1
|
Martins dos Santos V, Anton M, Szomolay B, Ostaszewski M, Arts I, Benfeitas R, Dominguez Del Angel V, Domínguez-Romero E, Ferk P, Fey D, Goble C, Golebiewski M, Gruden K, Heil KF, Hermjakob H, Kahlem P, Klapa MI, Koehorst J, Kolodkin A, Kutmon M, Leskošek B, Moretti S, Müller W, Pagni M, Rezen T, Rocha M, Rozman D, Šafránek D, T. Scott W, Sheriff RSM, Suarez Diez M, Van Steen K, Westerhoff HV, Wittig U, Wolstencroft K, Zupanic A, Evelo CT, Hancock JM. Systems Biology in ELIXIR: modelling in the spotlight. F1000Res 2022; 11:ELIXIR-1265. [PMID: 36742342 PMCID: PMC9871403 DOI: 10.12688/f1000research.126734.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
In this white paper, we describe the founding of a new ELIXIR Community - the Systems Biology Community - and its proposed future contributions to both ELIXIR and the broader community of systems biologists in Europe and worldwide. The Community believes that the infrastructure aspects of systems biology - databases, (modelling) tools and standards development, as well as training and access to cloud infrastructure - are not only appropriate components of the ELIXIR infrastructure, but will prove key components of ELIXIR's future support of advanced biological applications and personalised medicine. By way of a series of meetings, the Community identified seven key areas for its future activities, reflecting both future needs and previous and current activities within ELIXIR Platforms and Communities. These are: overcoming barriers to the wider uptake of systems biology; linking new and existing data to systems biology models; interoperability of systems biology resources; further development and embedding of systems medicine; provisioning of modelling as a service; building and coordinating capacity building and training resources; and supporting industrial embedding of systems biology. A set of objectives for the Community has been identified under four main headline areas: Standardisation and Interoperability, Technology, Capacity Building and Training, and Industrial Embedding. These are grouped into short-term (3-year), mid-term (6-year) and long-term (10-year) objectives.
Collapse
Affiliation(s)
- Vitor Martins dos Santos
- Laboratory of Bioprocess Engineering, Wageningen University & Research, Wageningen, 6708 PB, The Netherlands
| | - Mihail Anton
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Gothenburg, SE-41258, Sweden
| | - Barbara Szomolay
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, L-4367, Luxembourg
| | - Ilja Arts
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Rui Benfeitas
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | | | - Polonca Ferk
- Faculty of Medicine, Institute for Biostatistics and Medical Informatics, Centre ELIXIR-SI, University of Ljubljana, Ljubljana, SI-1000, Slovenia
| | - Dirk Fey
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, 4, Ireland
| | - Carole Goble
- Department of Computer Science, The University of Manchester, Manchester, M13 9PL, UK
| | - Martin Golebiewski
- Heidelberg Institute for Theoretical Studies - HITS, Heidelberg, 69118, Germany
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, SI-1000, Slovenia
| | | | - Henning Hermjakob
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, UK
| | - Pascal Kahlem
- Scientific Network Management SL, Barcelona, 08015, Spain
| | - Maria I. Klapa
- Metabolic Engineering & Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology - Hellas (FORTH/ICE-HT), Patras, 26504, Greece
| | - Jasper Koehorst
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708WE, The Netherlands
| | - Alexey Kolodkin
- Competence Center for Methodology and Statistics; Transversal Translational Medicine, Translational Medicine Operations Hub, Luxembourg Institute of Health, Strassen, L-1445, Luxembourg
- ISBE.NL, VU University of Amsterdam, Amsterdam, The Netherlands
| | - Martina Kutmon
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, 6200 MD, The Netherlands
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Brane Leskošek
- Faculty of Medicine, Institute for Biostatistics and Medical Informatics, Centre ELIXIR-SI, University of Ljubljana, Ljubljana, SI-1000, Slovenia
| | | | - Wolfgang Müller
- Heidelberg Institute for Theoretical Studies - HITS, Heidelberg, 69118, Germany
| | - Marco Pagni
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tadeja Rezen
- Faculty of Medicine, University of Ljubljana, Ljubljana, SI-1000, Slovenia
| | - Miguel Rocha
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Damjana Rozman
- Faculty of Medicine, University of Ljubljana, Ljubljana, SI-1000, Slovenia
| | - David Šafránek
- Faculty of Informatics, Masaryk University, Brno, 602 00, Czech Republic
| | - William T. Scott
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708WE, The Netherlands
- UNLOCK, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Rahuman S. Malik Sheriff
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, UK
| | - Maria Suarez Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708WE, The Netherlands
| | - Kristel Van Steen
- BIO3 - Laboratory for Systems Medicine, Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
- BIO3 - Systems Genetics, GIGA-R Medical Genomics, University of Liege, Liege, 4000, Belgium
| | | | - Ulrike Wittig
- Heidelberg Institute for Theoretical Studies - HITS, Heidelberg, 69118, Germany
| | - Katherine Wolstencroft
- Leiden Institute of Advanced Computer Science, Leiden University, Leiden, 2333 CA, The Netherlands
| | - Anze Zupanic
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, SI-1000, Slovenia
| | - Chris T. Evelo
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - John M. Hancock
- Faculty of Medicine, University of Ljubljana, Ljubljana, SI-1000, Slovenia
| |
Collapse
|
2
|
Martins dos Santos V, Anton M, Szomolay B, Ostaszewski M, Arts I, Benfeitas R, Dominguez Del Angel V, Domínguez-Romero E, Ferk P, Fey D, Goble C, Golebiewski M, Gruden K, Heil KF, Hermjakob H, Kahlem P, Klapa MI, Koehorst J, Kolodkin A, Kutmon M, Leskošek B, Moretti S, Müller W, Pagni M, Rezen T, Rocha M, Rozman D, Šafránek D, T. Scott W, Sheriff RSM, Suarez Diez M, Van Steen K, Westerhoff HV, Wittig U, Wolstencroft K, Zupanic A, Evelo CT, Hancock JM. Systems Biology in ELIXIR: modelling in the spotlight. F1000Res 2022; 11:ELIXIR-1265. [PMID: 36742342 PMCID: PMC9871403 DOI: 10.12688/f1000research.126734.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
In this white paper, we describe the founding of a new ELIXIR Community - the Systems Biology Community - and its proposed future contributions to both ELIXIR and the broader community of systems biologists in Europe and worldwide. The Community believes that the infrastructure aspects of systems biology - databases, (modelling) tools and standards development, as well as training and access to cloud infrastructure - are not only appropriate components of the ELIXIR infrastructure, but will prove key components of ELIXIR's future support of advanced biological applications and personalised medicine. By way of a series of meetings, the Community identified seven key areas for its future activities, reflecting both future needs and previous and current activities within ELIXIR Platforms and Communities. These are: overcoming barriers to the wider uptake of systems biology; linking new and existing data to systems biology models; interoperability of systems biology resources; further development and embedding of systems medicine; provisioning of modelling as a service; building and coordinating capacity building and training resources; and supporting industrial embedding of systems biology. A set of objectives for the Community has been identified under four main headline areas: Standardisation and Interoperability, Technology, Capacity Building and Training, and Industrial Embedding. These are grouped into short-term (3-year), mid-term (6-year) and long-term (10-year) objectives.
Collapse
Affiliation(s)
- Vitor Martins dos Santos
- Laboratory of Bioprocess Engineering, Wageningen University & Research, Wageningen, 6708 PB, The Netherlands
| | - Mihail Anton
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Gothenburg, SE-41258, Sweden
| | - Barbara Szomolay
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, L-4367, Luxembourg
| | - Ilja Arts
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Rui Benfeitas
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | | | - Polonca Ferk
- Faculty of Medicine, Institute for Biostatistics and Medical Informatics, Centre ELIXIR-SI, University of Ljubljana, Ljubljana, SI-1000, Slovenia
| | - Dirk Fey
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, 4, Ireland
| | - Carole Goble
- Department of Computer Science, The University of Manchester, Manchester, M13 9PL, UK
| | - Martin Golebiewski
- Heidelberg Institute for Theoretical Studies - HITS, Heidelberg, 69118, Germany
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, SI-1000, Slovenia
| | | | - Henning Hermjakob
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, UK
| | - Pascal Kahlem
- Scientific Network Management SL, Barcelona, 08015, Spain
| | - Maria I. Klapa
- Metabolic Engineering & Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology - Hellas (FORTH/ICE-HT), Patras, 26504, Greece
| | - Jasper Koehorst
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708WE, The Netherlands
| | - Alexey Kolodkin
- Competence Center for Methodology and Statistics; Transversal Translational Medicine, Translational Medicine Operations Hub, Luxembourg Institute of Health, Strassen, L-1445, Luxembourg
- ISBE.NL, VU University of Amsterdam, Amsterdam, The Netherlands
| | - Martina Kutmon
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, 6200 MD, The Netherlands
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Brane Leskošek
- Faculty of Medicine, Institute for Biostatistics and Medical Informatics, Centre ELIXIR-SI, University of Ljubljana, Ljubljana, SI-1000, Slovenia
| | | | - Wolfgang Müller
- Heidelberg Institute for Theoretical Studies - HITS, Heidelberg, 69118, Germany
| | - Marco Pagni
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tadeja Rezen
- Faculty of Medicine, University of Ljubljana, Ljubljana, SI-1000, Slovenia
| | - Miguel Rocha
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Damjana Rozman
- Faculty of Medicine, University of Ljubljana, Ljubljana, SI-1000, Slovenia
| | - David Šafránek
- Faculty of Informatics, Masaryk University, Brno, 602 00, Czech Republic
| | - William T. Scott
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708WE, The Netherlands
- UNLOCK, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Rahuman S. Malik Sheriff
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, CB10 1SD, UK
| | - Maria Suarez Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, 6708WE, The Netherlands
| | - Kristel Van Steen
- BIO3 - Laboratory for Systems Medicine, Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
- BIO3 - Systems Genetics, GIGA-R Medical Genomics, University of Liege, Liege, 4000, Belgium
| | | | - Ulrike Wittig
- Heidelberg Institute for Theoretical Studies - HITS, Heidelberg, 69118, Germany
| | - Katherine Wolstencroft
- Leiden Institute of Advanced Computer Science, Leiden University, Leiden, 2333 CA, The Netherlands
| | - Anze Zupanic
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, SI-1000, Slovenia
| | - Chris T. Evelo
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - John M. Hancock
- Faculty of Medicine, University of Ljubljana, Ljubljana, SI-1000, Slovenia
| |
Collapse
|
3
|
Precision medicine and artificial intelligence: overview and relevance to reproductive medicine. Fertil Steril 2021; 114:908-913. [PMID: 33160512 DOI: 10.1016/j.fertnstert.2020.09.156] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 02/08/2023]
Abstract
Traditionally, new treatments have been developed for the population at large. Recently, large-scale genomic sequencing analyses have revealed tremendous genetic diversity between individuals. In diseases driven by genetic events such as cancer, genomic sequencing can unravel all the mutations that drive individual tumors. The ability to capture the genetic makeup of individual patients has led to the concept of precision medicine, a modern, technology-driven form of personalized medicine. Precision medicine matches each individual to the best treatment in a way that is tailored to his or her genetic uniqueness. To further personalize medicine, precision medicine increasingly incorporates and integrates data beyond genomics, such as epigenomics and metabolomics, as well as imaging. Increasingly, the robust use and integration of these modalities in precision medicine require the use of artificial intelligence and machine learning. This modern view of precision medicine, adopted early in certain areas of medicine such as cancer, has started to impact the field of reproductive medicine. Here we review the concepts and history of precision medicine and artificial intelligence, highlight their growing impact on reproductive medicine, and outline some of the challenges and limitations that these new fields have encountered in medicine.
Collapse
|
4
|
Integrative Approaches to Cancer Immunotherapy. Trends Cancer 2020; 5:400-410. [PMID: 31311655 DOI: 10.1016/j.trecan.2019.05.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/17/2019] [Accepted: 05/30/2019] [Indexed: 12/11/2022]
Abstract
Cancer immunotherapy aims to arm patients with cancer-fighting immunity. Many new cancer-specific immunotherapeutic drugs have gained approval in the past several years, demonstrating immunotherapy's efficacy and promise as an anticancer modality. Despite these successes, several outstanding questions remain for cancer immunotherapy, including how to make immunotherapy more efficacious in a broader range of cancer types and patients, and how to predict which patients will respond or not respond to therapy. We present a case for integrative systems approaches that will answer these questions. This involves applying mechanistic and statistical modeling, establishing consistent and widely adopted experimental tools to generate systems-level data, and creating sustained mechanisms of support. If implemented, these approaches will lead to major advances in cancer treatment.
Collapse
|
5
|
Hastings JF, O'Donnell YEI, Fey D, Croucher DR. Applications of personalised signalling network models in precision oncology. Pharmacol Ther 2020; 212:107555. [PMID: 32320730 DOI: 10.1016/j.pharmthera.2020.107555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
As our ability to provide in-depth, patient-specific characterisation of the molecular alterations within tumours rapidly improves, it is becoming apparent that new approaches will be required to leverage the power of this data and derive the full benefit for each individual patient. Systems biology approaches are beginning to emerge within this field as a potential method of incorporating large volumes of network level data and distilling a coherent, clinically-relevant prediction of drug response. However, the initial promise of this developing field is yet to be realised. Here we argue that in order to develop these precise models of individual drug response and tailor treatment accordingly, we will need to develop mathematical models capable of capturing both the dynamic nature of drug-response signalling networks and key patient-specific information such as mutation status or expression profiles. We also review the modelling approaches commonly utilised within this field, and outline recent examples of their use in furthering the application of systems biology for a precision medicine approach to cancer treatment.
Collapse
Affiliation(s)
- Jordan F Hastings
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia
| | | | - Dirk Fey
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - David R Croucher
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia; School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland; St Vincent's Hospital Clinical School, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
6
|
Abstract
The remarkable success of cancer immunotherapies, especially the checkpoint blocking antibodies, in a subset of patients has reinvigorated the study of tumor-immune crosstalk and its role in heterogeneity of response. High-throughput sequencing and imaging technologies can help recapitulate various aspects of the tumor ecosystem. Computational approaches provide an arsenal of tools to efficiently analyze, quantify and integrate multiple parameters of tumor immunity mined from these diverse but complementary high-throughput datasets. This chapter describes numerous such computational approaches in tumor immunology that leverage high-throughput data from diverse sources (genomic, transcriptomics, epigenomics and digitized histopathology images) to systematically interrogate tumor immunity in context of its microenvironment, and to identify mechanisms that confer resistance or sensitivity to cancer therapies, in particular immunotherapy.
Collapse
|
7
|
Kondratova M, Czerwinska U, Sompairac N, Amigorena SD, Soumelis V, Barillot E, Zinovyev A, Kuperstein I. A multiscale signalling network map of innate immune response in cancer reveals cell heterogeneity signatures. Nat Commun 2019; 10:4808. [PMID: 31641119 PMCID: PMC6805895 DOI: 10.1038/s41467-019-12270-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/02/2019] [Indexed: 12/14/2022] Open
Abstract
The lack of integrated resources depicting the complexity of the innate immune response in cancer represents a bottleneck for high-throughput data interpretation. To address this challenge, we perform a systematic manual literature mining of molecular mechanisms governing the innate immune response in cancer and represent it as a signalling network map. The cell-type specific signalling maps of macrophages, dendritic cells, myeloid-derived suppressor cells and natural killers are constructed and integrated into a comprehensive meta map of the innate immune response in cancer. The meta-map contains 1466 chemical species as nodes connected by 1084 biochemical reactions, and it is supported by information from 820 articles. The resource helps to interpret single cell RNA-Seq data from macrophages and natural killer cells in metastatic melanoma that reveal different anti- or pro-tumor sub-populations within each cell type. Here, we report a new open source analytic platform that supports data visualisation and interpretation of tumour microenvironment activity in cancer. The complexity of the innate immune response to cancer makes interpretation of large data sets challenging. Here, the authors provide an integrated multi-scale map of signalling networks representing the different immune cells and their interactions and show its utility for data interpretation.
Collapse
Affiliation(s)
- Maria Kondratova
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, 75005, Paris, France
| | - Urszula Czerwinska
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, 75005, Paris, France.,Université Paris Descartes, Centre de Recherches Interdisciplinaires, Paris, France
| | - Nicolas Sompairac
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, 75005, Paris, France.,Université Paris Descartes, Centre de Recherches Interdisciplinaires, Paris, France
| | | | - Vassili Soumelis
- Institut Curie, PSL Research University, Inserm, U932, 75005, Paris, France
| | - Emmanuel Barillot
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, 75005, Paris, France
| | - Andrei Zinovyev
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, 75005, Paris, France
| | - Inna Kuperstein
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, 75005, Paris, France.
| |
Collapse
|