1
|
Jia H, Tan S, Cai Y, Guo Y, Shen J, Zhang Y, Ma H, Zhang Q, Chen J, Qiao G, Ruan J, Zhang YE. Low-input PacBio sequencing generates high-quality individual fly genomes and characterizes mutational processes. Nat Commun 2024; 15:5644. [PMID: 38969648 PMCID: PMC11226609 DOI: 10.1038/s41467-024-49992-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/20/2024] [Indexed: 07/07/2024] Open
Abstract
Long-read sequencing, exemplified by PacBio, revolutionizes genomics, overcoming challenges like repetitive sequences. However, the high DNA requirement ( > 1 µg) is prohibitive for small organisms. We develop a low-input (100 ng), low-cost, and amplification-free library-generation method for PacBio sequencing (LILAP) using Tn5-based tagmentation and DNA circularization within one tube. We test LILAP with two Drosophila melanogaster individuals, and generate near-complete genomes, surpassing preexisting single-fly genomes. By analyzing variations in these two genomes, we characterize mutational processes: complex transpositions (transposon insertions together with extra duplications and/or deletions) prefer regions characterized by non-B DNA structures, and gene conversion of transposons occurs on both DNA and RNA levels. Concurrently, we generate two complete assemblies for the endosymbiotic bacterium Wolbachia in these flies and similarly detect transposon conversion. Thus, LILAP promises a broad PacBio sequencing adoption for not only mutational studies of flies and their symbionts but also explorations of other small organisms or precious samples.
Collapse
Affiliation(s)
- Hangxing Jia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Shengjun Tan
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Yingao Cai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanyan Guo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jieyu Shen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaqiong Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huijing Ma
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qingzhu Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinfeng Chen
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jue Ruan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Kojin BB, Compton A, Adelman ZN, Tu Z. Selective targeting of biting females to control mosquito-borne infectious diseases. Trends Parasitol 2022; 38:791-804. [PMID: 35952630 PMCID: PMC9372635 DOI: 10.1016/j.pt.2022.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
Mosquitoes are vectors for a number of infectious diseases. Only females feed on blood to provision for their embryos and, in doing so, transmit pathogens to the associated vertebrate hosts. Therefore, sex is an important phenotype in the context of genetic control programs, both for sex separation in the rearing facilities to avoid releasing biting females and for ways to distort the sex ratio towards nonbiting males. We review recent progress in the fundamental knowledge of sex determination and sex chromosomes in mosquitoes and discuss new methods to achieve sex separation and sex ratio distortion to help control mosquito-borne infectious diseases. We conclude by suggesting a few critical areas for future research.
Collapse
Affiliation(s)
- Bianca B Kojin
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX, USA
| | - Austin Compton
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA; Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
| | - Zach N Adelman
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX, USA.
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA; Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
3
|
Abstract
Insects have evolved highly diverse genetic sex-determination mechanisms and a relatively balanced male to female sex ratio is generally expected. However, selection may shift the optimal sex ratio while meiotic drive and endosymbiont manipulation can result in sex ratio distortion (SRD). Recent advances in sex chromosome genomics and CRISPR/Cas9-mediated genome editing brought significant insights into the molecular regulators of sex determination in an increasing number of insects and provided new ways to engineer SRD. We review these advances and discuss both naturally occurring and engineered SRD in the context of the Anthropocene. We emphasize SRD-mediated biological control of insects to help improve One Health, sustain agriculture, and conserve endangered species.
Collapse
Affiliation(s)
- Austin Compton
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
4
|
Ruiz JL, Ranford-Cartwright LC, Gómez-Díaz E. The regulatory genome of the malaria vector Anopheles gambiae: integrating chromatin accessibility and gene expression. NAR Genom Bioinform 2021; 3:lqaa113. [PMID: 33987532 PMCID: PMC8092447 DOI: 10.1093/nargab/lqaa113] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022] Open
Abstract
Anopheles gambiae mosquitoes are primary human malaria vectors, but we know very little about their mechanisms of transcriptional regulation. We profiled chromatin accessibility by the assay for transposase-accessible chromatin by sequencing (ATAC-seq) in laboratory-reared A. gambiae mosquitoes experimentally infected with the human malaria parasite Plasmodium falciparum. By integrating ATAC-seq, RNA-seq and ChIP-seq data, we showed a positive correlation between accessibility at promoters and introns, gene expression and active histone marks. By comparing expression and chromatin structure patterns in different tissues, we were able to infer cis-regulatory elements controlling tissue-specific gene expression and to predict the in vivo binding sites of relevant transcription factors. The ATAC-seq assay also allowed the precise mapping of active regulatory regions, including novel transcription start sites and enhancers that were annotated to mosquito immune-related genes. Not only is this study important for advancing our understanding of mechanisms of transcriptional regulation in the mosquito vector of human malaria, but the information we produced also has great potential for developing new mosquito-control and anti-malaria strategies.
Collapse
Affiliation(s)
- José L Ruiz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, 18016 Granada, Spain
| | - Lisa C Ranford-Cartwright
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow G12 8QQ, UK
| | - Elena Gómez-Díaz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, 18016 Granada, Spain
| |
Collapse
|
5
|
Lezcano ÓM, Sánchez-Polo M, Ruiz JL, Gómez-Díaz E. Chromatin Structure and Function in Mosquitoes. Front Genet 2020; 11:602949. [PMID: 33365050 PMCID: PMC7750206 DOI: 10.3389/fgene.2020.602949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/29/2020] [Indexed: 12/27/2022] Open
Abstract
The principles and function of chromatin and nuclear architecture have been extensively studied in model organisms, such as Drosophila melanogaster. However, little is known about the role of these epigenetic processes in transcriptional regulation in other insects including mosquitoes, which are major disease vectors and a worldwide threat for human health. Some of these life-threatening diseases are malaria, which is caused by protozoan parasites of the genus Plasmodium and transmitted by Anopheles mosquitoes; dengue fever, which is caused by an arbovirus mainly transmitted by Aedes aegypti; and West Nile fever, which is caused by an arbovirus transmitted by Culex spp. In this contribution, we review what is known about chromatin-associated mechanisms and the 3D genome structure in various mosquito vectors, including Anopheles, Aedes, and Culex spp. We also discuss the similarities between epigenetic mechanisms in mosquitoes and the model organism Drosophila melanogaster, and advocate that the field could benefit from the cross-application of state-of-the-art functional genomic technologies that are well-developed in the fruit fly. Uncovering the mosquito regulatory genome can lead to the discovery of unique regulatory networks associated with the parasitic life-style of these insects. It is also critical to understand the molecular interactions between the vectors and the pathogens that they transmit, which could hold the key to major breakthroughs on the fight against mosquito-borne diseases. Finally, it is clear that epigenetic mechanisms controlling mosquito environmental plasticity and evolvability are also of utmost importance, particularly in the current context of globalization and climate change.
Collapse
Affiliation(s)
| | | | - José L. Ruiz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Elena Gómez-Díaz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
6
|
Rocha EM, Katak RDM, Campos de Oliveira J, Araujo MDS, Carlos BC, Galizi R, Tripet F, Marinotti O, Souza-Neto JA. Vector-Focused Approaches to Curb Malaria Transmission in the Brazilian Amazon: An Overview of Current and Future Challenges and Strategies. Trop Med Infect Dis 2020; 5:E161. [PMID: 33092228 PMCID: PMC7709627 DOI: 10.3390/tropicalmed5040161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 01/05/2023] Open
Abstract
In Brazil, malaria transmission is mostly confined to the Amazon, where substantial progress has been made towards disease control in the past decade. Vector control has been historically considered a fundamental part of the main malaria control programs implemented in Brazil. However, the conventional vector-control tools have been insufficient to control or eliminate local vector populations due to the complexity of the Amazonian rainforest environment and ecological features of malaria vector species in the Amazon, especially Anopheles darlingi. Malaria elimination in Brazil and worldwide eradication will require a combination of conventional and new approaches that takes into account the regional specificities of vector populations and malaria transmission dynamics. Here we present an overview on both conventional and novel promising vector-focused tools to curb malaria transmission in the Brazilian Amazon. If well designed and employed, vector-based approaches may improve the implementation of malaria-control programs, particularly in remote or difficult-to-access areas and in regions where existing interventions have been unable to eliminate disease transmission. However, much effort still has to be put into research expanding the knowledge of neotropical malaria vectors to set the steppingstones for the optimization of conventional and development of innovative vector-control tools.
Collapse
Affiliation(s)
- Elerson Matos Rocha
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas—PPGBIOTEC/UFAM, Manaus 69067-005, Brazil; (E.M.R.); (R.d.M.K.); (J.C.d.O.)
| | - Ricardo de Melo Katak
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas—PPGBIOTEC/UFAM, Manaus 69067-005, Brazil; (E.M.R.); (R.d.M.K.); (J.C.d.O.)
| | - Juan Campos de Oliveira
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas—PPGBIOTEC/UFAM, Manaus 69067-005, Brazil; (E.M.R.); (R.d.M.K.); (J.C.d.O.)
| | - Maisa da Silva Araujo
- Laboratory of Medical Entomology, Oswaldo Cruz Foundation, FIOCRUZ RONDONIA, Porto Velho, RO 76812-245, Brazil;
| | - Bianca Cechetto Carlos
- Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil;
- Central Multiuser Laboratory, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil
| | - Roberto Galizi
- Centre of Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire ST5 5GB, UK; (R.G.); (F.T.)
| | - Frederic Tripet
- Centre of Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire ST5 5GB, UK; (R.G.); (F.T.)
| | | | - Jayme A. Souza-Neto
- Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil;
- Central Multiuser Laboratory, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil
| |
Collapse
|