1
|
Romero Castro VL, Nomeir B, Arteni AA, Ouldali M, Six JL, Ferji K. Dextran-Coated Latex Nanoparticles via Photo-RAFT Mediated Polymerization Induced Self-Assembly. Polymers (Basel) 2021; 13:4064. [PMID: 34883567 PMCID: PMC8658814 DOI: 10.3390/polym13234064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Polysaccharide coated nanoparticles represent a promising class of environmentally friendly latex to replace those stabilized by small toxic molecular surfactants. We report here an in situ formulation of free-surfactant core/shell nanoparticles latex consisting of dextran-based diblock amphiphilic copolymers. The synthesis of copolymers and the immediate latex formulation were performed directly in water using a photo-initiated reversible addition fragmentation chain transfer-mediated polymerization induced self-assembly strategy. A hydrophilic macromolecular chain transfer-bearing photosensitive thiocarbonylthio group (eDexCTA) was first prepared by a modification of the reducing chain end of dextran in two steps: (i) reductive amination by ethylenediamine in the presence of sodium cyanoborohydride, (ii) then introduction of CTA by amidation reaction. Latex nanoparticles were then formulated in situ by chain-extending eDexCTA using 2-hydroxypropyl methacrylate (HPMA) under 365 nm irradiation, leading to amphiphilic dextran-b-poly(2-hydroxypropyl methacrylate) diblock copolymers (DHX). Solid concentration (SC) and the average degree of polymerization - Xn-- of PHPMA block (X) were varied to investigate their impact on the size and the morphology of latex nanoparticles termed here SCDHX. Light scattering and transmission electron microscopy analysis revealed that SCDHX form exclusively spherical nano-objects. However, the size of nano-objects, ranging from 20 nm to 240 nm, increases according to PHPMA block length.
Collapse
Affiliation(s)
| | - Brahim Nomeir
- Université de Lorraine, CNRS, LCPM, 54000 Nancy, France; (V.L.R.C.); (B.N.); (J.-L.S.)
| | - Ana Andreea Arteni
- Cryo-Electron Microscopy Facility, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (A.A.A.); (M.O.)
| | - Malika Ouldali
- Cryo-Electron Microscopy Facility, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (A.A.A.); (M.O.)
| | - Jean-Luc Six
- Université de Lorraine, CNRS, LCPM, 54000 Nancy, France; (V.L.R.C.); (B.N.); (J.-L.S.)
| | - Khalid Ferji
- Université de Lorraine, CNRS, LCPM, 54000 Nancy, France; (V.L.R.C.); (B.N.); (J.-L.S.)
| |
Collapse
|
2
|
Abstract
The substitution of petroleum-based synthetic polymers in latex formulations with sustainable and/or bio-based sources has increasingly been a focus of both academic and industrial research. Emulsion polymerization already provides a more sustainable way to produce polymers for coatings and adhesives, because it is a water-based process. It can be made even more attractive as a green alternative with the addition of starch, a renewable material that has proven to be extremely useful as a filler, stabilizer, property modifier and macromer. This work provides a critical review of attempts to modify and incorporate various types of starch in emulsion polymerizations. This review focusses on the method of initiation, grafting mechanisms, starch feeding strategies and the characterization methods. It provides a needed guide for those looking to modify starch in an emulsion polymerization to achieve a target grafting performance or to incorporate starch in latex formulations for the replacement of synthetic polymers.
Collapse
|
3
|
Roy A, Murcia Valderrama MA, Daujat V, Ferji K, Léonard M, Durand A, Babin J, Six JL. Stability of a biodegradable microcarrier surface: physically adsorbed versus chemically linked shells. J Mater Chem B 2018; 6:5130-5143. [PMID: 32254540 DOI: 10.1039/c8tb01255e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mesenchymal stem cells (MSCs) have gained increasing interest for tissue engineering and cellular therapy. MSC expansion on microcarriers (MCs) in stirred bioreactors has emerged as an attractive method for their scaled up production. Some MCs have been developed based on polyesters as a hydrophobic biodegradable core. However, most of these MCs are formulated by an emulsion/organic solvent evaporation (E/E) process using poly(vinyl alcohol) as a shell steric stabilizer, which is biocompatible but not degradable in vivo. Moreover, in most of these MCs, the polymer shell is only physically adsorbed at the particle surface. To the best of our knowledge, no study deals with the stability of such a shell when the MCs are in contact with competitive surfactants or with proteins contained in the culture medium. In this study, fully in vivo bioresorbable dextran-covered polylactide-based MCs were formulated using an E/E process, which allowed to control their surface chemistry. Different dextran derivatives with alkyne or ammonium groups were firstly synthesised. Then, on the one hand, some MCs (non-clicked MCs) were formulated with a physically adsorbed polysaccharide shell onto the core. On the other hand, the polysaccharide shell was linked to the core via in situ CuAAC click-chemistry carried out during the E/E process (clicked MCs). The stability of such coverage was first studied in the presence of competitive surfactants (sodium dodecyl sulfate-SDS, or proteins contained in the culture medium) using nanoparticles (NPs) exhibiting the same chemical composition (core/shell) as MCs. The results revealed the total desorption of the dextran shell for non-clicked NPs after treatment with SDS or the culture medium, while this shell desorption was greatly decreased for clicked NPs. A qualitative study of this shell stability was finally carried out on MCs formulated using a new fluorescent dextran-based surfactant. The results were in agreement with those observed for NPs, and showed that non-clicked MCs are characterized by poor shell stability in contact with a competitive surfactant, which could be quite an issue during MSC expansion. In contrast, clicked MCs possess better shell stability, which allow a better control of the MC surface chemistry, especially during cell culture.
Collapse
Affiliation(s)
- Audrey Roy
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Smeets NM, Imbrogno S, Bloembergen S. Carbohydrate functionalized hybrid latex particles. Carbohydr Polym 2017; 173:233-252. [DOI: 10.1016/j.carbpol.2017.05.075] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/05/2017] [Accepted: 05/24/2017] [Indexed: 11/30/2022]
|
5
|
Raffa P, Wever DAZ, Picchioni F, Broekhuis AA. Polymeric Surfactants: Synthesis, Properties, and Links to Applications. Chem Rev 2015; 115:8504-63. [PMID: 26182291 DOI: 10.1021/cr500129h] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Patrizio Raffa
- Department of Chemical Engineering-Product Technology, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Dutch Polymer Institute DPI , P.O. Box 902, 5600 AX Eindhoven, The Netherlands
| | - Diego Armando Zakarias Wever
- Department of Chemical Engineering-Product Technology, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Dutch Polymer Institute DPI , P.O. Box 902, 5600 AX Eindhoven, The Netherlands
| | - Francesco Picchioni
- Department of Chemical Engineering-Product Technology, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Antonius A Broekhuis
- Department of Chemical Engineering-Product Technology, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
6
|
Synthesis and self-association in dilute aqueous solution of hydrophobically modified polycations and polyampholytes based on 4-vinylbenzyl chloride. Eur Polym J 2014. [DOI: 10.1016/j.eurpolymj.2014.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Iatridi Z, Georgiadou V, Menelaou M, Dendrinou-Samara C, Bokias G. Application of hydrophobically modified water-soluble polymers for the dispersion of hydrophobic magnetic nanoparticles in aqueous media. Dalton Trans 2014; 43:8633-43. [DOI: 10.1039/c4dt00393d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Oleylamine-coated CoFe2O4 magnetic nanoparticles were successfully encapsulated into hydrophobically modified water-soluble polymers. The resulting hydrophilic nanohybrids exhibit promising r2-relaxivity properties.
Collapse
Affiliation(s)
| | - Violetta Georgiadou
- Department of Chemistry
- Aristotle University of Thessaloniki
- GR-54124 Thessaloniki, Greece
| | - Melita Menelaou
- Department of Chemistry
- Aristotle University of Thessaloniki
- GR-54124 Thessaloniki, Greece
| | | | - Georgios Bokias
- Department of Chemistry
- University of Patras
- GR-26504 Patras, Greece
| |
Collapse
|
8
|
Alginate grafted with poly(ε-caprolactone): effect of enzymatic degradation on physicochemical properties. POLYM INT 2012. [DOI: 10.1002/pi.4232] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Ji C, Khademhosseini A, Dehghani F. Enhancing cell penetration and proliferation in chitosan hydrogels for tissue engineering applications. Biomaterials 2011; 32:9719-29. [PMID: 21925727 DOI: 10.1016/j.biomaterials.2011.09.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 09/01/2011] [Indexed: 12/22/2022]
Abstract
The aim of this study was to develop a process to create highly porous three-dimensional (3D) chitosan hydrogels suitable for tissue engineering applications. Chitosan was crosslinked by glutaraldehyde (0.5 vol %) under high pressure CO(2) at 60 bar and 4 °C for a period of 90 min. A gradient-depressurisation strategy was developed, which was efficient in increasing pore size and the overall porosity of resultant hydrogels. The average pore diameter increased two fold (59 μm) compared with the sample that was depressurised after complete crosslinking and hydrogel formation (32 μm). It was feasible to achieve a pore diameter of 140 μm and the porosity of hydrogels to 87% by addition of Acacia gum (AG) as a surfactant to the media. The enhancement in porosity resulted in an increased swelling ratio and decreased mechanical strength. On hydrogels with large pores (>90 μm) and high porosities (>85%), fibroblasts were able to penetrate up to 400 μm into the hydrogels with reasonable viabilities (~80%) upon static seeding. MTS assays showed that fibroblasts proliferated over 14 days. Furthermore, aligned microchannels were produced within porous hydrogels to further promote cell proliferation. The developed process can be easily used to generate homogenous pores of controlled sizes in 3D chitosan hydrogels and may be of use for a broad range of tissue engineering applications.
Collapse
Affiliation(s)
- Chengdong Ji
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney 2006, Australia
| | | | | |
Collapse
|
10
|
|
11
|
Durand A, Marie E. Macromolecular surfactants for miniemulsion polymerization. Adv Colloid Interface Sci 2009; 150:90-105. [PMID: 19660729 DOI: 10.1016/j.cis.2009.07.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/30/2009] [Accepted: 07/01/2009] [Indexed: 11/26/2022]
Abstract
The use of polymeric surfactants as stabilizers in miniemulsion polymerization was reviewed. The structural characteristics of reported polymeric surfactants were detailed and compared. The concept of multi-functional polymeric surfactants was evidenced. The specificities brought by polymeric surfactants in the process of miniemulsion polymerization in comparison to molecular surfactants were analysed for the stability of the initial monomer emulsion, polymerization kinetics and characteristics of the obtained latexes. The contribution of polymeric surfactants to the control of the characteristics of the obtained nanoparticles was detailed with regard to the nature of the core material and to the surface coverage. Polymeric surfactants can be seen as powerful tools for the design of original nanoparticles. On the basis of the available data, possible research topics are suggested.
Collapse
|
12
|
Rotureau E, Raynaud J, Choquenet B, Marie E, Nouvel C, Six JL, Dellacherie E, Durand A. Application of amphiphilic polysaccharides as stabilizers in direct and inverse free-radical miniemulsion polymerization. Colloids Surf A Physicochem Eng Asp 2008. [DOI: 10.1016/j.colsurfa.2008.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Marie E, Rotureau E, Dellacherie E, Durand A. From polymeric surfactants to colloidal systems. Colloids Surf A Physicochem Eng Asp 2007. [DOI: 10.1016/j.colsurfa.2007.05.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Palocci C, Barbetta A, La Grotta A, Dentini M. Porous biomaterials obtained using supercritical CO 2- water emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:8243-51. [PMID: 17590033 DOI: 10.1021/la700947g] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Highly porous, hydrophilic porous matrices were fabricated by using a high internal phase supercritical-CO2 (scCO2) emulsion templating technique. The novel aspect of the work resides in the combination of a natural biopolymer (dextran) as the building component of the matrices and of an environmentally benign solvent (supercritical-CO2) as the pore-generating phase. The synthetic route to the porous biomaterials involved the preliminary functionalization of the dextran chains with methacrylic moieties, formation of a scCO2-in-water concentrated emulsion, and curing of the external phase of the emulsion by radical polymerization. As the emulsion stabilizer a perfluoropolyether surfactant was chosen. The matrices obtained exhibit highly interconnected, trabecular morphologies. The porous biomaterial morphologies were qualitatively characterized by scanning electron microscopy (SEM) and the evaluation of void and interconnect sizes was carried out on the micrographs taken with the light microscope. To tailor the morphologies of the porous structures, the influence of the volume fraction of the internal phase and of the surfactant/internal phase ratio was investigated. It was established that the variation of the volume fraction of the internal phase exerted only a limited influence on void and interconnect sizes. On the contrary the increase of surfactant concentration alters dramatically the distribution of void size, a large proportion of the void space enclosed within the matrix being attributable to voids with a diameter exceeding 100 microm. The free toxic solvent process of fabrication of the porous structures, the high water content, the expected biocompatibility, and the mechanical properties that resemble natural tissues make these porous hydrogels potentially useful for tissue engineering applications.
Collapse
Affiliation(s)
- Cleofe Palocci
- Department of Chemistry, University of Rome La Sapienza, Piazzale A. Moro 5, 00185 Rome, Italy
| | | | | | | |
Collapse
|