1
|
Harish V, Tewari D, Mohd S, Govindaiah P, Babu MR, Kumar R, Gulati M, Gowthamarajan K, Madhunapantula SV, Chellappan DK, Gupta G, Dua K, Dallavalasa S, Singh SK. Quality by Design Based Formulation of Xanthohumol Loaded Solid Lipid Nanoparticles with Improved Bioavailability and Anticancer Effect against PC-3 Cells. Pharmaceutics 2022; 14:2403. [PMID: 36365221 PMCID: PMC9699314 DOI: 10.3390/pharmaceutics14112403] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 09/29/2023] Open
Abstract
Many natural products with greater therapeutic efficacy are limited to target several chronic diseases such as cancer, diabetes, and neurodegenerative diseases. Among the natural products from hops, i.e., Xanthohumol (XH), is a prenylated chalcone. The present research work focuses on the enhancement of the poor oral bioavailability and weak pharmacokinetic profile of XH. We exemplified the development of a Xanthohumol-loaded solid lipid nanoparticles (XH-SLNs) cargo system to overcome the limitations associated with its bioavailability. The XH-SLNs were prepared by a high-shear homogenization/ultrasonication method and graphical, numerical optimization was performed by using Box-Behnken Design. Optimized XH-SLNs showed PS (108.60 nm), PDI (0.22), ZP (-12.70 mV), %EE (80.20%) and an amorphous nature that was confirmed by DSC and PXRD. FE-SEM and HRTEM revealed the spherical morphology of XH-SLNs. The results of release studies were found to be 9.40% in 12 h for naive XH, whereas only 28.42% of XH was released from XH-SLNs. The slow release of drugs may be due to immobilization of XH in the lipid matrix. In vivo pharmacokinetic study was performed for the developed XH-SLNs to verify the enhancement in the bioavailability of XH than naive XH. The enhancement in the bioavailability of the XH was confirmed from an increase in Cmax (1.07-folds), AUC0-t (4.70-folds), t1/2 (6.47-folds) and MRT (6.13-folds) after loading into SLNs. The relative bioavailability of XH loaded in SLNs and naive XH was found to be 4791% and 20.80%, respectively. The cytotoxicity study of naive XH, XH-SLNs were performed using PC-3 cell lines by taking camptothecin as positive control. The results of cytotoxicity study revealed that XH-SLNs showed good cell inhibition in a sustained pattern. This work successfully demonstrated formulation of XH-SLNs with sustained release profile and improved oral bioavailability of XH with good anticancer properties against PC-3 cells.
Collapse
Affiliation(s)
- Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Sharfuddin Mohd
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India
| | - Pilli Govindaiah
- Department of Pathology, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Malakapogu Ravindra Babu
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kuppusamy Gowthamarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, India
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine Laboratory (A DST-FIST Supported Center), Department of Biochemistry (A DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research, Bannimantapa, Sri Shivarathreeshwara Nagar, Mysore 570015, India
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jaipur 302017, India
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Siva Dallavalasa
- Center of Excellence in Molecular Biology and Regenerative Medicine Laboratory (A DST-FIST Supported Center), Department of Biochemistry (A DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research, Bannimantapa, Sri Shivarathreeshwara Nagar, Mysore 570015, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
2
|
Hsieh IT, Chang JS, Chou TH. The impact of the surfactant type on physicochemical properties, encapsulation, and in vitro biocompatibility of coconut oil nanoemulsions. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
3
|
Poovi G, Damodharan N. Development of tamoxifen-loaded surface-modified nanostructured lipid carrier using experimental design: in vitro and ex vivo characterisation. IET Nanobiotechnol 2020; 14:261-274. [PMID: 32463016 DOI: 10.1049/iet-nbt.2019.0276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The present study aimed to develop a surface-modified biocompatible nanostructured lipid carrier (NLCs) system using polyoxyethylene (40) stearate (POE-40-S) to improve the oral bioavailability of poorly water-soluble Biopharmaceutics Classification System class-II drug like tamoxifen (TMX). Also aimed to screen the most influential factors affecting the particle size (PS) using Taguchi (L12 (211)) orthogonal array design (TgL12OA). Then, to optimize the TMX loaded POE-40-S (P) surface-modified NLCs (TMX-loaded-PEG-40-S coated NLC (PNLCs) or PNLCs) by central composite design (CCD) using a four-factor, five-level model. The most influential factors affecting the PS was screened and optimized. The in-vitro study showed that increased drug-loading (DL) and encapsulation efficiency (EE), decreased PS and charge, sustained drug release for the prolonged period of the time with good stability and suppressed protein adsorption. The Ex-vivo study showed that decreased mucous binding with five-fold enhanced permeability of PNLC formulation after surface modification with POE-40-S. The in-vitro cytotoxicity study showed that the blank carrier is biocompatible and cytotoxicity of the formulation was dependent on the concentration of the drug. Finally, it can be concluded that the surface-modified PNLCs formulation was an effective, biocompatible, stable formulation in the enhancement of dissolution rate, solubility, stability with reduced mucus adhesion and increased permeability thereby which indicates its enhanced oral bioavailability.
Collapse
Affiliation(s)
- Ganesan Poovi
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Narayanasamy Damodharan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| |
Collapse
|
4
|
El-Nezhawy AOH, Alrobaian M, Khames A, El-Badawy MF, Abdelwahab SF. Design and total synthesis of (-)-codonopsinine, (-)-codonopsine and codonopsinine analogues by O-(2-oxopyrrolidin-5-yl)trichloroacetimidate as amidoalkylating agent with improved antimicrobial activity via solid lipid nanoparticle formulations. Bioorg Med Chem 2019; 27:1263-1273. [PMID: 30777662 DOI: 10.1016/j.bmc.2019.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/28/2019] [Accepted: 02/12/2019] [Indexed: 02/08/2023]
Abstract
A general strategy towards total synthesis of (-)-codonopsinine, (-)-codonopsine and codonopsinine analogues has been developed from (D)-tartaric acid via the intermediate (3S,4R)-1-methyl-2-oxo-5-(2,2,2-trichloroacetamido)pyrrolidinediacetate (7). α-amidoalkylation studies of 7 with electron rich benzene derivative 8a-g as C-nucleophiles afforded (aryl derivatives) 9a-g. The target compounds 1, 2 and 13c-g were readily obtained from 10a-gvia Grignard addition to the homochiral lactam which was produced by deoxygenation using Lewis-acid followed by deacetylation. The synthesized compounds were loaded onto solid lipid nanoparticle formulations (SLNs) prepared by hot emulsification-ultrasonication technique using Compritol as solid lipid and Pluronic f68 as surfactant. SLNs were fully evaluated and the permeation of synthesized compound from SLNs was assayed against non-formulated compounds through dialysis membranes using Franz cell. The data indicated good physical characteristics of the prepared SLNs, sustaining of release profiles and significant improvement of permeation ability when compared to the non-formulated compounds. The antibacterial and antifungal activities of 1, 2 and 13c-g were determined by disc diffusion and microbroth dilution method to determine the minimum inhibitory concentrations (MIC) against seven microorganisms (Staphyloccus aureus, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Acinetobacter baumannii and Candida albicans). The most active compounds against the Gram positive S. aureus were 1, 13C, 13d, and 13g. Also, 13c, 13d, and 13e had antibacterial activity but not 13f against some Gram negative organisms (E. coli, and P. mirabilis). MIC concentrations against P. aeruginosa, and K. pneumoniae were ≥512 μg/ml, while that against A. baumannii was ≥128 μg/ml except for nanoformulae of 13e and 13f that were 16 and 64 μg/ml, respectively. No antifungal activity against Candida albicans was recorded for all compounds and their nanoformulae (MIC > 1024 μg/ml). SLNs were found to decrease the MIC values for some of the compounds with no effect on the antifungal activity. In conclusion, we demonstrated a novel, straight-forward and economical procedure for the total synthesis of (-)-codonopsinine 1, (-)-codonopsine 2 and codonopsinine analogues 13c-g from simple and commercially available starting materials; d-tartaric acid; with antimicrobial activities against Gram positive and Gram-negative organisms that were improved by SLNs formulations.
Collapse
Affiliation(s)
- Ahmed O H El-Nezhawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia; Department of Chemistry of Natural and Microbial Products, National Research Center, Dokki 12622, Cairo, Egypt.
| | - Majed Alrobaian
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia
| | - Ahmed Khames
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mohamed F El-Badawy
- Division of Pharmaceutical Microbiology, Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia; Department of Microbiology and Immunology, Faculty of Pharmacy, Misr University for Science and Technology, Al-Motamayez District, P.O. Box 77, 6th of October City 12568, Egypt
| | - Sayed F Abdelwahab
- Division of Pharmaceutical Microbiology, Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia; Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia 61511, Egypt
| |
Collapse
|
5
|
Nahak P, Gajbhiye RL, Karmakar G, Guha P, Roy B, Besra SE, Bikov AG, Akentiev AV, Noskov BA, Nag K, Jaisankar P, Panda AK. Orcinol Glucoside Loaded Polymer - Lipid Hybrid Nanostructured Lipid Carriers: Potential Cytotoxic Agents against Gastric, Colon and Hepatoma Carcinoma Cell Lines. Pharm Res 2018; 35:198. [PMID: 30151753 DOI: 10.1007/s11095-018-2469-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/30/2018] [Indexed: 12/30/2022]
Abstract
PURPOSE Orcinol glucoside (OG) - loaded nanostructured lipid carrier (NLC), coated with polyethylene glycol-25/55-stearate (PEG-25/55-SA), were explored for delivering OG to improve in vitro cytotoxicity against gastrointestinal tract (GIT), colon and hepatoma carcinoma cell lines. It is being expected that the PEGylated formulations would possess the sustainability in withstanding the adverse physiological extremities like the most significant metabolic activities and phase I / II enzymatic activities in the intestines. METHODS NLCs were prepared using tristearin, oleic acid and PEG-25/55-stearate by hot homogenization-ultrasonic dispersion; characterized by DLS, TEM, SEM, AFM, entrapment efficiency and drug loading capacity studies. RESULTS NLC diameter ranged from 160 to 230 nm with negative zeta potential of -8 to -20 mV. TEM/SEM and AFM studies suggest spherical and smooth surface morphologies. Differential scanning calorimetry studies reveal the loss of crystallinity when OG was incorporated into the NLC. NLCs showed initial burst release, followed by sustained release of OG. PEG-NLC exhibited superior anticancer activity against GIT and also in hepatoma cancer cell lines. CONCLUSIONS This is the first report demonstrating a practical approach for possible oral delivery of OG in GIT and targeting hepatoma cancer, warranting further in vivo studies for superior management of GIT cancer.
Collapse
Affiliation(s)
- Prasant Nahak
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734 013, India
| | - Rahul L Gajbhiye
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullcik Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Gourab Karmakar
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734 013, India
| | - Pritam Guha
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734 013, India
| | - Biplab Roy
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734 013, India
| | - Shila Elizabeth Besra
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullcik Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Alexey G Bikov
- Department of Colloid Chemistry, Saint Petersburg State University, Universitetsky pr. 26, Saint Petersburg, 198504, Russia
| | - Alexander V Akentiev
- Department of Colloid Chemistry, Saint Petersburg State University, Universitetsky pr. 26, Saint Petersburg, 198504, Russia
| | - Boris A Noskov
- Department of Colloid Chemistry, Saint Petersburg State University, Universitetsky pr. 26, Saint Petersburg, 198504, Russia
| | - Kaushik Nag
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Parasuraman Jaisankar
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullcik Road, Jadavpur, Kolkata, West Bengal, 700032, India.
| | - Amiya Kumar Panda
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore, West Bengal, 721 102, India.
| |
Collapse
|
6
|
Keskin T, Yalcin S, Gunduz U. Folic acid functionalized PEG coated magnetic nanoparticles for targeting anti-cancer drug delivery: Preparation, characterization and cytotoxicity on Doxorubicin, Zoledronic acid and Paclitaxel resistant MCF-7 breast cancer cell lines. INORG NANO-MET CHEM 2018. [DOI: 10.1080/24701556.2018.1453840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tugba Keskin
- Middle East Technical University, Department of Biology, Ankara, Turkey
| | - Serap Yalcin
- Ahi Evran University, Department of Molecular Biology and Genetics, Kırsehir, Turkey
| | - Ufuk Gunduz
- Middle East Technical University, Department of Biology, Ankara, Turkey
- Middle East Technical University, Department of Biotechnology, Ankara, Turkey
| |
Collapse
|
7
|
Yan X, Xu W, Chen L, Shao R. Food-grade Water in Oil Microemulsion as a Potential Approach for Tea Polyphenols Encapsulation. TENSIDE SURFACT DET 2018. [DOI: 10.3139/113.110538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Food-grade water in oil (W/O) microemulsions were developed and characterized in order to use them as potential tea polyphenols (TP) carriers. The physicochemical characteristics of microemulsions (TP-loaded and blank microemulsions) were investigated by rheological measurements, differential scanning calorimetry (DSC), dynamic light scattering (DLS) and 1H nuclear magnetic resonance (1H NMR). The thermal behavior of the microemulsion system implied that the water molecules were competitively bound. Chemical shift patterns for all samples were not sensitive to the addition of TP. The microscopic images showed that both the non-loaded and the TP-loaded microemulsions had a spherical shape, in particular the TP-loaded microemulsions had a specific core-shell morphology. TP solubilized in the microemulsions was much more stable than that dissolved in water solution. The release process of TP in water solution was faster than that of microemulsions.
Collapse
|
8
|
Zhang J, He Y, Jiang J, Li M, Jin C, Wang L, Wang D. In vitro and in vivo evaluation of folate-mediated PEGylated nanostructured lipid carriers for the efficient delivery of furanodiene. Drug Dev Ind Pharm 2017; 43:1610-1618. [DOI: 10.1080/03639045.2017.1328429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jianmei Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yunpeng He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Jianqi Jiang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Meng Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Chenhao Jin
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Lin Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Dongkai Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
9
|
Makwana V, Jain R, Patel K, Nivsarkar M, Joshi A. Solid lipid nanoparticles (SLN) of Efavirenz as lymph targeting drug delivery system: Elucidation of mechanism of uptake using chylomicron flow blocking approach. Int J Pharm 2015; 495:439-446. [DOI: 10.1016/j.ijpharm.2015.09.014] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/02/2015] [Accepted: 09/08/2015] [Indexed: 01/01/2023]
|
10
|
Wang L, Luo Q, Lin T, Li R, Zhu T, Zhou K, Ji Z, Song J, Jia B, Zhang C, Chen W, Zhu G. PEGylated nanostructured lipid carriers (PEG–NLC) as a novel drug delivery system for biochanin A. Drug Dev Ind Pharm 2014; 41:1204-12. [DOI: 10.3109/03639045.2014.938082] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Montalvo G, Pons R, Zhang G, Díaz M, Valiente M. Structure and phase equilibria of the soybean lecithin/PEG 40 monostearate/water system. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:14369-79. [PMID: 24205925 DOI: 10.1021/la402764w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
PEG stearates are extensively used as emulsifiers in many lipid-based formulations. However, the scheme of the principles of the lipid-surfactant polymer interactions are still poorly understood and need more studies. A new phase diagram of a lecithin/PEG 40 monostearate/water system at 30 °C is reported. First, we have characterized the binary PEG 40 monostearate/water system by the determination of the critical micelle concentration value and the viscous properties. Then, the ternary phase behavior and the influence of phase structure on their macroscopic properties are studied by a combination of different techniques, namely, optical microscopy, small-angle X-ray scattering, differential scanning calorimetry, and rheology. The phase behavior is complex, and some samples evolve even at long times. The single monophasic regions correspond to micellar, swollen lamellar, and lamellar gel phases. The existence of extended areas of phase coexistence (hexagonal, cubic, and lamellar liquid crystalline phases) may be a consequence of the low miscibility of S40P in the lecithin bilayer as well as of the segregation of the phospholipid polydisperse hydrophobic chains. The presence of the PEG 40 monostearate has less effect in the transformation to the cubic phase for lecithin than that found in other systems with simple glycerol-based lipids.
Collapse
Affiliation(s)
- G Montalvo
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá , E28871 Alcalá de Henares (Madrid), Spain
| | | | | | | | | |
Collapse
|
12
|
Siddiqui A, Alayoubi A, El-Malah Y, Nazzal S. Modeling the effect of sonication parameters on size and dispersion temperature of solid lipid nanoparticles (SLNs) by response surface methodology (RSM). Pharm Dev Technol 2013; 19:342-6. [DOI: 10.3109/10837450.2013.784336] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Chongprakobkit S, Maniratanachote R, Tachaboonyakiat W. Oil-in-water emulsions stabilized by sodium phosphorylated chitosan. Carbohydr Polym 2013; 96:82-90. [PMID: 23688457 DOI: 10.1016/j.carbpol.2013.03.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 02/21/2013] [Accepted: 03/20/2013] [Indexed: 10/27/2022]
Abstract
Oil-in-water (O/W) emulsions with sodium phosphorylated chitosan (PCTS) were obtained via simple emulsification. PCTS in aqueous solution was amphiphilic with a hydrophilic-lipophilic balance (HLB) of 19 and a critical aggregation concentration (CAC) of 0.13% w/v. The emulsifying efficiency and emulsion stability of PCTS over oil droplets were evaluated in terms of the droplet size, droplet size distribution and microscopic observation using confocal laser scanning microscopy. PCTS preferred to cover oil droplets to produce an O/W emulsion and formed long term stable particles (90 days storage at room temperature) when using PCTS concentrations from above the CAC to 3% w/v. However, emulsions formed from PCTS concentrations below the CAC or over 3% w/v were unstable with particle agglomeration by flocculation after only 7 days storage, although they reverted to individual droplets that retained their integrity in acidic conditions. Overall, PCTS forms effective stable O/W encapsulated particles with potential applications in lipophilic drug encapsulation via a simple emulsion system.
Collapse
Affiliation(s)
- Suchada Chongprakobkit
- Nanoscience and Technology Program, Graduate School, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | | | | |
Collapse
|
14
|
Huang CL, Kumar S, Tan JJ, Boey FY, Venkatraman SS, Steele TW, Loo JS. Modulating drug release from poly(lactic-co-glycolic acid) thin films through terminal end-groups and molecular weight. Polym Degrad Stab 2013. [DOI: 10.1016/j.polymdegradstab.2012.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Siddiqui A, Alayoubi A, Nazzal S. The effect of emulsifying wax on the physical properties of CTAB-based solid lipid nanoparticles (SLN). Pharm Dev Technol 2013; 19:125-8. [DOI: 10.3109/10837450.2012.751401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
In vitro and in vivo evaluation of oridonin-loaded long circulating nanostructured lipid carriers. Int J Biol Macromol 2012; 50:523-9. [PMID: 22301003 DOI: 10.1016/j.ijbiomac.2012.01.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/08/2012] [Accepted: 01/16/2012] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to develop poly(ethylene glycol)-coated nanostructured lipid carriers (PEG-NLC) for parenteral delivery of oridonin (ORI) to prolong drug circulation time in blood. Oridonin-loaded PEG-NLC (ORI-PEG-NLC) consisting of PEG(2000)-stearate, glycerol monostearate and medium chain triglycerides were prepared by emulsion-evaporation and low temperature-solidification technique. Oridonin-loaded NLC (ORI-NLC) were also prepared as control. ORI-PEG-NLC were observed by transmission election microscope and the morphology was in rotiform shape. The mean particle size of ORI-PEG-NLC was 329.2 nm and entrapment efficacy was 71.18%. The results of differential scanning calorimetry and X-ray diffraction revealed a low-crystalline structure of ORI and verified the incorporation of ORI into the nanoparticles. In vitro drug release of ORI-PEG-NLC exhibited biphasic drug release patterns with burst release initially and prolonged release afterwards. Pharmacokinetic analysis showed that the mean residence time of ORI-PEG-NLC was prolonged and AUC (area under tissue concentration-time curve) value was also improved compared with ORI-NLC and ORI solution. In conclusion, ORI-PEG-NLC could be a potential carrier to get prolonged retention time of oridonin in blood.
Collapse
|
17
|
Vighi E, Leo E. Studying the in vitro behavior of cationic solid lipid nanoparticles as a nonviral vector. Nanomedicine (Lond) 2012; 7:9-12. [DOI: 10.2217/nnm.11.168] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Eleonora Vighi
- Department of Pharmaceutical Sciences, University of Modena & Reggio Emilia, via Campi, 183, Modena, Italy
| | - Eliana Leo
- Department of Pharmaceutical Sciences, University of Modena & Reggio Emilia, via Campi, 183, Modena, Italy
| |
Collapse
|
18
|
Zheng MY, Liu F, Wang ZW, Baoyindugurong JH. Formation and characterization of self-assembling fish oil microemulsions. COLLOID JOURNAL 2011. [DOI: 10.1134/s1061933x11030197] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Abstract
Ocular drug delivery remains challenging because of the complex nature and structure of the eye. Conventional systems, such as eye drops and ointments, are inefficient, whereas systemic administration requires high doses resulting in significant toxicity. There is a need to develop novel drug delivery carriers capable of increasing ocular bioavailability and decreasing both local and systemic cytotoxicity. Nanotechnology is expected to revolutionize ocular drug delivery. Many nano-structured systems have been employed for ocular drug delivery and yielded some promising results. Solid lipid nanoparticles (SLNs) have been looked at as a potential drug carrier system since the 1990s. SLNs do not show biotoxicity as they are prepared from physiological lipids. SLNs are especially useful in ocular drug delivery as they can enhance the corneal absorption of drugs and improve the ocular bioavailability of both hydrophilic and lipophilic drugs. SLNs have another advantage of allowing autoclave sterilization, a necessary step towards formulation of ocular preparations. This review outlines in detail the various production, characterization, sterilization, and stabilization techniques for SLNs. In-vitro and in-vivo methods to study the drug release profile of SLNs have been explained. Special attention has been given to the nature of lipids and surfactants commonly used for SLN production. A summary of previous studies involving the use of SLNs in ocular drug delivery is provided, along with a critical evaluation of SLNs as a potential ocular delivery system.
Collapse
Affiliation(s)
- Ali Seyfoddin
- University of Auckland, Faculty of Medical and Health Sciences, School of Pharmacy, Auckland, New Zealand
| | | | | |
Collapse
|
20
|
Zhang S, Yun J, Shen S, Chen Z, Yao K, Chen J, Chen B. Formation of solid lipid nanoparticles in a microchannel system with a cross-shaped junction. Chem Eng Sci 2008. [DOI: 10.1016/j.ces.2008.08.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|