1
|
Ren K, Cao X, Zheng L, Liu S, Li L, Cheng L, Tian T, Tong X, Wang H, Jiang L. Liposomes decorated with β-conglycinin and glycinin: Construction, structure and in vitro digestive stability. Int J Biol Macromol 2024; 269:131900. [PMID: 38677675 DOI: 10.1016/j.ijbiomac.2024.131900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Liposomes were modified with different proportions of β-conglycinin (7S) and glycinin (11S) to form Lip-7S and Lip-11S. The morphology, interaction and in vitro simulated digestion of liposomes were studied. The particle size of Lip-7S was smaller than that of Lip-11S. When the values of Lip-7S and Lip-11S were 1:1 and 1:0.75, respectively, the ζ-potential had the maximum absolute value and the dispersion of the system was good. The results of multispectral analysis showed that hydrogen-bond and hydrophobic interaction dominated protein-modified liposomes, the protein structure adsorbed on the surface of liposomes changed, the content of α-helix decreased, and the structure of protein-modified liposomes became denser. The surface hydrophobicity and micropolarity of liposomes decreased with the increase of protein ratio, and tended to be stable after Lip-7S (1:1) and Lip-11S (1:0.75). Differential scanning calorimetry showed that Lip-7S had higher phase transition temperature (≥170.5 °C) and better rigid structure. During simulated digestion, Lip-7S (22.5 %) released less Morin than Lip (40.6 %) and Lip-11S (26.2 %), and effectively delayed the release of FFAs. The environmental stability of liposomes was effectively improved by protein modification, and 7S had better modification effect than 11S. This provides a theoretical basis for 7S and 11S modified liposomes, and also provides a data reference for searching for new materials for stabilization of liposomes.
Collapse
Affiliation(s)
- Kunyu Ren
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xinru Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lexi Zheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shi Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lanxin Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lin Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Tian Tian
- College of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Xiaohong Tong
- College of Agricultural, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
2
|
Tai K, Rappolt M, He X, Wei Y, Zhu S, Zhang J, Mao L, Gao Y, Yuan F. Effect of β-sitosterol on the curcumin-loaded liposomes: Vesicle characteristics, physicochemical stability, in vitro release and bioavailability. Food Chem 2019; 293:92-102. [DOI: 10.1016/j.foodchem.2019.04.077] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/01/2019] [Accepted: 04/22/2019] [Indexed: 12/11/2022]
|
3
|
Masukawa MK, Vequi-Suplicy CC, Duarte EL, Lamy MT. A closer look into laurdan as a probe to monitor cationic DODAB bilayers. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
4
|
Solubilization of lipid bilayers by myristyl sucrose ester: effect of cholesterol and phospholipid head group size. Chem Phys Lipids 2008; 157:104-12. [PMID: 19071100 DOI: 10.1016/j.chemphyslip.2008.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 11/10/2008] [Accepted: 11/11/2008] [Indexed: 11/24/2022]
Abstract
The solubilization of biological membranes by detergents has been used as a major method for the isolation and purification of membrane proteins and other constituents. Considerable interest in this field has resulted from the finding that different components can be solubilized selectively. Certain membrane constituents are incorporated into small micelles, whereas others remain in the so-called detergent-resistant membrane domains that are large enough to be separated by centrifugation. The detergent-resistant fractions contain an elevated percentage of cholesterol, and thus its interaction with specific lipids and proteins may be key for membrane organization and regulation of cellular signaling events. This report focuses on the solubilization process induced by the sucrose monoester of myristic acid, beta-D-fructofuranosyl-6-O-myristyl-alpha-D-glucopyranoside (MMS), a nonionic detergent. We studied the effect of the head group and the cholesterol content on the process. 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and dioctadecyl-dimethyl-ammonium chloride (DODAC) vesicles were used, and the solubilization process was followed using Laurdan (6-dodecanoyl-2-dimethylaminonaphthalene) generalized polarization (GP) measurements, carried out in the cuvette and in the 2-photon microscope. Our results indicate that: (i) localization of the MMS moieties in the lipid bilayer depends on the characteristics of the lipid polar head group and influences the solubilization process. (ii) Insertion of cholesterol molecules into the lipid bilayer protects it from solubilizaton and (iii) the microscopic mechanism of solubilization by MMS implies the decrease in size of the individual liposomes.
Collapse
|
5
|
Gerelli Y, Barbieri S, Di Bari MT, Deriu A, Cantù L, Brocca P, Sonvico F, Colombo P, May R, Motta S. Structure of self-organized multilayer nanoparticles for drug delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:11378-11384. [PMID: 18816016 DOI: 10.1021/la801992t] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The combined use of cryo-TEM, dynamic light scattering, and small-angle X-ray and neutron scattering techniques allows a detailed structural model of complex pharmaceutical preparations of soybean lecithin/chitosan nanoparticles used as drug vectors to be worked out. Charge-driven self-organization of the lipid(-)/polysaccharide(+) vesicles occurs during rapid injection, under mechanical stirring, of an ethanol solution of soybean lecithin into a chitosan aqueous solution. We conclude that beyond the charge inversion region of the phase diagram, i.e., entering the redissolution region, the initial stages of particle formation are likely to be affected by a re-entrant condensation effect at the nanoscale. This behavior resembles that at the mesoscale which is well-known for polyion/amphiphile systems. Close to the boundary of the charge inversion region, nanoparticle formation occurs under a maximum condensation condition at the nanoscale and the complexation-aggregation process is driven toward a maximum multilamellarity. Interestingly, the formulation that maximizes vesicle multilamellarity corresponds to that displaying the highest drug loading efficiency.
Collapse
Affiliation(s)
- Y Gerelli
- Dipartimento di Fisica, Università degli Studi di Parma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Misra PK, Somasundaran P. Fluorescence Probing of the Surfactant Assemblies in Solutions and at Solid–Liquid Interfaces. ADVANCES IN POLYMER SCIENCE 2008. [DOI: 10.1007/12_2008_165] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
8
|
An attempt to determine the polarity of bilayer of cationic and anionic surfactants vesicle: A chemical probe technique study. Colloids Surf A Physicochem Eng Asp 2007. [DOI: 10.1016/j.colsurfa.2007.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Arrais D, Martins J. Bilayer polarity and its thermal dependency in the l(o) and l(d) phases of binary phosphatidylcholine/cholesterol mixtures. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2914-22. [PMID: 17976527 DOI: 10.1016/j.bbamem.2007.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 08/02/2007] [Accepted: 08/07/2007] [Indexed: 11/17/2022]
Abstract
Diverse variations in membrane properties are observed in binary phosphatidylcholine/cholesterol mixtures. These mixtures are nonideal, displaying single or phase coexistence, depending on chemical composition and other thermodynamic parameters. When compared with pure phospholipid bilayers, there are changes in water permeability, bilayer thickness and thermomechanical properties, molecular packing and conformational freedom of phospholipid acyl chains, in internal dipolar potential and in lipid lateral diffusion. Based on the phase diagrams for DMPC/cholesterol and DPPC/cholesterol, we compare the equivalent polarity of pure bilayers with specific compositions of these mixtures, by using the Py empirical scale of polarity. Besides the contrast between pure and mixed lipid bilayers, we find that liquid-ordered (l(o)) and liquid-disordered (l(d)) phases display significantly different polarities. Moreover, in the l(o) phase, the polarities of bilayers and their thermal dependences vary with the chemical composition, showing noteworthy differences for cholesterol proportions at 35, 40, and 45 mol%. At 20 degrees C, for DMPC/cholesterol at 35 and 45 mol%, the equivalent dielectric constants are 21.8 and 23.8, respectively. Additionally, we illustrate potential implications of polarity in various membrane-based processes and reactions, proposing that for cholesterol containing bilayers, it may also go along with the occurrence of lateral heterogeneity in biological membranes.
Collapse
Affiliation(s)
- Dalila Arrais
- IBB-CBME and DQBF-FCT, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | | |
Collapse
|
10
|
Zanocco AL, Meléndrez M, Günther G, Lemp E. Study of Singlet Oxygen Equilibrium in Dioctadecyldimethylammonium Chloride Vesicles Employing 2-(n-(N,N,N-trimethylamine)-n-alkyl)- 5-alkylfuryl Halides†. Photochem Photobiol 2007; 83:584-91. [PMID: 17115800 DOI: 10.1562/2006-08-01-ra-991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Steady state photolysis and time resolved near infrared luminescence detection were employed to study the reaction kinetics of singlet oxygen with three different lipid-soluble probes incorporated in large unilamellar dioctadecyldimethylammonium chloride (DODAC) vesicles. The probes: 2-(4-(N,N,N-trimethylamine)-butyl)-5-dodecylfuryl bromide (DFTA), 2-(12-(N,N,N-trimethylamine)-dodecyl)-5-hexylfuryl bromide (HFDA) and 2-(1-(N,N,N-trimethylamine)-methyl)-5-methylfuryl iodide (MFMA) are useful in studying both singlet oxygen dynamics and its equilibrium in microcompartmentalized systems because they are actinometers in lipidic microphases. These probes contain a reactive furan ring, which will be located at different depths in the bilayer of DODAC vesicles. In the limit of the approximations, the result indicates an inhomogeneous equilibrium distribution of singlet oxygen across the bilayer. The calculated mean partitioning constant of singlet oxygen equals 2.8 and 8.3 at 20 degrees C and 40 degrees C, respectively, in the order of the previously reported constants for other microorganized systems such as sodium dodecylsulfate and cetyltrimethylammonium halide micelles and water/oil microemulsions.
Collapse
Affiliation(s)
- Antonio L Zanocco
- Universidad de Chile, Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Orgánica y Fisicoquímica, Santiago, Chile.
| | | | | | | |
Collapse
|
11
|
Segota S, Tezak D. Spontaneous formation of vesicles. Adv Colloid Interface Sci 2006; 121:51-75. [PMID: 16769012 DOI: 10.1016/j.cis.2006.01.002] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Accepted: 01/20/2006] [Indexed: 10/24/2022]
Abstract
his review highlights the relevant issues of spontaneous formation of vesicles. Both the common characteristics and the differences between liposomes and vesicles are given. The basic concept of the molecular packing parameter as a precondition of vesicles formation is discussed in terms of geometrical factors, including the volume and critical length of the amphiphile hydrocarbon chain. According to theoretical considerations, the formation of vesicles occurs in the systems with packing parameters between 1/2 and 1. Using common as well as new methods of vesicle preparation, a variety of structures is described, and their nomenclature is given. With respect to sizes, shapes and inner structures, vesicles structures can be formed as a result of self-organisation of curved bilayers into unilamellar and multilamellar closed soft particles. Small, large and giant uni-, oligo-, or multilamellar vesicles can be distinguished. Techniques for determination of the structure and properties of vesicles are described as visual observations by optical and electron microscopy as well as the scattering techniques, notably dynamic light scattering, small angle X-ray and neutron scattering. Some theoretical aspects are described in short, viz., the scattering and the inverse scattering problem, angular and time dependence of the scattering intensity, the principles of indirect Fourier transformation, and the determination of electron density of the system by deconvolution of p(r) function. Spontaneous formation of vesicles was mainly investigated in catanionic mixtures. A number of references are given in the review.
Collapse
Affiliation(s)
- Suzana Segota
- Department of Chemistry, University of Zagreb, Faculty of Science, Horvatovac 102a, P.O. Box 163, 10001 Zagreb, Croatia
| | | |
Collapse
|
12
|
|
13
|
Mertins O, Sebben M, Pohlmann AR, da Silveira NP. Production of soybean phosphatidylcholine-chitosan nanovesicles by reverse phase evaporation: a step by step study. Chem Phys Lipids 2005; 138:29-37. [PMID: 16144696 DOI: 10.1016/j.chemphyslip.2005.07.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 07/05/2005] [Accepted: 07/28/2005] [Indexed: 11/27/2022]
Abstract
In the present work, we describe the preparation of composite nanovesicles containing soybean phosphatidylcholine and polysaccharide chitosan by the reverse phase evaporation method. Nanovesicles free from chitosan prepared in the same way were studied as reference. The production method involves the preparation of reverse micelles followed by the formation of an organogel, which is dispersed in water to yield the final liposomal structures. Structural changes in each step of the nanovesicles preparation were studied by means of static and dynamic light scattering as well as small angle X-ray scattering. Chitosan was also fully characterized in solution. The hydrodynamic radius of the composite nanovesicles is in the range of 174-286 nm, depending on the chitosan contents. A comparison with nanovesicles free from chitosan indicates the existence of higher contents of multilamellae structures in the composites, as well as improved stability in water.
Collapse
Affiliation(s)
- Omar Mertins
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Caixa Postal 15003, CEP 91501-970 Porto Alegre RS, Brazil
| | | | | | | |
Collapse
|