1
|
Fu L, Lin C, Xu W, Cheng H, Liu D, Ma L, Su Z, Yan X, Dong X, Liu C. Chromosome-level genome assembly of predatory Arma chinensis. Sci Data 2024; 11:962. [PMID: 39232013 PMCID: PMC11374891 DOI: 10.1038/s41597-024-03837-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024] Open
Abstract
Arma chinensis is a natural enemy that preys on various species and can suppress agricultural and forest pests in the orders Lepidoptera and Coleoptera. Here, we aimed to determine the genome of A. chinensis assembled at the chromosome-level using PacBio and Hi-C technologies. The assembled genome was 986 Mb, with a contig N50 of 2.40 Mb, scaffold N50 of 134.98 Mb, and BUSCO completeness of 96.10%. Hi-C data aided in anchoring the assembly onto seven chromosomes. A sequence of ~ 496.2 Mb was annotated as a repeat element, constituting 51.15% of the genome. We functionally annotated 84.79% of 20,853 predicted protein-encoding genes. This high-quality A. chinensis genome provides a novel genomic resource for future research on Pentatomidae insects.
Collapse
Affiliation(s)
- Luyao Fu
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Changjin Lin
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wenyan Xu
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongmei Cheng
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dianyu Liu
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Agriculture, Yangtze University, No. 1 Nanhuan Road, Jingzhou, 434025, Hubei, China
| | - Le Ma
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Agriculture, Yangtze University, No. 1 Nanhuan Road, Jingzhou, 434025, Hubei, China
| | - Zhihan Su
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Agriculture, Yangtze University, No. 1 Nanhuan Road, Jingzhou, 434025, Hubei, China
| | - Xiaoyu Yan
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Agriculture, Yangtze University, No. 1 Nanhuan Road, Jingzhou, 434025, Hubei, China
| | - Xiaolin Dong
- College of Agriculture, Yangtze University, No. 1 Nanhuan Road, Jingzhou, 434025, Hubei, China
| | - Chenxi Liu
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
2
|
Krämer J, Hölker P, Predel R. How to Overcome a Snail? Identification of Putative Neurotoxins of Snail-Feeding Firefly Larvae (Coleoptera: Lampyridae, Lampyris noctiluca). Toxins (Basel) 2024; 16:272. [PMID: 38922166 PMCID: PMC11209139 DOI: 10.3390/toxins16060272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
The larvae of some lampyrid beetles are highly specialized predators of snails. They have been observed to climb on the shells of their prey and use this exposed position to bite and inject secretions potentially originating from the midgut. Besides serving the purpose of extra-oral digestion (EOD), injected compounds also seem to have a paralyzing effect. Up to now, the toxins causing this paralyzing activity have not been identified. In the current study, we provide a first compositional analysis of the midgut secretion from lampyrid larvae, with a focus on identifying putative neurotoxins causing the observed paralyzing effect. For this purpose, we utilized a combined proteo-transcriptomic approach to characterize the compounds present in the midgut secretion of larval stages of Lampyris noctiluca. In terms of the absolute numbers of identified compounds, the midgut secretion is dominated by hydrolyzing enzymes comprising peptidases, carboxylesterases, and glycosidases. However, when considering expression levels, a few rather short cysteine-rich peptides exceed all other compounds. Some of these compounds show moderate similarity to putative neurotoxins identified in the venom of other arthropods and could be responsible for paralyzing effects. In addition to these potential toxins, we provide a list of peptides typical of the midgut secretion of L. noctiluca, supplemented by the corresponding precursor sequences.
Collapse
Affiliation(s)
- Jonas Krämer
- Institute of Zoology, University of Cologne, Zuelpicher Strasse 47b, 50674 Cologne, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Patrick Hölker
- Institute of Zoology, University of Cologne, Zuelpicher Strasse 47b, 50674 Cologne, Germany
| | - Reinhard Predel
- Institute of Zoology, University of Cologne, Zuelpicher Strasse 47b, 50674 Cologne, Germany
| |
Collapse
|
3
|
Wang Z, Liu D, Ma L, Cheng H, Lin C, Fu L, Chen Y, Dong X, Liu C. Genome-wide analysis of gustatory receptor genes and identification of the fructose gustatory receptor in Arma chinensis. Heliyon 2024; 10:e30795. [PMID: 38765039 PMCID: PMC11096949 DOI: 10.1016/j.heliyon.2024.e30795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024] Open
Abstract
Gustatory receptors (GRs) allow insects to sense tastes in their external environment. Gustatory perception is crucial for distinguishing between beneficial and harmful or toxic compounds, affecting survival. This study is the first to identify and classify the GR genes and investigate their expression in the predatory Arma chinensis. Thirteen GR genes (ArmaGr1-ArmaGr13) were identified and classified into four families via phylogenetic analysis. In the predacious developmental stages, ArmaGr7 expression gradually increased from the 2nd to 5th instar stages and then to adults. However, ArmaGr7 was also highly expressed in the non-predation 1st instar nymph and egg stages. ArmaGr7 expression was localized in the antennae, scalpella, forelegs, wings, head, and midgut of male and female adults, with wings displaying the highest expression. Furthermore, ArmaGr7 expression was positively correlated with fructose solution intake; molecular docking results showed that fructose could effectively dock withArmaGr7. A protein structure comparison revealed that the ArmaGr7 structure was different from that of other GR43a-like proteins, which may be related to the gene splicing of the A. chinensis GR gene. These results elucidate the crucial role of ArmaGr7 in fructose recognition by A. chinensis and provide a foundation for further studies on gustatory perception.
Collapse
Affiliation(s)
- Zhen Wang
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Dianyu Liu
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
- College of Agriculture, Yangtze University, No. 1 Nanhuan Road, Jingzhou, 434025, Hubei, China
| | - Le Ma
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
- College of Agriculture, Yangtze University, No. 1 Nanhuan Road, Jingzhou, 434025, Hubei, China
| | - Hongmei Cheng
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Changjin Lin
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Luyao Fu
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yu Chen
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
- College of Agriculture, Yangtze University, No. 1 Nanhuan Road, Jingzhou, 434025, Hubei, China
| | - Xiaolin Dong
- College of Agriculture, Yangtze University, No. 1 Nanhuan Road, Jingzhou, 434025, Hubei, China
| | - Chenxi Liu
- Sino-American Biological Control Laboratory, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| |
Collapse
|
4
|
Xiao T, Wang W, Deng M, Yang Z, Peng H, Huang Z, Sun Z, Lu K. CYP321A Subfamily P450s Contribute to the Detoxification of Phytochemicals and Pyrethroids in Spodoptera litura. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14989-15002. [PMID: 37792742 DOI: 10.1021/acs.jafc.3c05423] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Although the induction of cytochrome P450 monooxygenases involved in insect detoxification has been well documented, the underlying regulatory mechanisms remain obscure. In Spodoptera litura, CYP321A subfamily members were effectively induced by exposure to flavone, xanthotoxin, curcumin, and λ-cyhalothrin, while knockdown of the CYP321A genes increased larval susceptibility to these xenobiotics. Homology modeling and molecular docking analyses showed that these four xenobiotics could stably bind to the CYP321A enzymes. Furthermore, two transcription factor genes, CncC and MafK, were significantly induced by the xenobiotics. Knockdown of CncC or MafK reduced the expression of four CYP321A genes and increased larval susceptibility to the xenobiotics. Dual-luciferase reporter assays showed that cotransfection of reporter plasmids carrying the CYP321A promoter with CncC and/or MafK-expressing constructs significantly magnified the promoter activity. These results indicate that the induction of CYP321A subfamily members conferring larval detoxification capability to xenobiotics is mediated by the activation of CncC and MafK.
Collapse
Affiliation(s)
- Tianxiang Xiao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wenxiu Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Mengqing Deng
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zhiming Yang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Haoxue Peng
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zifan Huang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zhongxiang Sun
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Kai Lu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
5
|
Zhang M, Dai Z, Chen X, Qin D, Zhu G, Zhu T, Chen G, Ding Y, Wu G, Gao X. Identification and functional analysis of serine protease inhibitor gene family of Eocanthecona furcellata (Wolff). Front Physiol 2023; 14:1248354. [PMID: 37795265 PMCID: PMC10545863 DOI: 10.3389/fphys.2023.1248354] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
The predatory natural enemy Eocanthecona furcellata plays a crucial role in agricultural ecosystems due to its effective pest control measures and defensive venom. Predator venom contains serine protease inhibitors (SPIs), which are the primary regulators of serine protease activity and play key roles in digestion, development, innate immunity, and other physiological regulatory processes. However, the regulation mechanism of SPIs in the salivary glands of predatory natural enemies is still unknown. In this study, we sequenced the transcriptome of E. furcellata salivary gland and identified 38 SPIs genes named EfSPI1∼EfSPI38. Through gene structure, multiple sequence alignment and phylogenetic tree analysis, real-time quantitative PCR (RT-PCR) expression profiles of different developmental stages and different tissues were analyzed. RNAi technology was used to explore the gene function of EFSPI20. The results showed that these 38 EfSPIs genes contained 8 SPI domains, which were serpin, TIL, Kunitz, Kazal, Antistasin, Pacifastin, WAP and A2M. The expression profile results showed that the expression of different types of EfSPIs genes was different at different developmental stages and different tissues. Most of the EfSPIs genes were highly expressed in the egg stage. The EfSPI20, EfSPI21, EfSPI22, and EfSPI24 genes of the Pacifastin subfamily and the EfSPI35 gene of the A2M subfamily were highly expressed in the nymphal and adult stages, which was consistent with the RT-qPCR verification results. These five genes are positively correlated with each other and have a synergistic effect on E. furcellata, and they were highly expressed in salivary glands. After interfering with the expression of the EfSPI20 gene, the survival rate and predatory amount of male and female adults were significantly decreased. Taken together, we speculated some EfSPIs may inhibit trypsin, chymotrypsin, and elastase, and some EfSPIs may be involved in autoimmune responses. EfSPI20 was essential for the predation and digestion of E. furcellata, and the functions of other EfSPIs were discussed. Our findings provide valuable insights into the diversity of EfSPIs in E. furcellata and the potential functions of regulating their predation, digestion and innate immunity, which may be of great significance for developing new pest control strategies.
Collapse
Affiliation(s)
- Man Zhang
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zhenlin Dai
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xiao Chen
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Deqiang Qin
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Guoyuan Zhu
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Tao Zhu
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Gang Chen
- Yunan Tobacco Company Chuxiong Prefecture Company, Chuxiong, China
| | - Yishu Ding
- Yunan Tobacco Company Chuxiong Prefecture Company, Chuxiong, China
| | - Guoxing Wu
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xi Gao
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
6
|
Wang YQ, Li GY, Li L, Song QS, Stanley D, Wei SJ, Zhu JY. Genome-wide and expression-profiling analyses of the cytochrome P450 genes in Tenebrionidea. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21954. [PMID: 36065122 DOI: 10.1002/arch.21954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Cytochrome P450 monooxygenases (CYPs) are present in almost all areas of the tree of life. As one of the largest and most diverse superfamilies of multifunctional enzymes, they play important roles in the metabolism of xenobiotics and biosynthesis of endogenous compounds, shaping the success of insects. In this study, the CYPome (an omics term for all the CYP genes in a genome) diversification was examined in the four Tenebrionidea species through genome-wide analysis. A total of 483 CYP genes were identified, of which 103, 157, 122, and 101 were respectively deciphered from the genomes of Tebebrio molitor, Asbolus verucosus, Hycleus cichorii and Hycleus phaleratus. These CYPs were classified into four major clans (mitochondrial, CYP2, CYP3, and CYP4), and clans CYP3 and CYP4 are most diverse. Phylogenetic analysis showed that most CYPs of these Tenebrionidea beetles from each clan had a very close 1:1 orthology to each other, suggesting that they originate closely and have evolutionally conserved function. Expression analysis at different developmental stages and in various tissues showed the life stage-, gut-, salivary gland-, fat body-, Malpighian tubule-, antennae-, ovary- and testis-specific expression patterns of T. molitor CYP genes, implying their various potential roles in development, detoxification, immune response, digestion, olfaction, and reproduction. Our studies provide a platform to understand the evolution of Tenebrionidea CYP gene superfamily, and a basis for further functional investigation of the T. molitor CYPs involved in various biological processes.
Collapse
Affiliation(s)
- Yu-Qin Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Guang-Ya Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Lu Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Qi-Sheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - David Stanley
- USDA/ARS Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| | - Shu-Jun Wei
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
7
|
Yang L, Tian Y, Fang Y, Chen ML, Smagghe G, Niu J, Wang JJ. A saliva α-glucosidase MpAgC2-2 enhance the feeding of green peach aphid Myzus persicae via extra-intestinal digestion. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 150:103846. [PMID: 36202385 DOI: 10.1016/j.ibmb.2022.103846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Aphids feed on plant phloem sap that contains massive amounts of sucrose; this not only provides vital nutrition for the aphids but also produces high osmotic pressure. To utilize this carbon source and overcome the osmotic pressure, sucrose is hydrolyzed into the monosaccharides, glucose and fructose. In the green peach aphid (Myzus persicae), we show that this process is facilitated by a key α-glucosidase (MpAgC2-2), which is abundant in the aphid salivary gland and is secreted into leaves during feeding. MpAgC2-2 has a pH optimum of 8.0 in vitro, suggesting it has adapted to the environment of plant cells. Silencing MpAgC2-2 (but not the gut-specific MpAgC3-4) significantly increased the amount of sucrose ingested and hindered aphid feeding on the phloem of tobacco seedlings, resulting in a smaller body size, as well as lower α-glucosidase activity and glucose levels. These effects could be rescued by feeding aphids on tobacco plants transiently expressing MpAgC2-2. The transient expression of MpAgC2-2 also led to the hydrolysis of sucrose in tobacco leaves. Taken together, these results demonstrate that MpAgC2-2 is a salivary protein that facilitates extra-intestinal feeding via sucrose hydrolysis. Our findings provide insight into the ability of aphids to digest the high concentration of sucrose in phloem, and the underlying mechanism of extra-intestinal digestion.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China.
| | - Yuan Tian
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China.
| | - Ying Fang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.
| | - Meng-Ling Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China.
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China; Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Jinzhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China.
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
8
|
Bacteria-derived pesticidal proteins active against hemipteran pests. J Invertebr Pathol 2022; 195:107834. [DOI: 10.1016/j.jip.2022.107834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/02/2022] [Accepted: 10/07/2022] [Indexed: 02/05/2023]
|
9
|
Banerjee R, Flores‐Escobar B, Chougule NP, Cantón PE, Dumitru R, Bonning BC. Peptide mediated, enhanced toxicity of a bacterial pesticidal protein against southern green stink bug. Microb Biotechnol 2022; 15:2071-2082. [PMID: 35315236 PMCID: PMC9249324 DOI: 10.1111/1751-7915.14030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 01/23/2023] Open
Abstract
The damage caused by stink bugs that feed on agricultural crops accounts for such significant losses that transgenic plant resistance to stink bugs would be highly desirable. As the level of toxicity of the Bacillus thuringiensis-derived, ETX/Mtx2 pesticidal protein Mpp83Aa1 is insufficient for practical use against the southern green stink bug Nezara viridula, we employed two disparate approaches to isolate peptides NvBP1 and ABP5 that bind to specific proteins (alpha amylase and aminopeptidase N respectively) on the surface of the N. viridula gut. Incorporation of these peptides into Mpp83Aa1 provided artificial anchors resulting in increased gut binding, and enhanced toxicity. These peptide-modified pesticidal proteins with increased toxicity provide a key advance for potential future use against N. viridula when delivered by transgenic plants to mitigate economic loss associated with this important pest.
Collapse
Affiliation(s)
- Rahul Banerjee
- Department of Entomology and NematologyUniversity of FloridaPO Box 110620GainesvilleFL32611USA
| | - Biviana Flores‐Escobar
- Department of Entomology and NematologyUniversity of FloridaPO Box 110620GainesvilleFL32611USA
| | | | - Pablo Emiliano Cantón
- Department of Entomology and NematologyUniversity of FloridaPO Box 110620GainesvilleFL32611USA
| | - Razvan Dumitru
- Innovation CenterBASF Corporation3500 Paramount ParkwayMorrisvilleNC27560USA
| | - Bryony C. Bonning
- Department of Entomology and NematologyUniversity of FloridaPO Box 110620GainesvilleFL32611USA
| |
Collapse
|
10
|
Ashra H, Nair S. Review: Trait plasticity during plant-insect interactions: From molecular mechanisms to impact on community dynamics. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:111188. [PMID: 35193737 DOI: 10.1016/j.plantsci.2022.111188] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Phenotypic plasticity, prevalent in all domains of life, enables organisms to cope with unpredictable or novel changes in their growing environment. Plants represent an interesting example of phenotypic plasticity which also directly represents and affects the dynamics of biological interactions occurring in a community. Insects, which interact with plants, manifest phenotypic plasticity in their developmental, physiological, morphological or behavioral traits in response to the various host plant defenses induced upon herbivory. However, plant-insect interactions are generally more complex and multidimensional because of their dynamic association with their respective microbiomes and macrobiomes. Moreover, these associations can alter plant and insect responses towards each other by modulating the degree of phenotypic plasticity in their various traits and studying them will provide insights into how plants and insects reciprocally affect each other's evolutionary trajectory. Further, we explore the consequences of phenotypic plasticity on relationships and interactions between plants and insects and its impact on their development, evolution, speciation and ecological organization. This overview, obtained after exploring and comparing data obtained from several inter-disciplinary studies, reveals how genetic and molecular mechanisms, underlying plasticity in traits, impact species interactions at the community level and also identifies mechanisms that could be exploited in breeding programs.
Collapse
Affiliation(s)
- Himani Ashra
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Suresh Nair
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110 067, India.
| |
Collapse
|
11
|
Gao F, Tian L, Li X, Zhang Y, Wang T, Ma L, Song F, Cai W, Li H. Proteotranscriptomic Analysis and Toxicity Assay Suggest the Functional Distinction between Venom Gland Chambers in Twin-Spotted Assassin Bug, Platymeris biguttatus. BIOLOGY 2022; 11:biology11030464. [PMID: 35336837 PMCID: PMC8945326 DOI: 10.3390/biology11030464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022]
Abstract
Assassin bugs use their salivary venoms for various purposes, including defense, prey paralyzation, and extra-oral digestion, but the mechanisms underlying the functional complexity of the venom remain largely unclear. Since venom glands are composed of several chambers, it is suggested that individual chambers may be specialized to produce chemically distinct venoms to exert different functions. The current study assesses this hypothesis by performing toxicity assays and transcriptomic and proteomic analysis on components from three major venom gland chambers including the anterior main gland (AMG), the posterior main gland (PMG), and the accessory gland (AG) of the assassin bug Platymeris biguttatus. Proteotranscriptomic analysis reveals that AMG and PMG extracts are rich in hemolytic proteins and serine proteases, respectively, whereas transferrin and apolipophorin are dominant in the AG. Toxicity assays reveal that secretions from different gland chambers have distinct effects on the prey, with that from AG compromising prey mobility, that from PMG causing prey death and liquifying the corpse, and that from AMG showing no significant physiological effects. Our study reveals a functional cooperation among venom gland chambers of assassin bugs and provides new insights into physiological adaptations to venom-based predation and defense in venomous predatory bugs.
Collapse
Affiliation(s)
- Fanding Gao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.G.); (L.T.); (X.L.); (Y.Z.); (L.M.); (F.S.); (W.C.)
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.G.); (L.T.); (X.L.); (Y.Z.); (L.M.); (F.S.); (W.C.)
| | - Xinyu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.G.); (L.T.); (X.L.); (Y.Z.); (L.M.); (F.S.); (W.C.)
| | - Yinqiao Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.G.); (L.T.); (X.L.); (Y.Z.); (L.M.); (F.S.); (W.C.)
| | - Tianfang Wang
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia;
| | - Ling Ma
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.G.); (L.T.); (X.L.); (Y.Z.); (L.M.); (F.S.); (W.C.)
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.G.); (L.T.); (X.L.); (Y.Z.); (L.M.); (F.S.); (W.C.)
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.G.); (L.T.); (X.L.); (Y.Z.); (L.M.); (F.S.); (W.C.)
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.G.); (L.T.); (X.L.); (Y.Z.); (L.M.); (F.S.); (W.C.)
- Correspondence:
| |
Collapse
|