1
|
Ferreira CH, Heinemans M, Farias M, Gonçalves R, Moita MA. Social Cues of Safety Can Override Differences in Threat Level. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.885795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Animals in groups integrate social with directly gathered information about the environment to guide decisions regarding reproduction, foraging, and defence against predatory threats. In the context of predation, usage of social information has acute fitness benefits, aiding the detection of predators, the mounting of concerted defensive responses, or allowing the inference of safety, permitting other beneficial behaviors, such as foraging for food. We previously showed that Drosophila melanogaster exposed to an inescapable visual threat use freezing by surrounding flies as a cue of danger and movement resumption as a cue of safety. Moreover, group responses were primarily guided by the safety cues, resulting in a net social buffering effect, i.e., a graded decrease in freezing behavior with increasing group sizes, similar to other animals. Whether and how different threat levels affect the use of social cues to guide defense responses remains elusive. Here, we investigated this issue by exposing flies individually and in groups to two threat imminences using looms of different speeds. We showed that freezing responses are stronger to the faster looms regardless of social condition. However, social buffering was stronger for groups exposed to the fast looms, such that the increase in freezing caused by the higher threat was less prominent in flies tested in groups than those tested individually. Through artificial control of movement, we created groups composed of moving and freezing flies and by varying group composition, we titrated the motion cues that surrounding flies produce, which were held constant across threat levels. We found that the same level of safety motion cues had a bigger weight on the flies’ decisions when these were exposed to the higher threat, thus overriding differences in perceived threat levels. These findings shed light on the “safety in numbers” effect, revealing the modulation of the saliency of social safety cues across threat intensities, a possible mechanism to regulate costly defensive responses.
Collapse
|
2
|
Chen M, Sokolowski MB. How Social Experience and Environment Impacts Behavioural Plasticity in Drosophila. Fly (Austin) 2021; 16:68-84. [PMID: 34852730 DOI: 10.1080/19336934.2021.1989248] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
An organism's behaviour is influenced by its social environment. Experiences such as social isolation or crowding may have profound short or long-term effects on an individual's behaviour. The composition of the social environment also depends on the genetics and previous experiences of the individuals present, leading to additional potential outcomes from each social interaction. In this article, we review selected literature related to the social environment of the model organism Drosophila melanogaster, and how Drosophila respond to variation in their social experiences throughout their lifetimes. We focus on the effects of social environment on behavioural phenotypes such as courtship, aggression, and group dynamics, as well as other phenotypes such as development and physiology. The consequences of phenotypic plasticity due to social environment are discussed with respect to the ecology and evolution of Drosophila. We also relate these studies to laboratory research practices involving Drosophila and other animals.
Collapse
Affiliation(s)
- Molly Chen
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada.,Current Affiliation: Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
| | - Marla B Sokolowski
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada.,Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario M5G 1Z8, Canada
| |
Collapse
|
3
|
Couzin-Fuchs E, Ayali A. The social brain of 'non-eusocial' insects. CURRENT OPINION IN INSECT SCIENCE 2021; 48:1-7. [PMID: 33933684 DOI: 10.1016/j.cois.2021.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Decisions are seldom entirely devoid of social influence. Even in organisms that have traditionally been considered non-social, the social environment plays an important role in mediating behavior. Here we review the current knowledge regarding the neural basis of social behaviors in non-eusocial insects, with a particular focus on fruit flies, cockroaches and locusts. Each are shown to offer valuable, and complementary, insights into how social behavior is mediated at the neural level. The presented studies demonstrate that social cues, which are integrated in primary sensory areas, exert a considerable influence on behavior. Further studies with these models, and others, will provide important insights into the diversity of social behaviors, and into the way that these are encoded in dedicated brain and neuronal structures.
Collapse
Affiliation(s)
- Einat Couzin-Fuchs
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany.
| | - Amir Ayali
- School of Zoology, Tel Aviv University, 6997801, Israel; Sagol School of Neuroscience, Tel Aviv University, 6997801, Israel
| |
Collapse
|
4
|
Abstract
The past 2 decades have seen fruit flies being widely adopted for research on social behavior and aggression. This fruitful research, however, has not been well tied to fruit flies' natural history. To address this knowledge gap, I conducted a field study. My goal was to inform future research conducted in artificial surroundings, and to inspire new investigations that can rely more heavily on fruit flies' actual natural behavior. My two main novel findings were first, that flies in the field showed significant sociability, as they formed social groups rather than dispersed randomly among fruits of similar quality. Second, males showed fair levels of aggression towards each other as indicated by a lunging rate of 17 per hour, and lower rates of wing threat and boxing. Courtship was the most prominent activity on fruits, with females rejecting almost all males' advances. This resulted in an estimated mating rate of 0.6 per female per day. Flies showed a striking peak of activity early in the mornings, even at cold temperatures, followed by inactivity for much of the day and night. Flies, however, handled well high temperatures approaching 40 °C by hiding away from fruit and concentrating activity in the cooler, early mornings. My field work highlights a few promising lines of future research informed by fruit flies' natural history. Most importantly, we do not understand the intriguing dynamics that generate significant sociability despite frequent aggressive interactions on fruits. Males' responses to female rejection signals varied widely, perhaps because the signals differed in information content perceived by flies but not humans. Finally, flies tolerated cold early mornings perhaps owing to fitness benefits associated with increased mating and feeding opportunities at this time. Flies were adept at handling very high temperatures under the natural daily temperature fluctuations and availability of shelters, and this can inform more realistic research on the effects of global warming on animals in their natural settings.
Collapse
Affiliation(s)
- Reuven Dukas
- Animal Behaviour Group, Department of Psychology, Neuroscience and Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
5
|
Yost RT, Robinson JW, Baxter CM, Scott AM, Brown LP, Aletta MS, Hakimjavadi R, Lone A, Cumming RC, Dukas R, Mozer B, Simon AF. Abnormal Social Interactions in a Drosophila Mutant of an Autism Candidate Gene: Neuroligin 3. Int J Mol Sci 2020; 21:E4601. [PMID: 32610435 PMCID: PMC7370170 DOI: 10.3390/ijms21134601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
Social interactions are typically impaired in neuropsychiatric disorders such as autism, for which the genetic underpinnings are very complex. Social interactions can be modeled by analysis of behaviors, including social spacing, sociability, and aggression, in simpler organisms such as Drosophila melanogaster. Here, we examined the effects of mutants of the autism-related gene neuroligin 3 (nlg3) on fly social and non-social behaviors. Startled-induced negative geotaxis is affected by a loss of function nlg3 mutation. Social space and aggression are also altered in a sex- and social-experience-specific manner in nlg3 mutant flies. In light of the conserved roles that neuroligins play in social behavior, our results offer insight into the regulation of social behavior in other organisms, including humans.
Collapse
Affiliation(s)
- Ryley T. Yost
- Department of Biology, Faculty of Science, Western University, London, ON N6A 5B7, Canada; (R.T.Y.); (J.W.R.); (L.P.B.); (M.S.A.); (R.H.); (A.L.); (R.C.C.)
| | - J. Wesley Robinson
- Department of Biology, Faculty of Science, Western University, London, ON N6A 5B7, Canada; (R.T.Y.); (J.W.R.); (L.P.B.); (M.S.A.); (R.H.); (A.L.); (R.C.C.)
| | - Carling M. Baxter
- Animal Behaviour Group, Department of Psychology, Neuroscience and Behaviour (PNB) McMaster University, Hamilton, ON L8S 4K1, Canada; (C.M.B.); (A.M.S.); (R.D.)
| | - Andrew M. Scott
- Animal Behaviour Group, Department of Psychology, Neuroscience and Behaviour (PNB) McMaster University, Hamilton, ON L8S 4K1, Canada; (C.M.B.); (A.M.S.); (R.D.)
| | - Liam P. Brown
- Department of Biology, Faculty of Science, Western University, London, ON N6A 5B7, Canada; (R.T.Y.); (J.W.R.); (L.P.B.); (M.S.A.); (R.H.); (A.L.); (R.C.C.)
| | - M. Sol Aletta
- Department of Biology, Faculty of Science, Western University, London, ON N6A 5B7, Canada; (R.T.Y.); (J.W.R.); (L.P.B.); (M.S.A.); (R.H.); (A.L.); (R.C.C.)
| | - Ramtin Hakimjavadi
- Department of Biology, Faculty of Science, Western University, London, ON N6A 5B7, Canada; (R.T.Y.); (J.W.R.); (L.P.B.); (M.S.A.); (R.H.); (A.L.); (R.C.C.)
| | - Asad Lone
- Department of Biology, Faculty of Science, Western University, London, ON N6A 5B7, Canada; (R.T.Y.); (J.W.R.); (L.P.B.); (M.S.A.); (R.H.); (A.L.); (R.C.C.)
| | - Robert C. Cumming
- Department of Biology, Faculty of Science, Western University, London, ON N6A 5B7, Canada; (R.T.Y.); (J.W.R.); (L.P.B.); (M.S.A.); (R.H.); (A.L.); (R.C.C.)
| | - Reuven Dukas
- Animal Behaviour Group, Department of Psychology, Neuroscience and Behaviour (PNB) McMaster University, Hamilton, ON L8S 4K1, Canada; (C.M.B.); (A.M.S.); (R.D.)
| | - Brian Mozer
- Office of Research Integrity, Office of the Assistant Secretary for Health, Rockville, MD 20889, USA;
| | - Anne F. Simon
- Department of Biology, Faculty of Science, Western University, London, ON N6A 5B7, Canada; (R.T.Y.); (J.W.R.); (L.P.B.); (M.S.A.); (R.H.); (A.L.); (R.C.C.)
| |
Collapse
|