1
|
Ye X, Yang Y, Zhao C, Xiao S, Sun YH, He C, Xiong S, Zhao X, Zhang B, Lin H, Shi J, Mei Y, Xu H, Fang Q, Wu F, Li D, Ye G. Genomic signatures associated with maintenance of genome stability and venom turnover in two parasitoid wasps. Nat Commun 2022; 13:6417. [PMID: 36302851 PMCID: PMC9613689 DOI: 10.1038/s41467-022-34202-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/13/2022] [Indexed: 12/25/2022] Open
Abstract
Parasitoid wasps are rapidly developing as a model for evolutionary biology. Here we present chromosomal genomes of two Anastatus wasps, A. japonicus and A. fulloi, and leverage these genomes to study two fundamental questions-genome size evolution and venom evolution. Anastatus shows a much larger genome than is known among other wasps, with unexpectedly recent bursts of LTR retrotransposons. Importantly, several genomic innovations, including Piwi gene family expansion, ubiquitous Piwi expression profiles, as well as transposable element-piRNA coevolution, have likely emerged for transposable element silencing to maintain genomic stability. Additionally, we show that the co-option evolution arose by expression shifts in the venom gland plays a dominant role in venom turnover. We also highlight the potential importance of non-venom genes that are coexpressed with venom genes during venom evolution. Our findings greatly advance the current understanding of genome size evolution and venom evolution, and these genomic resources will facilitate comparative genomics studies of insects in the future.
Collapse
Affiliation(s)
- Xinhai Ye
- grid.13402.340000 0004 1759 700XState Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China ,grid.13402.340000 0004 1759 700XShanghai Institute for Advanced Study, Zhejiang University, Shanghai, China ,grid.13402.340000 0004 1759 700XCollege of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Yi Yang
- grid.13402.340000 0004 1759 700XState Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Can Zhao
- grid.484195.5Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Shan Xiao
- grid.13402.340000 0004 1759 700XState Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yu H. Sun
- grid.16416.340000 0004 1936 9174Department of Biology, University of Rochester, Rochester, NY USA
| | - Chun He
- grid.13402.340000 0004 1759 700XState Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shijiao Xiong
- grid.13402.340000 0004 1759 700XState Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xianxin Zhao
- grid.13402.340000 0004 1759 700XState Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Bo Zhang
- grid.13402.340000 0004 1759 700XState Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Haiwei Lin
- grid.13402.340000 0004 1759 700XState Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jiamin Shi
- grid.13402.340000 0004 1759 700XState Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yang Mei
- grid.13402.340000 0004 1759 700XState Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hongxing Xu
- grid.410744.20000 0000 9883 3553State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agroproducts, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qi Fang
- grid.13402.340000 0004 1759 700XState Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fei Wu
- grid.13402.340000 0004 1759 700XShanghai Institute for Advanced Study, Zhejiang University, Shanghai, China ,grid.13402.340000 0004 1759 700XCollege of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Dunsong Li
- grid.484195.5Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Gongyin Ye
- grid.13402.340000 0004 1759 700XState Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
First Evidence of Past and Present Interactions between Viruses and the Black Soldier Fly, Hermetia illucens. Viruses 2022; 14:v14061274. [PMID: 35746744 PMCID: PMC9231314 DOI: 10.3390/v14061274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 12/10/2022] Open
Abstract
Black soldier flies (BSFs, Hermetia illucens) are becoming a prominent research model encouraged by the insect as food and feed and waste bioconversion industries. Insect mass-rearing facilities are at risk from the spread of viruses, but so far, none have been described in BSFs. To fill this knowledge gap, a bioinformatic approach was undertaken to discover viruses specifically associated with BSFs. First, BSF genomes were screened for the presence of endogenous viral elements (EVEs). This led to the discovery and mapping of seven orthologous EVEs integrated into three BSF genomes originating from five viral families. Secondly, a virus discovery pipeline was used to screen BSF transcriptomes. This led to detecting a new exogenous totivirus that we named hermetia illucens totivirus 1 (HiTV1). Phylogenetic analyses showed this virus belongs to a clade of insect-specific totiviruses and is closely related to the largest EVE located on chromosome 1 of the BSF genome. Lastly, this EVE was found to express a small transcript in some BSFs infected by HiTV1. Altogether, this data mining study showed that far from being unscathed from viruses, BSFs bear traces of past interactions with several viral families and of present interactions with the exogenous HiTV1.
Collapse
|