1
|
Ou M, Zheng F, Zhang X, Liu S, Tang D, Zhu P, Qiu J, Dai Y. Integrated analysis of B‑cell and T‑cell receptors by high‑throughput sequencing reveals conserved repertoires in IgA nephropathy. Mol Med Rep 2018; 17:7027-7036. [PMID: 29568935 PMCID: PMC5928659 DOI: 10.3892/mmr.2018.8793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/01/2018] [Indexed: 01/12/2023] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is a type of glomerular disorder associated with immune dysregulation, and understanding B‑/T‑cell receptors (BCRs/TCRs) may be valuable for the development of specific immunotherapeutic interventions. In the present study, B and T cells were isolated from IgAN patients and healthy controls, and the composition of the BCR/TCR complementarity‑determining region (CDR)3 was analyzed by multiplex polymerase chain reaction, high‑throughput sequencing and bioinformatics. The present results revealed that the BCR/TCR CDR3 clones were expressed at very low frequencies, and the composition of clone types in patients with IgAN was skewed; the majority of clones were unique, and only 12 BCR and 228 TCR CDR3 clones were public ones, of which 16 were expressed at a significantly higher frequency in patients with IgAN (P<0.001). There were also certain conserved amino acid residues between unique clones or groups, and the residues GMDV, EQY and EQF were recurring only in the IgAN group. In addition, some VDJ gene recombinations indicated great variation between groups, including 4 high‑frequency VDJ gene recombinations in the IgAN patients (P<0.001). Immune repertoires provide novel information, and conserved BCR/TCR CDR3 clones and VDJ gene recombinations with great variation may be potential therapeutic targets for IgAN patients.
Collapse
Affiliation(s)
- Minglin Ou
- Clinical Medical Research Center of Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Fengping Zheng
- Clinical Medical Research Center of Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Xinzhou Zhang
- Clinical Medical Research Center of Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Song Liu
- Clinical Medical Research Center of Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Donge Tang
- Clinical Medical Research Center of Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Peng Zhu
- Lab Center of Shenzhen Pingshan People's Hospital, Shenzhen, Guangdong 518118, P.R. China
| | - Jingjun Qiu
- Lab Center of Shenzhen Pingshan People's Hospital, Shenzhen, Guangdong 518118, P.R. China
| | - Yong Dai
- Clinical Medical Research Center of Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
2
|
Abstract
The immune systems protect our bodies from foreign molecules or antigens, where antibodies play important roles. Antibodies evolve over time upon antigen encounter by somatically mutating their genome sequences. The end result is a series of antibodies that display higher affinities and specificities to specific antigens. This process is called affinity maturation. Recent improvements in computer hardware and modeling algorithms now enable the rational design of protein structures and functions, and several works on computer-aided antibody design have been published. In this chapter, we briefly describe computational methods for antibody affinity maturation, focusing on methods for sampling antibody conformations and for scoring designed antibody variants. We also discuss lessons learned from the successful computer-aided design of antibodies.
Collapse
Affiliation(s)
- Daisuke Kuroda
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan.
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
T cell receptor sequencing of early-stage breast cancer tumors identifies altered clonal structure of the T cell repertoire. Proc Natl Acad Sci U S A 2017; 114:E10409-E10417. [PMID: 29138313 PMCID: PMC5715779 DOI: 10.1073/pnas.1713863114] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Tumor-infiltrating T cells play an important role in many cancers, and can improve prognosis and yield therapeutic targets. We characterized T cells infiltrating both breast cancer tumors and the surrounding normal breast tissue to identify T cells specific to each, as well as their abundance in peripheral blood. Using immune profiling of the T cell beta-chain repertoire in 16 patients with early-stage breast cancer, we show that the clonal structure of the tumor is significantly different from adjacent breast tissue, with the tumor containing ∼2.5-fold greater density of T cells and higher clonality compared with normal breast. The clonal structure of T cells in blood and normal breast is more similar than between blood and tumor, and could be used to distinguish tumor from normal breast tissue in 14 of 16 patients. Many T cell sequences overlap between tissue and blood from the same patient, including ∼50% of T cells between tumor and normal breast. Both tumor and normal breast contain high-abundance "enriched" sequences that are absent or of low abundance in the other tissue. Many of these T cells are either not detected or detected with very low frequency in the blood, suggesting the existence of separate compartments of T cells in both tumor and normal breast. Enriched T cell sequences are typically unique to each patient, but a subset is shared between many different patients. We show that many of these are commonly generated sequences, and thus unlikely to play an important role in the tumor microenvironment.
Collapse
|
4
|
Greiff V, Weber CR, Palme J, Bodenhofer U, Miho E, Menzel U, Reddy ST. Learning the High-Dimensional Immunogenomic Features That Predict Public and Private Antibody Repertoires. THE JOURNAL OF IMMUNOLOGY 2017; 199:2985-2997. [DOI: 10.4049/jimmunol.1700594] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/16/2017] [Indexed: 11/19/2022]
|
5
|
Systems Analysis Reveals High Genetic and Antigen-Driven Predetermination of Antibody Repertoires throughout B Cell Development. Cell Rep 2017; 19:1467-1478. [DOI: 10.1016/j.celrep.2017.04.054] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 03/21/2017] [Accepted: 04/19/2017] [Indexed: 12/29/2022] Open
|