1
|
Guzman UH, Martinez-Val A, Ye Z, Damoc E, Arrey TN, Pashkova A, Renuse S, Denisov E, Petzoldt J, Peterson AC, Harking F, Østergaard O, Rydbirk R, Aznar S, Stewart H, Xuan Y, Hermanson D, Horning S, Hock C, Makarov A, Zabrouskov V, Olsen JV. Ultra-fast label-free quantification and comprehensive proteome coverage with narrow-window data-independent acquisition. Nat Biotechnol 2024:10.1038/s41587-023-02099-7. [PMID: 38302753 DOI: 10.1038/s41587-023-02099-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/13/2023] [Indexed: 02/03/2024]
Abstract
Mass spectrometry (MS)-based proteomics aims to characterize comprehensive proteomes in a fast and reproducible manner. Here we present the narrow-window data-independent acquisition (nDIA) strategy consisting of high-resolution MS1 scans with parallel tandem MS (MS/MS) scans of ~200 Hz using 2-Th isolation windows, dissolving the differences between data-dependent and -independent methods. This is achieved by pairing a quadrupole Orbitrap mass spectrometer with the asymmetric track lossless (Astral) analyzer which provides >200-Hz MS/MS scanning speed, high resolving power and sensitivity, and low-ppm mass accuracy. The nDIA strategy enables profiling of >100 full yeast proteomes per day, or 48 human proteomes per day at the depth of ~10,000 human protein groups in half-an-hour or ~7,000 proteins in 5 min, representing 3× higher coverage compared with current state-of-the-art MS. Multi-shot acquisition of offline fractionated samples provides comprehensive coverage of human proteomes in ~3 h. High quantitative precision and accuracy are demonstrated in a three-species proteome mixture, quantifying 14,000+ protein groups in a single half-an-hour run.
Collapse
Affiliation(s)
- Ulises H Guzman
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Ana Martinez-Val
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Zilu Ye
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Eugen Damoc
- Thermo Fisher Scientific (Bremen) GmbH, Bremen, Germany
| | | | - Anna Pashkova
- Thermo Fisher Scientific (Bremen) GmbH, Bremen, Germany
| | | | | | | | | | - Florian Harking
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Ole Østergaard
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Rydbirk
- Center for Functional Genomics and Tissue Plasticity (ATLAS), Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Susana Aznar
- Centre for Neuroscience and Stereology, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Yue Xuan
- Thermo Fisher Scientific (Bremen) GmbH, Bremen, Germany
| | | | | | | | | | | | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Quantitative Proteomic Analysis Reveals Yeast Cell Wall Products Influence the Serum Proteome Composition of Broiler Chickens. Int J Mol Sci 2022; 23:ijms231911844. [PMID: 36233150 PMCID: PMC9569515 DOI: 10.3390/ijms231911844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
With an ever-growing market and continual financial pressures associated with the prohibition of antibiotic growth promoters, the poultry industry has had to rapidly develop non-antibiotic alternatives to increase production yields. A possible alternative is yeast and its derivatives, such as the yeast cell wall (YCW), which have been proposed to confer selected beneficial effects on the host animal. Here, the effect of YCW supplementation on the broiler chicken was investigated using a quantitative proteomic strategy, whereby serum was obtained from three groups of broilers fed with distinct YCW-based Gut Health Products (GHP) or a control basal diet. Development of a novel reagent enabled application of ProteoMiner™ technology for sample preparation and subsequent comparative quantitative proteomic analysis revealed proteins which showed a significant change in abundance (n = 167 individual proteins; p < 0.05); as well as proteins which were uniquely identified (n = 52) in, or absent (n = 37) from, GHP-fed treatment groups versus controls. An average of 7.1% of proteins showed changes in abundance with GHP supplementation. Several effects of these GHPs including immunostimulation (via elevated complement protein detection), potential alterations in the oxidative status of the animal (e.g., glutathione peroxidase and catalase), stimulation of metabolic processes (e.g., differential abundance of glyceraldehyde-3-phosphate dehydrogenase), as well as evidence of a possible hepatoprotective effect (attenuated levels of serum α-glutathione s-transferase) by one GHP feed supplement, were observed. It is proposed that specific protein detection may be indicative of GHP efficacy to stimulate broiler immune status, i.e., may be biomarkers of GHP efficacy. In summary, this work has developed a novel technology for the preparation of high dynamic range proteomic samples for LC-MS/MS analysis, is part of the growing area of livestock proteomics and, importantly, provides evidential support for beneficial effects that GHP supplementation has on the broiler chicken.
Collapse
|
3
|
Wang X, Huang X, Yang Q, Yan Z, Wang P, Gao X, Luo R, Gun S. TMT labeled comparative proteomic analysis reveals spleen active immune responses during Clostridium perfringens type C infected piglet diarrhea. PeerJ 2022; 10:e13006. [PMID: 35402105 PMCID: PMC8988937 DOI: 10.7717/peerj.13006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/03/2022] [Indexed: 01/11/2023] Open
Abstract
Background Clostridium perfringens (C. perfringens) type C is the principal pathogenic clostridia of swine, frequently causing hemorrhagic diarrhea, even necrotic enteritis in piglets, leading to severe economic loss for swine industr ies worldwide. However, there are no specific and effective prevention measures. Therefore, clarifying the molecular mechanisms of hosts against pathogenesis infection is very important to reduce the incidence of C. perfringens type C infected piglet diarrhea disease. Methods We performed an TMT labeling-based quantitative spleen proteomic analysis of the control group (SC), tolerance group (SR) and susceptible group (SS) to identify the differentially expressed proteins (DEPs), and screened potential molecular markers of piglet spleen tissues in response to C. perfringens type C infection. Results In this study, a total of 115, 176 and 83 DEPs were identified in SR vs SC, SS vs SC, and SR vs SC, respectively, which may play the important regulatory roles in the process of piglet spleens in response toC. perfringens type C-infected diarrhea diseases. GO enrichment analysis revealed that the DEPs were mostly significantly enriched in acute inflammatory response, defense response, antimicrobial response, transporter activity, cellular metabolic process and so on, and KEGG pathway enrichment analysis showed that the significantly enriched immune related pathways of the PPAR signaling pathway, IL-17 signaling pathway, antigen processing and presentation, which hints at the immune defense process of piglet spleen against C. perfringens infection. This study helps to elucidate the protein expressional pattern of piglet spleen against C. perfringens type C-infected diarrhea disease, which can contribute to the prevention and control for pig diarrhea disease and the further development of diarrhea resistant pig breeding.
Collapse
Affiliation(s)
- Xiaoli Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China,Guizhou Institute of Prataculture, Guizhou Academy of Agriculture Science, Guiyang, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiaoli Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Ruirui Luo
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China,Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Biophysical studies of protein misfolding and aggregation in in vivo models of Alzheimer's and Parkinson's diseases. Q Rev Biophys 2020; 49:e22. [PMID: 32493529 DOI: 10.1017/s0033583520000025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurodegenerative disorders, including Alzheimer's (AD) and Parkinson's diseases (PD), are characterised by the formation of aberrant assemblies of misfolded proteins. The discovery of disease-modifying drugs for these disorders is challenging, in part because we still have a limited understanding of their molecular origins. In this review, we discuss how biophysical approaches can help explain the formation of the aberrant conformational states of proteins whose neurotoxic effects underlie these diseases. We discuss in particular models based on the transgenic expression of amyloid-β (Aβ) and tau in AD, and α-synuclein in PD. Because biophysical methods have enabled an accurate quantification and a detailed understanding of the molecular mechanisms underlying protein misfolding and aggregation in vitro, we expect that the further development of these methods to probe directly the corresponding mechanisms in vivo will open effective routes for diagnostic and therapeutic interventions.
Collapse
|
5
|
Gaviard C, Jouenne T, Hardouin J. Proteomics ofPseudomonas aeruginosa: the increasing role of post-translational modifications. Expert Rev Proteomics 2018; 15:757-772. [DOI: 10.1080/14789450.2018.1516550] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Charlotte Gaviard
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
- PISSARO proteomic facility, IRIB, 76821 Mont-Saint-Aignan, France
| | - Thierry Jouenne
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
- PISSARO proteomic facility, IRIB, 76821 Mont-Saint-Aignan, France
| | - Julie Hardouin
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
- PISSARO proteomic facility, IRIB, 76821 Mont-Saint-Aignan, France
| |
Collapse
|
6
|
Mora L, Gallego M, Toldrá F. New approaches based on comparative proteomics for the assessment of food quality. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|