1
|
Campli G, Volovych O, Kim K, Veldsman WP, Drage HB, Sheizaf I, Lynch S, Chipman AD, Daley AC, Robinson-Rechavi M, Waterhouse RM. The moulting arthropod: a complete genetic toolkit review. Biol Rev Camb Philos Soc 2024; 99:2338-2375. [PMID: 39039636 DOI: 10.1111/brv.13123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
Exoskeletons are a defining character of all arthropods that provide physical support for their segmented bodies and appendages as well as protection from the environment and predation. This ubiquitous yet evolutionarily variable feature has been instrumental in facilitating the adoption of a variety of lifestyles and the exploitation of ecological niches across all environments. Throughout the radiation that produced the more than one million described modern species, adaptability afforded by segmentation and exoskeletons has led to a diversity that is unrivalled amongst animals. However, because of the limited extensibility of exoskeleton chitin and cuticle components, they must be periodically shed and replaced with new larger ones, notably to accommodate the growing individuals encased within. Therefore, arthropods grow discontinuously by undergoing periodic moulting events, which follow a series of steps from the preparatory pre-moult phase to ecdysis itself and post-moult maturation of new exoskeletons. Each event represents a particularly vulnerable period in an arthropod's life cycle, so processes must be tightly regulated and meticulously executed to ensure successful transitions for normal growth and development. Decades of research in representative arthropods provide a foundation of understanding of the mechanisms involved. Building on this, studies continue to develop and test hypotheses on the presence and function of molecular components, including neuropeptides, hormones, and receptors, as well as the so-called early, late, and fate genes, across arthropod diversity. Here, we review the literature to develop a comprehensive overview of the status of accumulated knowledge of the genetic toolkit governing arthropod moulting. From biosynthesis and regulation of ecdysteroid and sesquiterpenoid hormones, to factors involved in hormonal stimulation responses and exoskeleton remodelling, we identify commonalities and differences, as well as highlighting major knowledge gaps, across arthropod groups. We examine the available evidence supporting current models of how components operate together to prepare for, execute, and recover from ecdysis, comparing reports from Chelicerata, Myriapoda, Crustacea, and Hexapoda. Evidence is generally highly taxonomically imbalanced, with most reports based on insect study systems. Biases are also evident in research on different moulting phases and processes, with the early triggers and late effectors generally being the least well explored. Our synthesis contrasts knowledge based on reported observations with reasonably plausible assumptions given current taxonomic sampling, and exposes weak assumptions or major gaps that need addressing. Encouragingly, advances in genomics are driving a diversification of tractable study systems by facilitating the cataloguing of putative genetic toolkits in previously under-explored taxa. Analysis of genome and transcriptome data supported by experimental investigations have validated the presence of an "ultra-conserved" core of arthropod genes involved in moulting processes. The molecular machinery has likely evolved with elaborations on this conserved pathway backbone, but more taxonomic exploration is needed to characterise lineage-specific changes and novelties. Furthermore, linking these to transformative innovations in moulting processes across Arthropoda remains hampered by knowledge gaps and hypotheses based on untested assumptions. Promisingly however, emerging from the synthesis is a framework that highlights research avenues from the underlying genetics to the dynamic molecular biology through to the complex physiology of moulting.
Collapse
Affiliation(s)
- Giulia Campli
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Olga Volovych
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Kenneth Kim
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Werner P Veldsman
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Harriet B Drage
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Idan Sheizaf
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Sinéad Lynch
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Ariel D Chipman
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Allison C Daley
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| |
Collapse
|
2
|
Manicka S, Pai VP, Levin M. Information integration during bioelectric regulation of morphogenesis of the embryonic frog brain. iScience 2023; 26:108398. [PMID: 38034358 PMCID: PMC10687303 DOI: 10.1016/j.isci.2023.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/18/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Spatiotemporal patterns of cellular resting potential regulate several aspects of development. One key aspect of the bioelectric code is that transcriptional and morphogenetic states are determined not by local, single-cell, voltage levels but by specific distributions of voltage across cell sheets. We constructed and analyzed a minimal dynamical model of collective gene expression in cells based on inputs of multicellular voltage patterns. Causal integration analysis revealed a higher-order mechanism by which information about the voltage pattern was spatiotemporally integrated into gene activity, as well as a division of labor among and between the bioelectric and genetic components. We tested and confirmed predictions of this model in a system in which bioelectric control of morphogenesis regulates gene expression and organogenesis: the embryonic brain of the frog Xenopus laevis. This study demonstrates that machine learning and computational integration approaches can advance our understanding of the information-processing underlying morphogenetic decision-making, with a potential for other applications in developmental biology and regenerative medicine.
Collapse
Affiliation(s)
- Santosh Manicka
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Vaibhav P. Pai
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
3
|
Zhao H, Shi L, Li Z, Kong R, Jia L, Lu S, Wang JH, Dong MQ, Guo X, Li Z. Diamond controls epithelial polarity through the dynactin-dynein complex. Traffic 2023; 24:552-563. [PMID: 37642208 DOI: 10.1111/tra.12917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/10/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Epithelial polarity is critical for proper functions of epithelial tissues, tumorigenesis, and metastasis. The evolutionarily conserved transmembrane protein Crumbs (Crb) is a key regulator of epithelial polarity. Both Crb protein and its transcripts are apically localized in epithelial cells. However, it remains not fully understood how they are targeted to the apical domain. Here, using Drosophila ovarian follicular epithelia as a model, we show that epithelial polarity is lost and Crb protein is absent in the apical domain in follicular cells (FCs) in the absence of Diamond (Dind). Interestingly, Dind is found to associate with different components of the dynactin-dynein complex through co-IP-MS analysis. Dind stabilizes dynactin and depletion of dynactin results in almost identical defects as those observed in dind-defective FCs. Finally, both Dind and dynactin are also required for the apical localization of crb transcripts in FCs. Thus our data illustrate that Dind functions through dynactin/dynein-mediated transport of both Crb protein and its transcripts to the apical domain to control epithelial apico-basal (A/B) polarity.
Collapse
Affiliation(s)
- Hang Zhao
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Lin Shi
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhengran Li
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Ruiyan Kong
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Lemei Jia
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Shan Lu
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Jian-Hua Wang
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Xuan Guo
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zhouhua Li
- College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
4
|
Patir A, Raper A, Fleming R, Henderson BEP, Murphy L, Henderson NC, Clark EL, Freeman TC, Barnett MW. Cellular heterogeneity of the developing worker honey bee (Apis mellifera) pupa: a single cell transcriptomics analysis. G3 (BETHESDA, MD.) 2023; 13:jkad178. [PMID: 37548242 PMCID: PMC10542211 DOI: 10.1093/g3journal/jkad178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 06/30/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
It is estimated that animals pollinate 87.5% of flowering plants worldwide and that managed honey bees (Apis mellifera) account for 30-50% of this ecosystem service to agriculture. In addition to their important role as pollinators, honey bees are well-established insect models for studying learning and memory, behavior, caste differentiation, epigenetic mechanisms, olfactory biology, sex determination, and eusociality. Despite their importance to agriculture, knowledge of honey bee biology lags behind many other livestock species. In this study, we have used scRNA-Seq to map cell types to different developmental stages of the worker honey bee (prepupa at day 11 and pupa at day 15) and sought to determine their gene expression signatures. To identify cell-type populations, we examined the cell-to-cell network based on the similarity of the single-cells transcriptomic profiles. Grouping similar cells together we identified 63 different cell clusters of which 17 clusters were identifiable at both stages. To determine genes associated with specific cell populations or with a particular biological process involved in honey bee development, we used gene coexpression analysis. We combined this analysis with literature mining, the honey bee protein atlas, and gene ontology analysis to determine cell cluster identity. Of the cell clusters identified, 17 were related to the nervous system and sensory organs, 7 to the fat body, 19 to the cuticle, 5 to muscle, 4 to compound eye, 2 to midgut, 2 to hemocytes, and 1 to malpighian tubule/pericardial nephrocyte. To our knowledge, this is the first whole single-cell atlas of honey bees at any stage of development and demonstrates the potential for further work to investigate their biology at the cellular level.
Collapse
Affiliation(s)
- Anirudh Patir
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Anna Raper
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Robert Fleming
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Beth E P Henderson
- The Queen's Medical Research Institute, Centre for Inflammation Research, University of Edinburgh,Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Neil C Henderson
- The Queen's Medical Research Institute, Centre for Inflammation Research, University of Edinburgh,Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK
- Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh,Edinburgh EH4 2XU, UK
| | - Emily L Clark
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Tom C Freeman
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Mark W Barnett
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
- Beebytes Analytics CIC, The Roslin Innovation Centre, University of Edinburgh, The Charnock Bradley Building, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
5
|
Quesnelle DC, Bendena WG, Chin-Sang ID. A Compilation of the Diverse miRNA Functions in Caenorhabditis elegans and Drosophila melanogaster Development. Int J Mol Sci 2023; 24:ijms24086963. [PMID: 37108126 PMCID: PMC10139094 DOI: 10.3390/ijms24086963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
MicroRNAs are critical regulators of post-transcriptional gene expression in a wide range of taxa, including invertebrates, mammals, and plants. Since their discovery in the nematode, Caenorhabditis elegans, miRNA research has exploded, and they are being identified in almost every facet of development. Invertebrate model organisms, particularly C. elegans, and Drosophila melanogaster, are ideal systems for studying miRNA function, and the roles of many miRNAs are known in these animals. In this review, we compiled the functions of many of the miRNAs that are involved in the development of these invertebrate model species. We examine how gene regulation by miRNAs shapes both embryonic and larval development and show that, although many different aspects of development are regulated, several trends are apparent in the nature of their regulation.
Collapse
Affiliation(s)
| | - William G Bendena
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Ian D Chin-Sang
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
6
|
Rallis J, Pavlopoulos A. Cellular basis of limb morphogenesis. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100887. [PMID: 35150918 DOI: 10.1016/j.cois.2022.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
How the size and shape of developing tissues is encoded in the genome has been a longstanding riddle for biologists. Constituent cells integrate several genetic and mechanical signals to decide whether to divide, die, change shape or position. We review here how morphogenetic cell behaviors contribute to leg formation from imaginal disc epithelia in the insect Drosophila melanogaster, as well as to direct embryonic limb outgrowths in the non-insect pancrustacean Parhyale hawaiensis. Considering the deep conservation of developmental programs for limb patterning among arthropods and other bilaterians, moving forward, it will be exciting to see how these genetic similarities reflect at the cellular and tissue mechanics level.
Collapse
Affiliation(s)
- John Rallis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 70013 Heraklion, Crete, Greece; Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Anastasios Pavlopoulos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 70013 Heraklion, Crete, Greece.
| |
Collapse
|
7
|
Atypical laminin spots and pull-generated microtubule-actin projections mediate Drosophila wing adhesion. Cell Rep 2021; 36:109667. [PMID: 34496252 DOI: 10.1016/j.celrep.2021.109667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/11/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
During Drosophila metamorphosis, dorsal and ventral wing surfaces adhere, separate, and reappose in a paradoxical process involving cell-matrix adhesion, matrix production and degradation, and long cellular projections. The identity of the intervening matrix, the logic behind the adhesion-reapposition cycle, and the role of projections are unknown. We find that laminin matrix spots devoid of other main basement membrane components mediate wing adhesion. Through live imaging, we show that long microtubule-actin cables grow from those adhesion spots because of hydrostatic pressure that pushes wing surfaces apart. Formation of cables resistant to pressure requires spectraplakin, Patronin, septins, and Sdb, a SAXO1/2 microtubule stabilizer expressed under control of wing intervein-selector SRF. Silkworms and dead-leaf butterflies display similar dorso-ventral projections and expression of Sdb in intervein SRF-like patterns. Our study supports the morphogenetic importance of atypical basement-membrane-related matrices and dissects matrix-cytoskeleton coordination in a process of great evolutionary significance.
Collapse
|
8
|
Grodstein J, Levin M. Stability and robustness properties of bioelectric networks: A computational approach. BIOPHYSICS REVIEWS 2021; 2:031305. [PMID: 38505634 PMCID: PMC10903393 DOI: 10.1063/5.0062442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/07/2021] [Indexed: 03/21/2024]
Abstract
Morphogenesis during development and regeneration requires cells to communicate and cooperate toward the construction of complex anatomical structures. One important set of mechanisms for coordinating growth and form occurs via developmental bioelectricity-the dynamics of cellular networks driving changes of resting membrane potential which interface with transcriptional and biomechanical downstream cascades. While many molecular details have been elucidated about the instructive processes mediated by ion channel-dependent signaling outside of the nervous system, future advances in regenerative medicine and bioengineering require the understanding of tissue, organ, or whole body-level properties. A key aspect of bioelectric networks is their robustness, which can drive correct, invariant patterning cues despite changing cell number and anatomical configuration of the underlying tissue network. Here, we computationally analyze the minimal models of bioelectric networks and use the example of the regenerating planarian flatworm, to reveal important system-level aspects of bioelectrically derived patterns. These analyses promote an understanding of the robustness of circuits controlling regeneration and suggest design properties that can be exploited for synthetic bioengineering.
Collapse
Affiliation(s)
- Joel Grodstein
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | |
Collapse
|
9
|
Athilingam T, Tiwari P, Toyama Y, Saunders TE. Mechanics of epidermal morphogenesis in the Drosophila pupa. Semin Cell Dev Biol 2021; 120:171-180. [PMID: 34167884 DOI: 10.1016/j.semcdb.2021.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023]
Abstract
Adult epidermal development in Drosophila showcases a striking balance between en masse spreading of the developing adult precursor tissues and retraction of the degenerating larval epidermis. The adult precursor tissues, driven by both intrinsic plasticity and extrinsic mechanical cues, shape the segments of the adult epidermis and appendages. Here, we review the tissue architectural changes that occur during epidermal morphogenesis in the Drosophila pupa, with a particular emphasis on the underlying mechanical principles. We highlight recent developments in our understanding of adult epidermal morphogenesis. We further discuss the forces that drive these morphogenetic events and finally outline open questions and challenges.
Collapse
Affiliation(s)
| | - Prabhat Tiwari
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Yusuke Toyama
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biological Science, National University of Singapore, Singapore
| | - Timothy E Saunders
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biological Science, National University of Singapore, Singapore; Institute of Molecular Biology, A⁎Star, Singapore; Warwick Medical School, The University of Warwick, Coventry, United Kingdom.
| |
Collapse
|