1
|
Shikh Zahari SMSN, Che Sam NFI, Elzaneen KMH, Ideris MS, Harun FW, Azman HH. Understanding the cation exchange affinity in modified-MMT catalysts for the conversion of glucose to lactic acid. RSC Adv 2023; 13:31263-31272. [PMID: 37901855 PMCID: PMC10603823 DOI: 10.1039/d3ra05071h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/07/2023] [Indexed: 10/31/2023] Open
Abstract
This study investigated the exchange affinity of Fe3+, Cu2+, and Zn2+ cations in sulfuric acid-purified montmorillonite (S-MMT) to enhance Lewis acid sites and subsequently improve the catalytic conversion of glucose to lactic acid. XRD analysis suggested the successful cation exchange process, leading to structural expansion of the resultant cation exchanged-MMTs (CE-MMTs). XRF and TGA indicated that Zn2+ had the highest exchange affinity, followed by Cu2+ and then Fe3+. This finding was further supported by the results of TPD-NH3 analysis and pyridine-adsorption test, which demonstrated that Zn-MMT had the highest total acid sites (TAS) and the ratio of Lewis acid-to-Brønsted acid surface site (LA/BA). These results indicated dominant presence of Lewis acid sites in Zn-MMT due to the higher amount of exchanged Zn2+ cations. Consistently, time-dependent catalytic studies conducted at 170 °C showed that a 7 h-reaction generated the highest lactic acid yield, with the catalytic performance increasing in the order of Fe-MMT < Cu-MMT < Zn-MMT. The study also observed the impact of adding alcohols as co-solvents with water at various ratios on the conversion of glucose to lactic acid catalysed by Zn-MMT. The addition of ethanol enhanced lactic acid yield, while methanol and propanol inhibited lactic acid formation. Notably, a water-to-ethanol ratio of 30 : 70 v/v% emerged as the optimal solvent condition, resulting in ca. 35 wt% higher lactic acid yield compared to using water alone. Overall, this study provides valuable insights into the cation exchange affinity of different cations in MMT catalysts and their relevance to the conversion of glucose to lactic acid. Furthermore, the incorporation of alcohol co-solvent presents a promising way of enhancing the catalytic activity of CE-MMTs.
Collapse
Affiliation(s)
- S M Shahrul Nizan Shikh Zahari
- Industrial Chemical Technology Programme, Faculty of Science and Technology, Universiti Sains Islam Malaysia Bandar Baru Nilai 71800 Nilai Negeri Sembilan Malaysia
- Department of Chemical Engineering, South Kensington Campus, Imperial College London London SWZ 2AZ UK
| | - Nur Fatin Izzati Che Sam
- Industrial Chemical Technology Programme, Faculty of Science and Technology, Universiti Sains Islam Malaysia Bandar Baru Nilai 71800 Nilai Negeri Sembilan Malaysia
| | - Kholoud M H Elzaneen
- Industrial Chemical Technology Programme, Faculty of Science and Technology, Universiti Sains Islam Malaysia Bandar Baru Nilai 71800 Nilai Negeri Sembilan Malaysia
| | - Mahfuzah Samirah Ideris
- Industrial Chemical Technology Programme, Faculty of Science and Technology, Universiti Sains Islam Malaysia Bandar Baru Nilai 71800 Nilai Negeri Sembilan Malaysia
| | - Farah Wahida Harun
- Industrial Chemical Technology Programme, Faculty of Science and Technology, Universiti Sains Islam Malaysia Bandar Baru Nilai 71800 Nilai Negeri Sembilan Malaysia
| | - Hazeeq Hazwan Azman
- Department of Science Biotechnology, Faculty of Engineering and Life Sciences, Universiti Selangor Jalan Timur Tambahan, 45600 Bestari Jaya Selangor Malaysia
| |
Collapse
|
2
|
Yao D, Yang J, Jia H, Zhou Y, Lv Q, Li X, Zhang H, Fesobi P, Liu H, Zhao F, Yu K. Application fruit tree hole storage brick fertilizer is beneficial to increase the nitrogen utilization of grape under subsurface drip irrigation. FRONTIERS IN PLANT SCIENCE 2023; 14:1259516. [PMID: 37790795 PMCID: PMC10544330 DOI: 10.3389/fpls.2023.1259516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023]
Abstract
It is very important to promote plant growth and decrease the nitrogen leaching in soil, to improve nitrogen (N) utilization efficiency. In this experiment, we designed a new fertilization strategy, fruit tree hole storage brick (FTHSB) application under subsurface drip irrigation, to characterise the effects of FTHSB addition on N absorption and utilization in grapes. Three treatments were set in this study, including subsurface drip irrigation (CK) control, fruit tree hole storage brick A (T1) treatment, and fruit tree hole storage brick B (T2) treatment. Results showed that the pore number and size of FTHSB A were significantly higher than FTHSB B. Compared with CK, T1 and T2 treatments significantly increased the biomass of different organs of grape, N utilization and 15N content in the roots, stems and leaves, along with more prominent promotion at T1 treatment. When the soil depth was 15-30 cm, the FTHSB application significantly increased the soil 15N content. But when the soil depth was 30-45 cm, it reduced the soil 15N content greatly. T1 and T2 treatments obviously increased the activities of nitrite reductase (NR) and glutamine synthetase (GS) in grape leaves, also the urease activity(UR) in 30 cm of soil. Our findings suggest that FTHSB promoted plant N utilization by reducing N loss in soil and increasing the enzyme activity related to nitrogen metabolism. In addition, this study showed that FTHSB A application was more effective than FTHSB B in improving nitrogen utilization in grapes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fengyun Zhao
- The Key Laboratory of Characteristics of Fruit and Vegetable Cultivation and Utilization of Germplasm Resources of the Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Kun Yu
- The Key Laboratory of Characteristics of Fruit and Vegetable Cultivation and Utilization of Germplasm Resources of the Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
3
|
Mallphanov IL, Vanag VK. Chemical micro-oscillators based on the Belousov–Zhabotinsky reaction. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
The results of studies on the development of micro-oscillators (MOs) based on the Belousov –Zhabotinsky (BZ) oscillatory chemical reaction are integrated and systematized. The mechanisms of the BZ reaction and the methods of immobilization of the catalyst of the BZ reaction in micro-volumes are briefly discussed. Methods for creating BZ MOs based on water microdroplets in the oil phase and organic and inorganic polymer microspheres are considered. Methods of control and management of the dynamics of BZ MO networks are described, including methods of MO synchronization. The prospects for the design of neural networks of MOs with intelligent-like behaviour are outlined. Such networks present a new area of nonlinear chemistry, including, in particular, the creation of a chemical ‘computer’.
The bibliography includes 250 references.
Collapse
|
4
|
Tang H, Sun M, Wang C. 2D Silicate Materials for Composite Polymer Electrolytes. Chem Asian J 2021; 16:2842-2851. [PMID: 34379351 DOI: 10.1002/asia.202100838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/10/2021] [Indexed: 11/07/2022]
Abstract
Two-dimensional (2D) silicate materials have become one of the promising candidates for constructing composite polymer electrolytes due to their advantages of low cost, high stability, good mechanical property, high ionic conductivity and potential to inhibit the growth of lithium dendrites. However, the application of 2D silicate materials in composite polymer electrolytes (CPEs) is still at the infancy stage and facing a lot of challenges. In this minireview, we summarize the structures and properties of 2D silicate materials that have been applied in CPEs, the processing methods of composite electrolytes based on 2D silicates, and the recent process of 2D silicate materials in CPEs. We hope this review could present a general overview of the 2D silicates for CPEs and promote the further study for potential applications.
Collapse
Affiliation(s)
- Hui Tang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Mingxuan Sun
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Chengliang Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
5
|
Zhan J, Chen H, Zhou H, Hao L, Xu H, Zhou X. Essential oil-loaded chitosan/zinc (II) montmorillonite synergistic sustained-release system as antibacterial material. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1947848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jinghui Zhan
- Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, PR China
| | - Huayao Chen
- Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, PR China
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, PR China
| | - Hongjun Zhou
- Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, PR China
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, PR China
| | - Li Hao
- Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, PR China
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, PR China
| | - Hua Xu
- Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, PR China
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, PR China
| | - Xinhua Zhou
- Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, PR China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture
| |
Collapse
|
6
|
Fe-pillared montmorillonite as effective heterogeneous Fenton catalyst for the decolorization of methyl orange. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-01820-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Olopade BK, Oranusi SU, Nwinyi OC, Lawal IA, Gbashi S, Njobeh PB. Decontamination of T-2 Toxin in Maize by Modified Montmorillonite Clay. Toxins (Basel) 2019; 11:toxins11110616. [PMID: 31653066 PMCID: PMC6891709 DOI: 10.3390/toxins11110616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/11/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023] Open
Abstract
Montmorillonite clay has a wide range of applications, one of which includes the binding of mycotoxins in foods and feeds through adsorption. T-2 toxin, produced by some Fusarium, Myrothecium, and Stachybotrys species, causes dystrophy in the brain, heart, and kidney. Various formulations that include lemongrass essential oil-modified montmorillonite clay (LGEO-MMT), lemongrass powder (LGP), montmorillonite clay washed with 1 mM NaCl (Na-MMT), montmorillonite clay (MMT), and lemongrass powder mixed with montmorillonite clay (LGP-MMT) were applied to maize at concentrations of 8% and 12% and stored for a period of one month at 30 °C. Unmodified montmorillonite clay and LGP served as the negative controls alongside untreated maize. Fourier Transform Infrared (FTIR) spectra of the various treatments showed the major functional groups as Si-O and -OH. All treatment formulations were effective in the decontamination of T-2 toxin in maize. Accordingly, it was revealed that the inclusion of Na-MMT in maize at a concentration of 8% was most effective in decontaminating T-2 toxin by 66% in maize followed by LGP-MMT at 12% inclusion level recording a 56% decontamination of T-2 toxin in maize (p = 0.05). Montmorillonite clay can be effectively modified with plant extracts for the decontamination of T-2 toxin.
Collapse
Affiliation(s)
- Bunmi K Olopade
- Department of Biological Sciences, Covenant University, Ota 112233, Ogun State, Nigeria.
| | - Solomon U Oranusi
- Department of Biological Sciences, Covenant University, Ota 112233, Ogun State, Nigeria.
| | - Obinna C Nwinyi
- Department of Biological Sciences, Covenant University, Ota 112233, Ogun State, Nigeria.
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, Gauteng 2028, South Africa.
| | - Isiaka A Lawal
- Chemistry Department, Faculty of Applied and Computer Science, Vaal University of Technology, Vanderbijlpark Campus, Boulevard, Vanderbijlpark 1900, South Africa.
| | - Sefater Gbashi
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, Gauteng 2028, South Africa.
| | - Patrick B Njobeh
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, Gauteng 2028, South Africa.
| |
Collapse
|
8
|
Mukhopadhyay P, Chakraborty R. Infrared radiation promoted preparation of cost-effective lamb bone supported cobalt catalyst: Efficacy in semi-batch monoolein synthesis. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2017.02.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
9
|
Xiang GS, Xu YF, Jiang H. Effect of Na+ on surface fractal dimension of compacted bentonite. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2015. [DOI: 10.1134/s0036024415050349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Lawal IA, Moodley B. Synthesis, characterisation and application of imidazolium based ionic liquid modified montmorillonite sorbents for the removal of amaranth dye. RSC Adv 2015. [DOI: 10.1039/c5ra09483f] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The removal of amaranth dye using montmorillonite modified with an ionic liquid (IL) was investigated.
Collapse
Affiliation(s)
- Isiaka A. Lawal
- School of Chemistry and Physics
- College of Agriculture
- Engineering and Science
- University of KwaZulu-Natal
- Durban
| | - Brenda Moodley
- School of Chemistry and Physics
- College of Agriculture
- Engineering and Science
- University of KwaZulu-Natal
- Durban
| |
Collapse
|
11
|
Carbon Dioxide Retention on Bentonite Clay Adsorbents Modified by Mono-, Di- and Triethanolamine Compounds. ACTA ACUST UNITED AC 2014. [DOI: 10.4028/www.scientific.net/amr.917.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of organic-inorganic hybrids were developed via intercalation process of primary, secondary and tertiary ammonium cations into different alkali and alkaline earth and transition metal cation forms of bentonite clay to be used as adsorbent materials for CO2capture under ambient temperature and slightly high pressure. The effect of the molar mass of amines on the structural characteristics, surface properties and CO2loading capacity of bentonite clay were investigated by X-ray diffraction, Brunauer-Emmett-Teller method and Magnetic Suspension Balance equipment, respectively. X-ray diffraction results revealed that the basal spacing of bentonite clay after modification with amines was increased with the molar mass of amine used, while BET results showed an inverse effect of the molar mass of amines on the surface area of the synthesized materials. The CO2loading capacity of the examined samples revealed that bentonite clay modified with monoethanolammonium cations retained higher CO2amount compared to those modified with di-and triethanolammonium cations. CO2adsorption isotherms on MEA+-Mg-MMT were conducted at 298, 323 and 348 K and different pressures. A decrease in CO2uptake with increasing temperature was observed, suggesting the exothermic nature of the adsorption process.
Collapse
|
12
|
Mekhloufi M, Zehhaf A, Benyoucef A, Quijada C, Morallon E. Removal of 8-quinolinecarboxylic acid pesticide from aqueous solution by adsorption on activated montmorillonites. ENVIRONMENTAL MONITORING AND ASSESSMENT 2013; 185:10365-10375. [PMID: 23925862 DOI: 10.1007/s10661-013-3338-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 07/02/2013] [Indexed: 06/02/2023]
Abstract
Sodium montmorillonite (Na-M), acidic montmorillonite (H-M), and organo-acidic montmorillonite (Org-H-M) were applied to remove the herbicide 8-quinolinecarboxylic acid (8-QCA). The montmorillonites containing adsorbed 8-QCA were investigated by transmission electron microscopy, FT-IR spectroscopy, X-ray diffraction analysis, X-ray fluorescence thermogravimetric analysis, and physical adsorption of gases. Experiments showed that the amount of adsorbed 8-QCA increased at lower pH, reaching a maximum at pH 2. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The Langmuir model provided the best correlation of experimental data for adsorption equilibria. The adsorption of 8-QCA decreased in the order Org-H-M > H-M > Na-M. Isotherms were also used to obtain the thermodynamic parameters. The negative values of ΔG indicated the spontaneous nature of the adsorption process.
Collapse
Affiliation(s)
- M Mekhloufi
- Laboratoire de Chimie Organique, Macromoléculaire et des Matériaux, Université de Mascara, Bp 763, Mascara, 29000, Algeria
| | | | | | | | | |
Collapse
|
13
|
Zehhaf A, Morallon E, Benyoucef A. Polyaniline/Montmorillonite Nanocomposites Obtained by In Situ Intercalation and Oxidative Polymerization in Cationic Modified-Clay (Sodium, Copper and Iron). J Inorg Organomet Polym Mater 2013. [DOI: 10.1007/s10904-013-9953-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Zaghouane-Boudiaf H, Boutahala M. Preparation and characterization of organo-montmorillonites. Application in adsorption of the 2,4,5-trichlorophenol from aqueous solution. ADV POWDER TECHNOL 2011. [DOI: 10.1016/j.apt.2010.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
|
15
|
Zaghouane-Boudiaf H, Boutahala M. Kinetic analysis of 2,4,5-trichlorophenol adsorption onto acid-activated montmorillonite from aqueous solution. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.minpro.2011.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Wang W, Zhai N, Wang A. Preparation and swelling characteristics of a superabsorbent nanocomposite based on natural guar gum and cation-modified vermiculite. J Appl Polym Sci 2010. [DOI: 10.1002/app.33083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
17
|
Salavagione HJ, Cazorla-Amorós D, Tidjane S, Belbachir M, Benyoucef A, Morallón E. Effect of the intercalated cation on the properties of poly(o-methylaniline)/maghnite clay nanocomposites. Eur Polym J 2008. [DOI: 10.1016/j.eurpolymj.2008.01.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Surface structure of CTMA+ modified bentonite and their sorptive characteristics towards organic compounds. Colloids Surf A Physicochem Eng Asp 2008. [DOI: 10.1016/j.colsurfa.2008.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
|