1
|
Kato D, Yamamoto J, Suzuki Y, Kamata T, Hashimoto H, Kunitake M. Lipophilic Vitamin E Diffusion through Bicontinuous Microemulsions. Anal Chem 2021; 93:14231-14237. [PMID: 34644048 DOI: 10.1021/acs.analchem.1c03174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We studied the diffusion properties of lipophilic vitamin E (VE) through bicontinuous microemulsions (BME) using both electrochemical and fluorescence correlation spectroscopy (FCS) measurements. We investigated the effect of different composition ratios of micro-water and micro-oil phases in BMEs (W/OBME). When we employed the BME with a lower W/OBME value of 40/60 (oil-rich BME) as an electrolyte solution, we obtained a larger current response from VE at a fluorinated nanocarbon film electrode. Further voltammetric studies revealed that a higher VE diffusion coefficient was observed in the oil-rich BME. The FCS results also exhibited faster diffusion through the oil-rich BME, which played a significant role in accelerating the VE diffusion probably due to the widening of the micro-oil phase pathway in the BME. Moreover, the effect of increasing the VE diffusion was pronounced at the interface between the electrode surface and the BME solution. These results indicate that controlling the conditions of the BME as the measurement electrolyte is very effective for achieving superior electrochemical measurements in a BME.
Collapse
Affiliation(s)
- Dai Kato
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | - Johtaro Yamamoto
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | - Yoshio Suzuki
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | - Tomoyuki Kamata
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | - Hinako Hashimoto
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan.,Graduate School of Science and Technology and Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Masashi Kunitake
- Graduate School of Science and Technology and Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| |
Collapse
|
2
|
Gradzielski M, Duvail M, de Molina PM, Simon M, Talmon Y, Zemb T. Using Microemulsions: Formulation Based on Knowledge of Their Mesostructure. Chem Rev 2021; 121:5671-5740. [PMID: 33955731 DOI: 10.1021/acs.chemrev.0c00812] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Microemulsions, as thermodynamically stable mixtures of oil, water, and surfactant, are known and have been studied for more than 70 years. However, even today there are still quite a number of unclear aspects, and more recent research work has modified and extended our picture. This review gives a short overview of how the understanding of microemulsions has developed, the current view on their properties and structural features, and in particular, how they are related to applications. We also discuss more recent developments regarding nonclassical microemulsions such as surfactant-free (ultraflexible) microemulsions or ones containing uncommon solvents or amphiphiles (like antagonistic salts). These new findings challenge to some extent our previous understanding of microemulsions, which therefore has to be extended to look at the different types of microemulsions in a unified way. In particular, the flexibility of the amphiphilic film is the key property to classify different microemulsion types and their properties in this review. Such a classification of microemulsions requires a thorough determination of their structural properties, and therefore, the experimental methods to determine microemulsion structure and dynamics are reviewed briefly, with a particular emphasis on recent developments in the field of direct imaging by means of electron microscopy. Based on this classification of microemulsions, we then discuss their applications, where the application demands have to be met by the properties of the microemulsion, which in turn are controlled by the flexibility of their amphiphilic interface. Another frequently important aspect for applications is the control of the rheological properties. Normally, microemulsions are low viscous and therefore enhancing viscosity has to be achieved by either having high concentrations (often not wished for) or additives, which do not significantly interfere with the microemulsion. Accordingly, this review gives a comprehensive account of the properties of microemulsions, including most recent developments and bringing them together from a united viewpoint, with an emphasis on how this affects the way of formulating microemulsions for a given application with desired properties.
Collapse
Affiliation(s)
- Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, D-10623 Berlin, Germany
| | - Magali Duvail
- ICSM, Université Montpellier, CEA, CNRS, ENSCM, 30207 Marcoule, France
| | - Paula Malo de Molina
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain.,IKERBASQUE - Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Miriam Simon
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, D-10623 Berlin, Germany.,Department of Chemical Engineering and the Russell Berrie Nanotechnolgy Inst. (RBNI), Technion-Israel Institute of Technology, Haifa, IL-3200003, Israel
| | - Yeshayahu Talmon
- Department of Chemical Engineering and the Russell Berrie Nanotechnolgy Inst. (RBNI), Technion-Israel Institute of Technology, Haifa, IL-3200003, Israel
| | - Thomas Zemb
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, D-10623 Berlin, Germany.,ICSM, Université Montpellier, CEA, CNRS, ENSCM, 30207 Marcoule, France
| |
Collapse
|
3
|
Perazzo A, Gallier S, Liuzzi R, Guido S, Caserta S. Quantitative methods to detect phospholipids at the oil-water interface. Adv Colloid Interface Sci 2021; 290:102392. [PMID: 33740709 DOI: 10.1016/j.cis.2021.102392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 01/29/2023]
Abstract
Phospholipids are the main constituents of cell membranes and act as natural stabilizers of milk fat globules. Phospholipids are used in a wide range of applications, e.g. as emulsifiers in cosmetic, pharmaceutical and food products. While processed emulsion droplets are usually stabilized by a monolayer of phospholipids, cell membranes have a phospholipid bilayer structure and milk fat globules are stabilized by a complex phospholipid trilayer membrane. Despite the broad relevance of phospholipids, there are still many scientific challenges in understanding how their behavior at the fluid-fluid interface affects microstructure, stability, and physico-chemical properties of natural and industrial products. Most of these challenges arise from the experimental difficulties related to the investigation of the molecular arrangement of phospholipids in situ at the fluid-fluid interface and the quantification of their partitioning between the bulk phase and the interface, both under static and flow conditions. This task is further complicated by the presence of other surface-active components, such as proteins, that can interact with phospholipids and compete for space at the interface. Here, we review the methodologies available from the literature to detect and quantify phospholipids, focusing on oil-water interfaces, and highlight current limitations and future perspectives.
Collapse
Affiliation(s)
- Antonio Perazzo
- Novaflux Inc., 1 Wall Street, Princeton, NJ, 08540, United States; Advanced BioDevices LLC., 1 Wall Street, Princeton, NJ, 08540, United States
| | - Sophie Gallier
- Dairy Goat Co-operative (N.Z.) Limited, 18 Gallagher Drive, PO Box 1398, Hamilton 3240, New Zealand
| | - Roberta Liuzzi
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", P.le Ascarelli 80, 80125 Napoli, Italy
| | - Stefano Guido
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", P.le Ascarelli 80, 80125 Napoli, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), UdR INSTM Napoli Federico II, P.le Ascarelli 80, 80125 Napoli, Italy; CEINGE - Biotecnologie Avanzate, Via G. Salvatore 486, 80145 Napoli, Italy.
| | - Sergio Caserta
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", P.le Ascarelli 80, 80125 Napoli, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), UdR INSTM Napoli Federico II, P.le Ascarelli 80, 80125 Napoli, Italy; CEINGE - Biotecnologie Avanzate, Via G. Salvatore 486, 80145 Napoli, Italy
| |
Collapse
|
4
|
Hoffmann MM, Too MD, Vogel M, Gutmann T, Buntkowsky G. Breakdown of the Stokes-Einstein Equation for Solutions of Water in Oil Reverse Micelles. J Phys Chem B 2020; 124:9115-9125. [PMID: 32924487 DOI: 10.1021/acs.jpcb.0c06124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An experimental study is presented for the reverse micellar system of 15% by mass polydisperse hexaethylene glycol monodecylether (C10E6) in cyclohexane with varying amounts of added water up to 4% by mass. Measurements of viscosity and self-diffusion coefficients were taken as a function of temperature between 10 and 45 °C at varying sample water loads but fixed C10E6/cyclohexane composition. The results were used to inspect the validity of the Stokes-Einstein equation for this system. Unreasonably small reverse average micelle radii and aggregation numbers were obtained with the Stokes-Einstein equation, but reasonable values for these quantities were obtained using the ratio of surfactant-to-cyclohexane self-diffusion coefficients. While bulk viscosity increased with increasing water load, a concurrent expected decrease of self-diffusion coefficient was only observed for the surfactant and water but not for cyclohexane, which showed independence of water load. Moreover, a spread of self-diffusion coefficients was observed for the protons associated with the ethylene oxide repeat unit in samples with polydisperse C10E6 but not in a sample with monodisperse C10E6. These findings were interpreted by the presence of reverse micelle to reverse micelle hopping motions that with higher water load become increasingly selective toward C10E6 molecules with short ethylene oxide repeat units, while those with long ethylene oxide repeat units remain trapped within the reverse micelle because of the increased hydrogen bonding interactions with the water inside the growing core of the reverse micelle. Despite the observed breakdown of the Stokes-Einstein equation, the temperature dependence of the viscosities and self-diffusion coefficients was found to follow Arrhenius behavior over the investigated range of temperatures.
Collapse
Affiliation(s)
- Markus M Hoffmann
- Department of Chemistry and Biochemistry, State University of New York College at Brockport, Brockport, New York 14420, United States
| | - Matthew D Too
- Department of Chemistry and Biochemistry, State University of New York College at Brockport, Brockport, New York 14420, United States
| | - Michael Vogel
- Institute of Condensed Matter Physics, Technical University Darmstadt, Hochschulstraße 6, Darmstadt 64289, Germany
| | - Torsten Gutmann
- Institute of Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, Darmstadt D-64287, Germany
| | - Gerd Buntkowsky
- Institute of Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, Darmstadt D-64287, Germany
| |
Collapse
|
5
|
Roy S, Mandal S, Banerjee P, Sarkar N. Modification of fatty acid vesicle using an imidazolium-based surface active ionic liquid: a detailed study on its modified properties using spectroscopy and microscopy techniques
$$^{\S }$$
§. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1532-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
6
|
Chamieh J, Jannin V, Demarne F, Cottet H. Hydrodynamic size characterization of a self-emulsifying lipid pharmaceutical excipient by Taylor dispersion analysis with fluorescent detection. Int J Pharm 2016; 513:262-269. [DOI: 10.1016/j.ijpharm.2016.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 11/15/2022]
|
7
|
Altamirano MS, Grassano ME, Bertolotti SG, Previtali CM. Photophysics and photochemistry of mercurochrome in reverse micelles. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2016.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Liuzzi R, Carciati A, Guido S, Caserta S. Transport efficiency in transdermal drug delivery: What is the role of fluid microstructure? Colloids Surf B Biointerfaces 2016; 139:294-305. [DOI: 10.1016/j.colsurfb.2015.11.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/24/2015] [Accepted: 11/22/2015] [Indexed: 02/02/2023]
|
9
|
Khan MF, Singh MK, Sen S. Measuring Size, Size Distribution, and Polydispersity of Water-in-Oil Microemulsion Droplets using Fluorescence Correlation Spectroscopy: Comparison to Dynamic Light Scattering. J Phys Chem B 2016; 120:1008-20. [DOI: 10.1021/acs.jpcb.5b09920] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohammad Firoz Khan
- Spectroscopy Laboratory,
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Moirangthem Kiran Singh
- Spectroscopy Laboratory,
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sobhan Sen
- Spectroscopy Laboratory,
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
10
|
Sengupta B, Yadav R, Sen P. Startling temperature effect on proteins when confined: single molecular level behaviour of human serum albumin in a reverse micelle. Phys Chem Chem Phys 2016; 18:14350-8. [DOI: 10.1039/c6cp00452k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The present work reports the effect of confinement, and temperature therein, on the conformational fluctuation dynamics of domain-I of human serum albumin (HSA) by fluorescence correlation spectroscopy (FCS).
Collapse
Affiliation(s)
- Bhaswati Sengupta
- Department of Chemistry, Indian Institute of Technology Kanpur
- Kanpur
- India
| | - Rajeev Yadav
- Department of Chemistry, Indian Institute of Technology Kanpur
- Kanpur
- India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur
- Kanpur
- India
| |
Collapse
|
11
|
Tiecco M, Corte L, Roscini L, Colabella C, Germani R, Cardinali G. A novel, rapid and automated conductometric method to evaluate surfactant-cells interactions by means of critical micellar concentration analysis. Chem Biol Interact 2014; 218:20-7. [PMID: 24814799 DOI: 10.1016/j.cbi.2014.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/10/2014] [Accepted: 04/21/2014] [Indexed: 12/11/2022]
Abstract
Conductometry is widely used to determine critical micellar concentration and micellar aggregates surface properties of amphiphiles. Current conductivity experiments of surfactant solutions are typically carried out by manual pipetting, yielding some tens reading points within a couple of hours. In order to study the properties of surfactant-cells interactions, each amphiphile must be tested in different conditions against several types of cells. This calls for complex experimental designs making the application of current methods seriously time consuming, especially because long experiments risk to determine alterations of cells, independently of the surfactant action. In this paper we present a novel, accurate and rapid automated procedure to obtain conductometric curves with several hundreds reading points within tens of minutes. The method was validated with surfactant solutions alone and in combination with Saccharomyces cerevisiae cells. An easy-to use R script, calculates conductometric parameters and their statistical significance with a graphic interface to visualize data and results. The validations showed that indeed the procedure works in the same manner with surfactant alone or in combination with cells, yielding around 1000 reading points within 20 min and with high accuracy, as determined by the regression analysis.
Collapse
Affiliation(s)
- Matteo Tiecco
- CEMIN - Centro di Eccellenza Materiali Innovativi e Nanostrutturati, Dipartimento di Chimica, Biologia e Biotecnologie, Via Elce di Sotto n.8, Italy
| | - Laura Corte
- Dipartimento di Biologia Applicata, Via Borgo XX Giugno, 74 Università degli Studi di Perugia, I 06100 Perugia, Italy.
| | - Luca Roscini
- Dipartimento di Biologia Applicata, Via Borgo XX Giugno, 74 Università degli Studi di Perugia, I 06100 Perugia, Italy
| | - Claudia Colabella
- Dipartimento di Biologia Applicata, Via Borgo XX Giugno, 74 Università degli Studi di Perugia, I 06100 Perugia, Italy
| | - Raimondo Germani
- CEMIN - Centro di Eccellenza Materiali Innovativi e Nanostrutturati, Dipartimento di Chimica, Biologia e Biotecnologie, Via Elce di Sotto n.8, Italy
| | - Gianluigi Cardinali
- CEMIN - Centro di Eccellenza Materiali Innovativi e Nanostrutturati, Dipartimento di Chimica, Biologia e Biotecnologie, Via Elce di Sotto n.8, Italy; Dipartimento di Biologia Applicata, Via Borgo XX Giugno, 74 Università degli Studi di Perugia, I 06100 Perugia, Italy
| |
Collapse
|
12
|
Moyle TM, Walker LM, Anna SL. Controlling thread formation during tipstreaming through an active feedback control loop. LAB ON A CHIP 2013; 13:4534-4541. [PMID: 24100760 DOI: 10.1039/c3lc50946j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Microscale tipstreaming is a hydrodynamic phenomenon capable of producing submicron sized droplets within a microfluidic device. The tipstreaming process results in the drawing of a thin thread from a highly curved interface and occurs as a result of interfacial surfactant concentration gradients that develop due to elongational flows generated within flow focusing geometries. However, in conventional microfluidic devices, the thread formation is periodically interrupted by the formation of larger primary droplets. This study presents an active feedback control loop capable of eliminating the production of primary droplets and producing a continuous thread, and therefore a continuous droplet stream. A proportional controller is used to successfully control the position of the interface and generate a continuous thread. A derivative component is incorporated in an attempt to increase controller stability, but this component is found to be ineffective. Analysis of the tip position as a function of time is performed to determine the optimal proportional gain constant and set point value for the proportional controller that minimize fluctuations in the produced droplet sizes. The generation of a continuous thread facilitates the use of tipstreaming in several applications, including nanoparticle synthesis, chemical detection, and enzyme activity studies.
Collapse
Affiliation(s)
- Todd M Moyle
- Department of Chemical Engineering, Center for Complex Fluids Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | | | | |
Collapse
|
13
|
Arbeloa EM, Porcal GV, Bertolotti SG, Previtali CM. Effect of the interface on the photophysics of eosin-Y in reverse miceles. J Photochem Photobiol A Chem 2013. [DOI: 10.1016/j.jphotochem.2012.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Koynov K, Butt HJ. Fluorescence correlation spectroscopy in colloid and interface science. Curr Opin Colloid Interface Sci 2012. [DOI: 10.1016/j.cocis.2012.09.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Paredes JM, Casares S, Ruedas-Rama MJ, Fernandez E, Castello F, Varela L, Orte A. Early amyloidogenic oligomerization studied through fluorescence lifetime correlation spectroscopy. Int J Mol Sci 2012; 13:9400-9418. [PMID: 22949804 PMCID: PMC3431802 DOI: 10.3390/ijms13089400] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/13/2012] [Accepted: 07/19/2012] [Indexed: 12/20/2022] Open
Abstract
Amyloidogenic protein aggregation is a persistent biomedical problem. Despite active research in disease-related aggregation, the need for multidisciplinary approaches to the problem is evident. Recent advances in single-molecule fluorescence spectroscopy are valuable for examining heterogenic biomolecular systems. In this work, we have explored the initial stages of amyloidogenic aggregation by employing fluorescence lifetime correlation spectroscopy (FLCS), an advanced modification of conventional fluorescence correlation spectroscopy (FCS) that utilizes time-resolved information. FLCS provides size distributions and kinetics for the oligomer growth of the SH3 domain of α-spectrin, whose N47A mutant forms amyloid fibrils at pH 3.2 and 37 °C in the presence of salt. The combination of FCS with additional fluorescence lifetime information provides an exciting approach to focus on the initial aggregation stages, allowing a better understanding of the fibrillization process, by providing multidimensional information, valuable in combination with other conventional methodologies.
Collapse
Affiliation(s)
- Jose M. Paredes
- Department of Physical Chemistry, Faculty of Pharmacy, Campus Cartuja, Granada, 18071, Spain; E-Mails: (J.M.P.); (M.J.R.-R.); (F.C.)
| | - Salvador Casares
- Department of Physical Chemistry, Faculty of Sciences, Campus Fuentenueva, Granada, 18071, Spain; E-Mails: (S.C.); (E.F.); (L.V.A.)
| | - Maria J. Ruedas-Rama
- Department of Physical Chemistry, Faculty of Pharmacy, Campus Cartuja, Granada, 18071, Spain; E-Mails: (J.M.P.); (M.J.R.-R.); (F.C.)
| | - Elena Fernandez
- Department of Physical Chemistry, Faculty of Sciences, Campus Fuentenueva, Granada, 18071, Spain; E-Mails: (S.C.); (E.F.); (L.V.A.)
| | - Fabio Castello
- Department of Physical Chemistry, Faculty of Pharmacy, Campus Cartuja, Granada, 18071, Spain; E-Mails: (J.M.P.); (M.J.R.-R.); (F.C.)
| | - Lorena Varela
- Department of Physical Chemistry, Faculty of Sciences, Campus Fuentenueva, Granada, 18071, Spain; E-Mails: (S.C.); (E.F.); (L.V.A.)
| | - Angel Orte
- Department of Physical Chemistry, Faculty of Pharmacy, Campus Cartuja, Granada, 18071, Spain; E-Mails: (J.M.P.); (M.J.R.-R.); (F.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-958-243825; Fax: +34-958-244090
| |
Collapse
|
16
|
Patra S, Santhosh K, Pabbathi A, Samanta A. Diffusion of organic dyes in bovine serum albumin solution studied by fluorescence correlation spectroscopy. RSC Adv 2012. [DOI: 10.1039/c2ra20633a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Orte A, Ruedas-Rama MJ, Paredes JM, Crovetto L, Alvarez-Pez JM. Dynamics of water-in-oil nanoemulsions revealed by fluorescence lifetime correlation spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:12792-12799. [PMID: 21913723 DOI: 10.1021/la202004d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The size, diffusional properties, and dynamics of reverse water-in-oil nanoemulsions, or reverse micelles (RMs), have been widely investigated because of interest in this system as a model for biological compartmentalization. Here, we have employed fluorescence lifetime correlation spectroscopy (FLCS) to reveal the dynamics and sizes of aerosol-OT (AOT)/isooctane RMs using a fluorescent xanthene derivative called Tokyo Green II (TG-II). The dye undergoes a partition and a shift in its tautomeric equilibrium such that the TG-II anion remains in the inner micellar aqueous core, and the neutral quinoid form lies in the interfacial region. By applying FLCS, we specifically obtained the lifetime filtered autocorrelation curves of the anionic TG-II, which shows a characteristic lifetime of approximately 4 ns. Analysis of the FLCS curves provides the diffusion coefficient and hydrodynamic radius of the RMs as well as micelle dynamics in the same experiment. The FLCS curves show dynamics in the microsecond time range, which represents an interconversion rate that changes the distribution of the TG-II neutral and anionic forms in the hydrophobic interface and the water core.
Collapse
Affiliation(s)
- Angel Orte
- Department of Physical Chemistry, Faculty of Pharmacy, Cartuja Campus, Granada University, 18071 Granada, Spain
| | | | | | | | | |
Collapse
|
18
|
Pal N, Dev Verma S, Singh MK, Sen S. Fluorescence correlation spectroscopy: an efficient tool for measuring size, size-distribution and polydispersity of microemulsion droplets in solution. Anal Chem 2011; 83:7736-44. [PMID: 21899251 DOI: 10.1021/ac2012637] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fluorescence correlation spectroscopy (FCS) is an ideal tool for measuring molecular diffusion and size under extremely dilute conditions. However, the power of FCS has not been utilized to its best to measure diffusion and size parameters of complex chemical systems. Here, we apply FCS to measure the size, and, most importantly, the size distribution and polydispersity of a supramolecular nanostructure (i.e., microemulsion droplets, MEDs) in dilute solution. It is shown how the refractive index mismatch of a solution can be corrected in FCS to obtain accurate size parameters of particles, bypassing the optical matching problem of light scattering techniques that are used often for particle-size measurements. We studied the MEDs of 13 different W(0) values from 2 to 50 prepared in a ternary mixture of water, sodium bis(2-ethylhexyl) sulfosuccinate (AOT), and isooctane, with sulforhodamine-B as a fluorescent marker. We find that, near the optical matching point of MEDs, the dynamic light scattering (DLS) measurements underestimate the droplet sizes while FCS estimates the accurate ones. A Gaussian distribution model (GDM) and a maximum-entropy-based FCS data fitting model (MEMFCS) are used to analyze the fluorescence correlation curves that unfold Gaussian-type size distributions of MEDs in solution. We find the droplet size varies linearly with W(0) up to ~20, but beyond this W(0) value, the size variation deviates from this linearity. To explain nonlinear variation of droplet size for W(0) values beyond ~20, we invoke a model (the coated-droplet model) that incorporates the size polydispersity of the droplets.
Collapse
Affiliation(s)
- Nibedita Pal
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | |
Collapse
|
19
|
Dey S, Mandal U, Sen Mojumdar S, Mandal AK, Bhattacharyya K. Diffusion of Organic Dyes in Immobilized and Free Catanionic Vesicles. J Phys Chem B 2010; 114:15506-11. [DOI: 10.1021/jp1068347] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shantanu Dey
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Ujjwal Mandal
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Supratik Sen Mojumdar
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Amit Kumar Mandal
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Kankan Bhattacharyya
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
20
|
Fanun M, Makharza S, Sowwan M. Fluorescence Spectroscopy Study of Polyoxyethylene Surfactant Micellar Systems. J DISPER SCI TECHNOL 2010. [DOI: 10.1080/01932690903294196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Ying L, Chao W, Guanghua L. Interaction of Jatrorrhizine with Human Gamma Globulin in membrane mimetic environments: Probing of the binding mechanism and binding site by spectroscopic and molecular modeling methods. J Mol Struct 2010. [DOI: 10.1016/j.molstruc.2010.06.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Ghosh S, Mandal U, Adhikari A, Bhattacharyya K. Study of diffusion of organic dyes in a triblock copolymer micelle and gel by fluorescence correlation spectroscopy. Chem Asian J 2009; 4:948-954. [PMID: 19199330 DOI: 10.1002/asia.200800377] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Fluorescence correlation spectroscopy (FCS) has been used to study translational diffusion of three fluorescent dyes in a micelle and a gel. It was demonstrated that a highly hydrophobic dye, DCM, remains confined to a particular micelle during the passage of the micellar aggregation through the confocal volume. As a result, DCM exhibits slow diffusion of the large micellar aggregate with a diffusion coefficient (D(t)) approximately 25 times slower compared with that of water. In contrast, a hydrophilic probe (C343 or C480) occasionally diffuses out of the micelle into bulk water and displays a large D(t) (twofold smaller in F127 and approximately six times smaller in the P123 micelle compared with that in bulk water). In a gel, diffusion of the individual micelles is completely arrested and hence, the autocorrelation in FCS arises solely from the diffusion of the dye in the gel. In this case, all the three dyes exhibit extremely slow diffusion (300, 45, and 20 times slower than that in water for DCM, C480, and C343 in F127 gel, respectively). In a P123 and F127 gel, diffusion of DCM is respectively, seven and 29 times slower compared with that of the ionic probe C343. The relatively small value of red-edge excitation shift (REES) of the emission maximum, suggests that DCM is confined within the core of the triblock copolymer micelles and gels. The hydrophilic probes (C343 or C480) exhibit fast diffusion in the micelles and gels. However, their REES is very different. The large REES of C480 suggests that it is distributed over a large region of the micelle, whereas the low REES of C343 indicates that it is located primarily in the peripheral corona region.
Collapse
Affiliation(s)
- Subhadip Ghosh
- Physical Chemistry Department, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | | | | | | |
Collapse
|
23
|
Azeem A, Khan ZI, Aqil M, Ahmad FJ, Khar RK, Talegaonkar S. Microemulsions as a Surrogate Carrier for Dermal Drug Delivery. Drug Dev Ind Pharm 2009; 35:525-47. [DOI: 10.1080/03639040802448646] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Bonacucina G, Cespi M, Misici-Falzi M, Palmieri GF. Colloidal soft matter as drug delivery system. J Pharm Sci 2009; 98:1-42. [DOI: 10.1002/jps.21423] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
25
|
|
26
|
Stahla ML, Baruah B, James DM, Johnson MD, Levinger NE, Crans DC. 1H NMR studies of aerosol-OT reverse micelles with alkali and magnesium counterions: preparation and analysis of MAOTs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:6027-6035. [PMID: 18484757 DOI: 10.1021/la8002965] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Simple procedures and characterization of a series of well-defined precursors are described for preparation of a unique microenvironment in nanoreactors, reverse micelles. The Na(+), K(+), Rb(+), Cs(+), and Mg(2+) surfactants were prepared using liquid-liquid ion exchange using chloride and nitrate salts. The surfactants were characterized using (1)H NMR spectroscopy and a variety of other techniques. (1)H NMR spectroscopy was found to be a sensitive probe for characterization of the size of the nanoreactor as well as its water content. (1)H NMR spectra can be used for detailed characterization of reactions in confined environments when counterion effects are likely to be important. (1)H NMR spectroscopy revealed two separate peaks corresponding to water in Mg(AOT)2 samples; one peak arises from water coordinated to the Mg(2+) ion while the other peak arises from bulk water. The two water signals arise directly from the slow exchange of the water coordinated to Mg(2+) in these microemulsions with water in the water pool, and provide an opportunity to study hydration of Mg(2+). This work thus extends the potential use of MAOT microemulsions for applications such as in green chemistry.
Collapse
Affiliation(s)
- Michelle L Stahla
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, USA
| | | | | | | | | | | |
Collapse
|
27
|
Studies on the interaction of caffeic acid with human serum albumin in membrane mimetic environments. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2008; 90:141-51. [DOI: 10.1016/j.jphotobiol.2007.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Revised: 11/27/2007] [Accepted: 12/18/2007] [Indexed: 12/11/2022]
|
28
|
Characterization of Interaction Between Bergenin and Human Serum Albumin in Membrane Mimetic Environments. J Fluoresc 2008; 18:661-70. [DOI: 10.1007/s10895-008-0347-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Accepted: 02/07/2008] [Indexed: 10/22/2022]
|
29
|
Culbertson MJ, Williams JTB, Cheng WWL, Stults DA, Wiebracht ER, Kasianowicz JJ, Burden DL. Numerical fluorescence correlation spectroscopy for the analysis of molecular dynamics under nonstandard conditions. Anal Chem 2007; 79:4031-9. [PMID: 17447726 DOI: 10.1021/ac062013m] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The suitability of mathematical models used to extract kinetic information from correlated data constitutes a significant issue in fluorescence correlation spectroscopy (FCS). Standard FCS equations are derived from a simple Gaussian approximation of the optical detection volume, but some investigations have suggested this traditional practice can lead to inaccurate and misleading conclusions under many experimental circumstances, particularly those encountered in one-photon confocal measurements. Furthermore, analytical models cannot be derived for all measurement scenarios. We describe a novel numerical approach to FCS that circumvents conventional analytical models, enabling meaningful analyses even under extraordinarily unusual measurement conditions. Numerical fluorescence correlation spectroscopy (NFCS) involves quantitatively matching experimental correlation curves with synthetic curves generated via diffusion simulation or direct calculation based on an experimentally determined 3D map of the detection volume. Model parameters are adjusted iteratively to minimize the residual differences between synthetic and experimental correlation curves. In order to reduce analysis time, we distribute calculations across a network of processors. As an example of this new approach, we demonstrate that synthetic autocorrelation curves correspond well with experimental data and that NFCS diffusion measurements of Rhodamine B remain constant, regardless of the distortion present in a confocal detection volume.
Collapse
|
30
|
Abstract
Microemulsions are clear, stable, isotropic mixtures of oil, water, and surfactant, frequently in combination with a cosurfactant. Microemulsions have been intensively studied during the last decades by many scientists and technologists because of their great potential in many food and pharmaceutical applications. The use of microemulsions is advantageous not only due to the facile and low cost preparation, but also because of the improved bioavailability. The increased absorption of drugs in topical applications is attributed to enhancement of penetration through the skin by the carrier. Saturated and unsaturated fatty acids serving as an oil phase are frequently used as penetration enhancers. The most popular enhancer is oleic acid. Other permeation enhancers commonly used in transdermal formulations are isopropyl myristate, isopropyl palmitate, triacetin, isostearylic isostearate, R(+)-limonene and medium chain triglycerides. The most popular among the enhancing permeability surfactants are phospholipids that have been shown to enhance drug permeation in a different mode. l-alpha-phosphatidylcholine from egg yolk, l-alpha-phosphatidylcholine 60%, from soybean and dioleylphosphatidyl ethanolamine which are in a fluid state may diffuse into the stratum corneum and enhance dermal and transdermal drug penetration, while distearoylphosphatidyl choline which is in a gel-state has no such capability. Other very commonly used surfactants are Tween 20, Tween 80, Span 20, Azone, Plurol Isostearique and Plurol Oleique. As cosurfactants commonly serve short-chain alkanols such as ethanol and propylene glycol. Long-chain alcohols, especially 1-butanol, are known for their enhancing activity as well. Decanol was found to be an optimum enhancer among other saturated fatty alcohols that were examined (from octanol to myristyl alcohol). Many enhancers are concentration-dependent; therefore, optimal concentration for effective promotion should be determined. The delivery rate is dependent on the type of the drug, the structure and ingredients of the carrier, and on the character of the membrane in use. Each formulation should be examined very carefully, because every membrane alters the mechanism of penetration and can turn an enhancer to a retarder. Various potential mechanisms to enhance drug penetration through the skin include directly affecting the skin and modifying the formulation so the partition, diffusion, or solubility is altered. The combination of several enhancement techniques such as the use of iontophoresis with fatty acids leads to synergetic drug penetration and to decrease in skin toxicity. Selected studies of various microemulsions containing certain drugs including retinoic acid, 5-fluorouracil, triptolide, ascorbic acid, diclofenac, lidocaine, and prilocaine hydrochloride in transdermal formulations are presented in this review. In conclusion, microemulsions were found as an effective vehicle of the solubilization of certain drugs and as protecting medium for the entrapped of drugs from degradation, hydrolysis, and oxidation. It can also provide prolonged release of the drug and prevent irritation despite the toxicity of the drug. Yet, in spite of all the advantages the present formulations lack several key important characteristics such as cosmetic-permitted surfactants, free dilution in water capabilities, stability in the digestive tracts and sufficient solubilization capacity.
Collapse
Affiliation(s)
- Anna Kogan
- Casali Institute of Applied Chemistry, The Institute of Chemistry, Givat Ram Campus, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | |
Collapse
|