1
|
Revnic RN, Știufiuc GF, Toma V, Onaciu A, Moldovan A, Țigu AB, Fischer-Fodor E, Tetean R, Burzo E, Știufiuc RI. Facile Microwave Assisted Synthesis of Silver Nanostars for Ultrasensitive Detection of Biological Analytes by SERS. Int J Mol Sci 2022; 23:8830. [PMID: 35955966 PMCID: PMC9369225 DOI: 10.3390/ijms23158830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 08/06/2022] [Indexed: 12/22/2022] Open
Abstract
We report a very simple, rapid and reproducible method for the fabrication of anisotropic silver nanostars (AgNS) that can be successfully used as highly efficient SERS substrates for different bioanalytes, even in the case of a near-infra-red (NIR) excitation laser. The nanostars have been synthesized using the chemical reduction of Ag+ ions by trisodium citrate. This is the first research reporting the synthesis of AgNS using only trisodium citrate as a reducing and stabilizing agent. The key elements of this original synthesis procedure are rapid hydrothermal synthesis of silver nanostars followed by a cooling down procedure by immersion in a water bath. The synthesis was performed in a sealed bottom flask homogenously heated and brought to a boil in a microwave oven. After 60 s, the colloidal solution was cooled down to room temperature by immersion in a water bath at 35 °C. The as-synthesized AgNS were washed by centrifugation and used for SERS analysis of test molecules (methylene blue) as well as biological analytes: pharmaceutical compounds with various Raman cross sections (doxorubicin, atenolol & metoprolol), cell lysates and amino acids (methionine & cysteine). UV-Vis absorption spectroscopy, (Scanning) Transmission Electron Microscopy ((S)TEM) and Atomic Force Microscopy (AFM) have been employed for investigating nanostars' physical properties.
Collapse
Affiliation(s)
- Radu Nicolae Revnic
- Department of Family Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 2-4 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Gabriela Fabiola Știufiuc
- Faculty of Physics, “Babes-Bolyai” University, 1 Kogalniceanu Street, 400084 Cluj-Napoca, Romania
- Department of BioNanoPhysics, MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 4-6 Pasteur Street, 400337 Cluj-Napoca, Romania
| | - Valentin Toma
- Department of BioNanoPhysics, MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 4-6 Pasteur Street, 400337 Cluj-Napoca, Romania
| | - Anca Onaciu
- Department of BioNanoPhysics, MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 4-6 Pasteur Street, 400337 Cluj-Napoca, Romania
- Department of Pharmaceutical Physics & Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Alin Moldovan
- Department of BioNanoPhysics, MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 4-6 Pasteur Street, 400337 Cluj-Napoca, Romania
| | - Adrian Bogdan Țigu
- Department of Translational Medicine, MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 4-6 Pasteur Street, 400337 Cluj-Napoca, Romania
| | - Eva Fischer-Fodor
- Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania
| | - Romulus Tetean
- Faculty of Physics, “Babes-Bolyai” University, 1 Kogalniceanu Street, 400084 Cluj-Napoca, Romania
| | - Emil Burzo
- Faculty of Physics, “Babes-Bolyai” University, 1 Kogalniceanu Street, 400084 Cluj-Napoca, Romania
| | - Rareș Ionuț Știufiuc
- Department of BioNanoPhysics, MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 4-6 Pasteur Street, 400337 Cluj-Napoca, Romania
- Department of Pharmaceutical Physics & Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Abstract
Noble-metal nanoparticles (NMNPs), with their outstanding properties, have been arousing the interest of scientists for centuries. Although our knowledge of them is much more significant today, and we can obtain NMNPs in various sizes, shapes, and compositions, our interest in them has not waned. When talking about noble metals, gold, silver, and platinum come to mind first. Still, we cannot forget about elements belonging to the so-called platinum group, such as ruthenium, rhodium, palladium, osmium, and iridium, whose physical and chemical properties are very similar to those of platinum. It makes them highly demanded and widely used in various applications. This review presents current knowledge on the preparation of all noble metals in the form of nanoparticles and their assembling with carbon supports. We focused on the catalytic applications of these materials in the fuel-cell field. Furthermore, the influence of supporting materials on the electrocatalytic activity, stability, and selectivity of noble-metal-based catalysts is discussed.
Collapse
|
3
|
Choudhary A, Singh S, Ravichandiran V. Toxicity, preparation methods and applications of Silver Nanoparticles: an update. Toxicol Mech Methods 2022; 32:650-661. [DOI: 10.1080/15376516.2022.2064257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anuj Choudhary
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - V. Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| |
Collapse
|
4
|
Behera A, Pradhan SP, Ahmed FK, Abd-Elsalam KA. Enzymatic synthesis of silver nanoparticles: Mechanisms and applications. GREEN SYNTHESIS OF SILVER NANOMATERIALS 2022:699-756. [DOI: 10.1016/b978-0-12-824508-8.00030-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
5
|
Khabarov K, Nouraldeen M, Tikhonov S, Lizunova A, Seraya O, Filalova E, Ivanov V. Comparison of Aerosol Pt, Au and Ag Nanoparticles Agglomerates Laser Sintering. MATERIALS (BASEL, SWITZERLAND) 2021; 15:227. [PMID: 35009372 PMCID: PMC8745795 DOI: 10.3390/ma15010227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
In this paper, we investigated the interaction of nanosecond pulsed-periodic infrared (IR) laser radiation at a 50 and 500 Hz repetition rate with aerosol platinum (Pt) and silver (Ag) nanoparticles agglomerates obtained in a spark discharge. Results showed the complete transformation of Pt dendrite-like agglomerates with sizes of 300 nm into individual spherical nanoparticles directly in a gas flow under 1053 nm laser pulses with energy density 3.5 mJ/cm2. Notably, the critical energy density required for this process depended on the size distribution and extinction of agglomerates nanoparticles. Based on the extinction cross-section spectra results, Ag nanoparticles exhibit a weaker extinction in the IR region in contrast to Pt, so they were not completely modified even under the pulses with energy density up to 12.7 mJ/cm2. The obtained results for Ag and Pt laser sintering were compared with corresponding modification of gold (Au) nanoparticles studied in our previous work. Here we considered the sintering mechanisms for Ag, Pt and Au nanoparticles agglomerates in the aerosol phase and proposed the model of their laser sintering based on one-stage for Pt agglomerates and two-stage shrinkage processes for Au and Ag agglomerates.
Collapse
|
6
|
|
7
|
Loiseau A, Asila V, Boitel-Aullen G, Lam M, Salmain M, Boujday S. Silver-Based Plasmonic Nanoparticles for and Their Use in Biosensing. BIOSENSORS-BASEL 2019; 9:bios9020078. [PMID: 31185689 PMCID: PMC6627098 DOI: 10.3390/bios9020078] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022]
Abstract
The localized surface plasmon resonance (LSPR) property of metallic nanoparticles is widely exploited for chemical and biological sensing. Selective biosensing of molecules using functionalized nanoparticles has become a major research interdisciplinary area between chemistry, biology and material science. Noble metals, especially gold (Au) and silver (Ag) nanoparticles, exhibit unique and tunable plasmonic properties; the control over these metal nanostructures size and shape allows manipulating their LSPR and their response to the local environment. In this review, we will focus on Ag-based nanoparticles, a metal that has probably played the most important role in the development of the latest plasmonic applications, owing to its unique properties. We will first browse the methods for AgNPs synthesis allowing for controlled size, uniformity and shape. Ag-based biosensing is often performed with coated particles; therefore, in a second part, we will explore various coating strategies (organics, polymers, and inorganics) and their influence on coated-AgNPs properties. The third part will be devoted to the combination of gold and silver for plasmonic biosensing, in particular the use of mixed Ag and AuNPs, i.e., AgAu alloys or Ag-Au core@shell nanoparticles will be outlined. In the last part, selected examples of Ag and AgAu-based plasmonic biosensors will be presented.
Collapse
Affiliation(s)
- Alexis Loiseau
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 place Jussieu, F-75005 Paris, France.
| | - Victoire Asila
- Sorbonne Université, Faculté des Sciences et Ingénierie, Master de Chimie, Profil MatNanoBio, 4 place Jussieu, F-75005 Paris, France.
| | - Gabriel Boitel-Aullen
- Sorbonne Université, Faculté des Sciences et Ingénierie, Master de Chimie, Profil MatNanoBio, 4 place Jussieu, F-75005 Paris, France.
| | - Mylan Lam
- Sorbonne Université, Faculté des Sciences et Ingénierie, Master de Chimie, Profil MatNanoBio, 4 place Jussieu, F-75005 Paris, France.
| | - Michèle Salmain
- Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, CNRS, 4 place Jussieu, F-75005 Paris, France.
| | - Souhir Boujday
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 place Jussieu, F-75005 Paris, France.
| |
Collapse
|
8
|
Mukherji S, Bharti S, Shukla G, Mukherji S. Synthesis and characterization of size- and shape-controlled silver nanoparticles. PHYSICAL SCIENCES REVIEWS 2019. [DOI: 10.1515/psr-2017-0082] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Silver nanoparticles (AgNPs) have application potential in diverse areas ranging from wound healing to catalysis and sensing. The possibility for optimizing the physical, chemical and optical properties for an application by tailoring the shape and size of silver nanoparticles has motived much research on methods for synthesis of size- and shape-controlled AgNPs. The shape and size of AgNPs are reported to vary depending on choice of the Ag precursor salt, reducing agent, stabilizing agent and on the synthesis technique used. This chapter provides a detailed review on various synthesis approaches that may be used for synthesis of AgNPs of desired size and shape. Silver nanoparticles may be synthesized using diverse routes, including, physical, chemical, photochemical, biological and microwave -based techniques. Synthesis of AgNPs of diverse shapes, such as, nanospheres, nanorods, nanobars, nanoprisms, decahedral nanoparticles and triangular bipyramids is also discussed for chemical-, photochemical- and microwave-based synthesis routes. The choice of chemicals used for reduction and stabilization of nanoparticles is found to influence their shape and size significantly. A discussion on the mechanism of synthesis of AgNPs through nucleation and growth processes is discussed for AgNPs of varying shape and sizes so as to provide an insight on the various synthesis routes. Techniques, such as, electron microscopy, spectroscopy, and crystallography that can be used for characterizing the AgNPs formed in terms of their shape, sizes, crystal structure and chemical composition are also discussed in this chapter.
Graphical Abstract:
Collapse
|
9
|
Mikhailov OV. Elemental silver nano-sized crystals: various geometric forms and their specific growth parameters. CRYSTALLOGR REV 2018. [DOI: 10.1080/0889311x.2018.1553165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Oleg V. Mikhailov
- Analytical Chemistry, Certification and Quality Management Department, Kazan National Research Technological University, Kazan, Russia
| |
Collapse
|
10
|
Mikhailov OV. Progress in the synthesis of Ag nanoparticles having manifold geometric forms. REV INORG CHEM 2018. [DOI: 10.1515/revic-2017-0016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe data on the specific synthesis of elemental silver nanoparticles having the forms of various geometric bodies (pseudo spherical, prismatic, cubic, trigonal-pyramidal, etc.), obtained by various chemical, physicochemical, and biological methods, have been systematized and generalized. This review covers mainly publications published in the current 21st century.
Collapse
Affiliation(s)
- Oleg V. Mikhailov
- Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
11
|
Belattmania Z, Bentiss F, Jama C, Barakate M, Katif C, Reani A, Sabour B. Biosynthesis and Characterization of Silver Nanoparticles Using Sodium Alginate from the Invasive Macroalga Sargassum muticum. BIONANOSCIENCE 2018. [DOI: 10.1007/s12668-018-0518-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Shao Y, Wu C, Wu T, Yuan C, Chen S, Ding T, Ye X, Hu Y. Green synthesis of sodium alginate-silver nanoparticles and their antibacterial activity. Int J Biol Macromol 2018; 111:1281-1292. [PMID: 29307808 DOI: 10.1016/j.ijbiomac.2018.01.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/23/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
Abstract
Silver nanoparticles (AgNPs) were synthesized by a new 'green chemistry' method that uses sodium alginate (Na-Alg) and ascorbic acid (Vc) as the stabilizing and reducing agents, respectively. A possible mechanism involved in the reduction and stabilization of nanoparticles was investigated. The effect of reaction conditions such as pH, the addition of AgNO3 and Vc, ultrasonication treatments on the synthesis of AgNPs was investigated. The formation of AgNPs was confirmed by UV-Vis spectroscopy and characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results indicated that the size and distribution of AgNPs were significantly affected by reaction parameters. XRD and TEM analysis confirmed the formation of spherical and face-centred cubic nanoparticles. They showed strong antibacterial activity against Staphylococcus aureus and Escherichia coli due to cell death caused by the increase in membrane permeability and disruption of bacterial wall integrity. It indicated that Na-Alg-AgNPs is a potential food packaging material.
Collapse
Affiliation(s)
- Ying Shao
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Chunhua Wu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Tiantian Wu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Chunhong Yuan
- Department of Food Production and Environmental Management, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Shiguo Chen
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Tian Ding
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yaqin Hu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
Huang S, Wang J, Zhang Y, Yu Z, Qi C. Quaternized Carboxymethyl Chitosan-Based Silver Nanoparticles Hybrid: Microwave-Assisted Synthesis, Characterization and Antibacterial Activity. NANOMATERIALS 2016; 6:nano6060118. [PMID: 28335246 PMCID: PMC5302637 DOI: 10.3390/nano6060118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 05/24/2016] [Accepted: 06/01/2016] [Indexed: 12/13/2022]
Abstract
A facile, efficient, and eco-friendly approach for the preparation of uniform silver nanoparticles (Ag NPs) was developed. The synthesis was conducted in an aqueous medium exposed to microwave irradiation for 8 min, using laboratory-prepared, water-soluble quaternized carboxymethyl chitosan (QCMC) as a chemical reducer and stabilizer and silver nitrate as the silver source. The structure of the prepared QCMC was characterized using Fourier transform infrared (FT-IR) and 1H nuclear magnetic resonance (NMR). The formation, size distribution, and dispersion of the Ag NPs in the QCMC matrix were determined using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-Vis), transmission electron microscopy (TEM), and field emission scanning electron microscope (FESEM) analysis, and the thermal stability and antibacterial properties of the synthesized QCMC-based Ag NPs composite (QCMC-Ag) were also explored. The results revealed that (1) QCMC was successfully prepared by grafting quaternary ammonium groups onto carboxymethyl chitosan (CMC) chains under microwave irradiation in water for 90 min and this substitution appeared to have occurred at -NH2 sites on C2 position of the pyranoid ring; (2) uniform and stable spherical Ag NPs could be synthesized when QCMC was used as the reducing and stabilizing agent; (3) Ag NPs were well dispersed in the QCMC matrix with a narrow size distribiution in the range of 17–31 nm without aggregation; and (4) due to the presence of Ag NPs, the thermal stability and antibacterial activity of QCMC-Ag were dramatically improved relative to QCMC.
Collapse
Affiliation(s)
- Siqi Huang
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China.
| | - Jing Wang
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China.
| | - Yang Zhang
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China.
| | - Zhiming Yu
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China.
| | - Chusheng Qi
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
14
|
Roy E, Patra S, Saha S, Madhuri R, Sharma PK. Retracted Article: Shape-specific silver nanoparticles prepared by microwave-assisted green synthesis using pomegranate juice for bacterial inactivation and removal. RSC Adv 2015. [DOI: 10.1039/c5ra18575k] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Green synthesis of different shaped-AgNPs & their antibacterial activity.
Collapse
Affiliation(s)
- Ekta Roy
- Department of Applied Chemistry
- Indian School of Mines
- Dhanbad
- India
| | - Santanu Patra
- Department of Applied Chemistry
- Indian School of Mines
- Dhanbad
- India
| | - Shubham Saha
- Department of Applied Chemistry
- Indian School of Mines
- Dhanbad
- India
| | - Rashmi Madhuri
- Department of Applied Chemistry
- Indian School of Mines
- Dhanbad
- India
| | - Prashant K. Sharma
- Functional Nanomaterials Research Laboratory
- Department of Applied Physics
- Indian School of Mines
- Dhanbad
- India
| |
Collapse
|
15
|
Dastjerdi R, Noorian S. Polysiloxane features on different nanostructure geometries; nano-wires and nano-ribbons. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.03.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Stassi S, Cauda V, Canavese G, Manfredi D, Chiodoni A, Pirri CF. Shape‐Controlled Synthesis of Silver Nature‐Like Spiky Particles for Piezoresistive Sensor Applications. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stefano Stassi
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy, http://www.polito.it
| | - Valentina Cauda
- Center for Space Human Robotics@PoliTo, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino, Italy http://shr.iit.it/
| | - Giancarlo Canavese
- Center for Space Human Robotics@PoliTo, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino, Italy http://shr.iit.it/
| | - Diego Manfredi
- Center for Space Human Robotics@PoliTo, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino, Italy http://shr.iit.it/
| | - Angelica Chiodoni
- Center for Space Human Robotics@PoliTo, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino, Italy http://shr.iit.it/
| | - Candido Fabrizio Pirri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy, http://www.polito.it
- Center for Space Human Robotics@PoliTo, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino, Italy http://shr.iit.it/
| |
Collapse
|
17
|
Zhao X, Xia Y, Li Q, Ma X, Quan F, Geng C, Han Z. Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial activity. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2013.12.008] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Chumachenko V, Kutsevol N, Rawiso M, Schmutz M, Blanck C. In situ formation of silver nanoparticles in linear and branched polyelectrolyte matrices using various reducing agents. NANOSCALE RESEARCH LETTERS 2014; 9:164. [PMID: 24708898 PMCID: PMC3996903 DOI: 10.1186/1556-276x-9-164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/18/2014] [Indexed: 05/08/2023]
Abstract
Silver nanoparticles were synthesized in linear and branched polyelectrolyte matrices using different reductants and distinct synthesis conditions. The effect of the host hydrolyzed linear polyacrylamide and star-like copolymers dextran-graft-polyacrylamide of various compactness, the nature of the reductant, and temperature were studied on in situ synthesis of silver sols. The related nanosystems were analyzed by high-resolution transmission electron microscopy and UV-vis absorption spectrophotometry. It was established that the internal structure of the polymer matrix as well as the nature of the reductant determines the process of the silver nanoparticle formation. Specifically, the branched polymer matrices were much more efficient than the linear ones for stable nanosystem preparation.
Collapse
Affiliation(s)
- Vasyl Chumachenko
- Department of Chemistry, Kiev Taras Shevchenko National University, 60 Volodymyrska, Kiev UA-01033, Ukraine
| | - Nataliya Kutsevol
- Department of Chemistry, Kiev Taras Shevchenko National University, 60 Volodymyrska, Kiev UA-01033, Ukraine
| | - Michel Rawiso
- Institut Charles Sadron (CNRS-UdS), 23 rue du Loess-BP 84047, 67034 Strasbourg, Cedex 2, France
| | - Marc Schmutz
- Institut Charles Sadron (CNRS-UdS), 23 rue du Loess-BP 84047, 67034 Strasbourg, Cedex 2, France
| | - Christian Blanck
- Institut Charles Sadron (CNRS-UdS), 23 rue du Loess-BP 84047, 67034 Strasbourg, Cedex 2, France
| |
Collapse
|