is a complicated process that is not completely understood. Herein, we used a silkworm model to study the association between symbiotic Bacillus and lepidopteran insect by investigating the changes in intestinal microbiota and hemolymph circulating metabolites of silkworm after symbiotic Bacillus subtilis treatment. Results showed that B. subtilis can generate a variety of primary and secondary metabolites, such as B vitamins and antimicrobial compounds, to provide micronutrients and enhance the pathogen resistance of their insect host. Shifts in the relative abundance of Enterococcus, Brevibacterium, Buttiauxella, Pseudomonas, Brevundimonas, and Limnobacter had significant correlations with the concentrations of differential metabolites (e.g., phospholipids and certain amino acids) in insect hemolymph. The antimicrobial compounds secreted by B. subtilis were the primary driving force for the reconstruction of intestinal microbiota. Meanwhile, the altered levels of circulating metabolites in multiple metabolic pathways were potential an adaptive mechanism of insect hosts in response to the shifts of intestinal microbiota. Our findings provided concrete evidence that bacterial intestinal symbiont can alter the physiological state of insects and highlighted the importance of the compositional alterations of intestinal microbiota as a source of variation in circulating metabolites of insect hosts. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Guannan Li
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass, Southwest University, Chongqing, 400716, China.,Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Xi Zheng
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass, Southwest University, Chongqing, 400716, China
| | - Yong Zhu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass, Southwest University, Chongqing, 400716, China
| | - Yaohang Long
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou Province, P.R. China
| | - Xuejuan Xia
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
11
|
Fu J, Zeng L, Zheng L, Bai Z, Li Z, Liu L. Comparative Transcriptomic Analyses of Antibiotic-Treated and Normally Reared Bactrocera dorsalis Reveals a Possible Gut Self-Immunity Mechanism. Front Cell Dev Biol 2021; 9:647604. [PMID: 34621734 PMCID: PMC8490719 DOI: 10.3389/fcell.2021.647604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Bactrocera dorsalis (Hendel) is a notorious agricultural pest worldwide, and its prevention and control have been widely studied. Bacteria in the midgut of B. dorsalis help improve host insecticide resistance and environmental adaption, regulate growth and development, and affect male mating selection, among other functions. Insects have an effective gut defense system that maintains self-immunity and the balance among microorganisms in the gut, in addition to stabilizing the diversity among the gut symbiotic bacteria. However, the detailed regulatory mechanisms governing the gut bacteria and self-immunity are still unclear in oriental fruit flies. In this study, the diversity of the gut symbiotic bacteria in B. dorsalis was altered by feeding host fruit flies antibiotics, and the function of the gut bacteria was predicted. Then, a database of the intestinal transcriptome of the host fruit fly was established and analyzed using the Illumina HiSeq Platform. The gut bacteria shifted from Gram negative to Gram positive after antibiotic feeding. Antibiotics lead to a reduction in gut bacteria, particularly Gram-positive bacteria, which ultimately reduced the reproduction of the host flies. Ten immunity-related genes that were differentially expressed in the response to intestinal bacterial community changes were selected for qRT-PCR validation. Peptidoglycan-recognition protein SC2 gene (PGRP-SC2) was one of the 10 immunity-related genes analyzed. The differential expression of PGRP-SC2 was the most significant, which confirms that PGRP-SC2 may affect immunity of B. dorsalis toward gut bacteria.
Collapse
Affiliation(s)
- Jiajin Fu
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Lingyu Zeng
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Linyu Zheng
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhenzhen Bai
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhihong Li
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Lijun Liu
- College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Li H, Yu X, Meng F, Zhao Z, Guan S, Wang L. Ferulic Acid Supplementation Increases Lifespan and Stress Resistance via Insulin/IGF-1 Signaling Pathway in C. elegans. Int J Mol Sci 2021; 22:4279. [PMID: 33924155 PMCID: PMC8074393 DOI: 10.3390/ijms22084279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 01/18/2023] Open
Abstract
Ferulic acid (FA) is a naturally-occurring well-known potent antioxidant and free radical scavenger. FA supplementation is an effective strategy to delay aging, but the underlying mechanism remains unknown. In the present study, we examined the effects of FA on lifespan extension and its mechanism of FA in Caenorhabditis elegans (C. elegans). Results suggested that FA increased the lifespan of C. elegans, rather than altering the growth of E. coli OP50. Meanwhile, FA promoted the healthspan of C. elegans by improving locomotion and reducing fat accumulation and polyQ aggregation. FA increased the resistance to heat and oxidative stress through reducing ROS. The upregulating of the expression of the hlh-30, skn-1, and hsf-1 were involved in the FA-mediated lifespan extension. Furthermore, FA treatment had no impact on the lifespan of daf-2, hlh-30, skn-1, and hsf-1 mutants, confirming that insulin/IGF-1 signaling pathway and multiple longevity mechanisms were associated with the longevity mechanism of FA. We further found that mitochondrial signaling pathway was modulation involved in FA-mediated lifespan extension. With the results from RNA-seq results and mutants lifespan assay. These findings contribute to our knowledge of the lifespan extension and underlying mechanism of action of FA in C. elegans.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun 130012, China; (H.L.); (S.G.)
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.Y.); (F.M.); (Z.Z.)
| | - Xiaoxuan Yu
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.Y.); (F.M.); (Z.Z.)
| | - Fanwei Meng
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.Y.); (F.M.); (Z.Z.)
| | - Zhenyu Zhao
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.Y.); (F.M.); (Z.Z.)
| | - Shuwen Guan
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun 130012, China; (H.L.); (S.G.)
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.Y.); (F.M.); (Z.Z.)
- Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| | - Liping Wang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun 130012, China; (H.L.); (S.G.)
- School of Life Sciences, Jilin University, Changchun 130012, China; (X.Y.); (F.M.); (Z.Z.)
- Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| |
Collapse
|
13
|
Flatt T. Life-History Evolution and the Genetics of Fitness Components in Drosophila melanogaster. Genetics 2020; 214:3-48. [PMID: 31907300 PMCID: PMC6944413 DOI: 10.1534/genetics.119.300160] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/03/2019] [Indexed: 12/28/2022] Open
Abstract
Life-history traits or "fitness components"-such as age and size at maturity, fecundity and fertility, age-specific rates of survival, and life span-are the major phenotypic determinants of Darwinian fitness. Analyzing the evolution and genetics of these phenotypic targets of selection is central to our understanding of adaptation. Due to its simple and rapid life cycle, cosmopolitan distribution, ease of maintenance in the laboratory, well-understood evolutionary genetics, and its versatile genetic toolbox, the "vinegar fly" Drosophila melanogaster is one of the most powerful, experimentally tractable model systems for studying "life-history evolution." Here, I review what has been learned about the evolution and genetics of life-history variation in D. melanogaster by drawing on numerous sources spanning population and quantitative genetics, genomics, experimental evolution, evolutionary ecology, and physiology. This body of work has contributed greatly to our knowledge of several fundamental problems in evolutionary biology, including the amount and maintenance of genetic variation, the evolution of body size, clines and climate adaptation, the evolution of senescence, phenotypic plasticity, the nature of life-history trade-offs, and so forth. While major progress has been made, important facets of these and other questions remain open, and the D. melanogaster system will undoubtedly continue to deliver key insights into central issues of life-history evolution and the genetics of adaptation.
Collapse
Affiliation(s)
- Thomas Flatt
- Department of Biology, University of Fribourg, CH-1700, Switzerland
| |
Collapse
|
14
|
von Frieling J, Roeder T. Factors that affect the translation of dietary restriction into a longer life. IUBMB Life 2019; 72:814-824. [PMID: 31889425 DOI: 10.1002/iub.2224] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023]
Abstract
Nutritional interventions, such as dietary or calorie restriction, are known to have a variety of health-promoting effects. The most impressive are the direct effects on life expectancy, which have been reproduced in many animal models. A variety of dietary restriction protocols have been described, which differ either in their macronutrient composition or in the time window for consumption. Mechanistically, the effects of dietary restriction are mediated mainly through signaling pathways that have central roles in the maintenance of cellular energy balance. Among these, target of rapamycin and insulin signaling appear to be the most important. Such nutritional interventions can have their effects in two different ways: either by direct interaction with the metabolism of the host organism, or by modulating the composition and performance of its endogenous microbiome. Various dietary restriction regimens have been identified that significantly alter the microbiome and thus profoundly modulate host metabolism. This review aims to discuss the mechanisms by which dietary restriction can affect life expectancy, and in particular the role of the microbiome.
Collapse
Affiliation(s)
- Jakob von Frieling
- Department of Zoology, Molecular Physiology, Kiel University, Kiel, Germany
| | - Thomas Roeder
- Department of Zoology, Molecular Physiology, Kiel University, Kiel, Germany.,DZL, German Center for Lung Research, ARCN, Kiel, Germany
| |
Collapse
|
15
|
Camus MF, O'Leary M, Reuter M, Lane N. Impact of mitonuclear interactions on life-history responses to diet. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190416. [PMID: 31787037 DOI: 10.1098/rstb.2019.0416] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are central to both energy metabolism and biosynthesis. Mitochondrial function could therefore influence resource allocation. Critically, mitochondrial function depends on interactions between proteins encoded by the mitochondrial and nuclear genomes. Severe incompatibilities between these genomes can have pervasive effects on both fitness and longevity. How milder deficits in mitochondrial function affect life-history trade-offs is less well understood. Here, we analyse how mitonuclear interactions affect the trade-off between fecundity and longevity in Drosophila melanogaster. We consider a panel of 10 different mitochondrial DNA haplotypes against two contrasting nuclear backgrounds (w1118 (WE) and Zim53 (ZIM)) in response to high-protein versus standard diet. We report strikingly different responses between the two nuclear backgrounds. WE females have higher fecundity and decreased longevity on high protein. ZIM females have much greater fecundity and shorter lifespan than WE flies on standard diet. High protein doubled their fecundity with no effect on longevity. Mitochondrial haplotype reflected nuclear life-history trade-offs, with a negative correlation between longevity and fecundity in WE flies and no correlation in ZIM flies. Mitonuclear interactions had substantial effects but did not reflect genetic distance between mitochondrial haplotypes. We conclude that mitonuclear interactions can have significant impact on life-history trade-offs, but their effects are not predictable by relatedness. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- M Florencia Camus
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Michael O'Leary
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Max Reuter
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Nick Lane
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
16
|
Toshima N, Schleyer M. Neuronal processing of amino acids in Drosophila: from taste sensing to behavioural regulation. CURRENT OPINION IN INSECT SCIENCE 2019; 36:39-44. [PMID: 31473590 DOI: 10.1016/j.cois.2019.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/19/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
Finding and feeding on appropriate food are crucial for all animals. Carbohydrates and amino acids are both essential nutrients, albeit with distinct roles: the former are the main energy source whereas the latter are the building blocks of proteins and are used as neurotransmitters. Despite their crucial role, neither the sensing nor the neuronal processing of amino acids is well understood. Studies in Drosophila melanogaster have only recently gained momentum in shedding new light on the molecular and neuronal mechanisms of peripheral and internal amino acid sensing, as well as the organization of amino acid feeding behaviour. Furthermore, amino acids have been shown to act as rewards in associative learning. Focusing on recent studies in Drosophila, we summarize what is known so far about the perception of, and the behavioural responses to, amino acids in insects, and try to identify key questions for future research.
Collapse
Affiliation(s)
- Naoko Toshima
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology (LIN), Brenneckestrasse 6, 39118 Magdeburg, Germany.
| | - Michael Schleyer
- Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology (LIN), Brenneckestrasse 6, 39118 Magdeburg, Germany
| |
Collapse
|
17
|
Camus MF, Piper MD, Reuter M. Sex-specific transcriptomic responses to changes in the nutritional environment. eLife 2019; 8:47262. [PMID: 31436529 PMCID: PMC6773443 DOI: 10.7554/elife.47262] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
Males and females typically pursue divergent reproductive strategies and accordingly require different dietary compositions to maximise their fitness. Here we move from identifying sex-specific optimal diets to understanding the molecular mechanisms that underlie male and female responses to dietary variation in Drosophila melanogaster. We examine male and female gene expression on male-optimal (carbohydrate-rich) and female-optimal (protein-rich) diets. We find that the sexes share a large core of metabolic genes that are concordantly regulated in response to dietary composition. However, we also observe smaller sets of genes with divergent and opposing regulation, most notably in reproductive genes which are over-expressed on each sex's optimal diet. Our results suggest that nutrient sensing output emanating from a shared metabolic machinery are reversed in males and females, leading to opposing diet-dependent regulation of reproduction in males and females. Further analysis and experiments suggest that this reverse regulation occurs within the IIS/TOR network. "You are what you eat" is a popular saying that can often make scientific sense. Everything an animal eats gets broken down into smaller molecules that fuel the many biological processes required to survive, move and reproduce. However, the food that the sexes need to maximize their fertility may not be exactly the same, as males make lots of small, mobile sperm cells while females create a small number of large eggs. In fruit flies for example, females benefit most from foods that contain lots of protein, while males are more fertile when they eat foods that are rich in carbohydrates. However, it remained unclear how these differences have evolved. Here, Camus et al. examine the genes that are active in male and female fruit flies which eat a diet rich in either carbohydrates or in proteins. Their experiments showed that both sexes share a large collection of genes which respond to the two diets in the same way. However, the type of food had opposite effects on the activity of certain genes involved in male and female reproduction. When the fruit flies had a protein-rich diet, for example, genes that promoted reproduction got turned on in females, but switched off in males. The opposite pattern was observed when the insects were exposed to carbohydrate-rich diets. Further analyses suggested that these different responses might be linked to a molecular network called IIS/TOR, which is a specific cascade of reactions that responds to nutrient availability. The findings of Camus et al. suggest that male and female flies produce different signals in reaction to food, which helps them to reproduce when they are able to meet their particular nutritional needs. Armed with a better understanding of the fundamental differences between the sexes, it may be possible to improve research into human health and animal keeping.
Collapse
Affiliation(s)
- M Florencia Camus
- Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Matthew Dw Piper
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Max Reuter
- Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
18
|
Long-lived Temnothorax ant queens switch from investment in immunity to antioxidant production with age. Sci Rep 2019; 9:7270. [PMID: 31086243 PMCID: PMC6514213 DOI: 10.1038/s41598-019-43796-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/15/2019] [Indexed: 01/09/2023] Open
Abstract
Senescence is manifested by an increase in molecular damage and a deterioration of biological functions with age. In most organisms, body maintenance is traded-off with reproduction. This negative relationship between longevity and fecundity is also evident on the molecular level. Exempt from this negative trait association, social insect queens are both extremely long-lived and highly fecund. Here, we study changes in gene expression with age and fecundity in ant queens to understand the molecular basis of their long lifespan. We analyse tissue-specific gene expression in young founding queens and old fecund queens of the ant Temnothorax rugatulus. More genes altered their expression with age in the fat body than in the brain. Despite strong differences in ovary development, few fecundity genes were differentially expressed. Young founding queens invested in immunity (i.e. activation of Toll signalling pathway) and resistance against environmental and physiological stress (i.e. down-regulation of TOR pathway). Conversely, established older queens invested into anti-aging mechanisms through an overproduction of antioxidants (i.e. upregulation of catalase, superoxide dismutase). Finally, we identified candidate genes and pathways, potentially involved in the association between fertility and longevity in social insects and its proximate basis.
Collapse
|
19
|
Canfield CA, Bradshaw PC. Amino acids in the regulation of aging and aging-related diseases. TRANSLATIONAL MEDICINE OF AGING 2019. [DOI: 10.1016/j.tma.2019.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
20
|
Heck MJ, Hatle JD. Interaction of neuropeptide F and diet levels effects carbonyl levels in grasshoppers. Exp Gerontol 2018; 113:186-192. [PMID: 30316813 PMCID: PMC6233717 DOI: 10.1016/j.exger.2018.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/16/2018] [Accepted: 09/30/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Matthew J Heck
- University of North Florida, Dept of Biology, Jacksonville, FL 32224, USA
| | - John D Hatle
- University of North Florida, Dept of Biology, Jacksonville, FL 32224, USA.
| |
Collapse
|