1
|
Kim J, Yu H, Chang PS. Enzymatic grafting of 5-O-succinyl erythorbyl myristate onto chitosan to improve its emulsifying properties. Carbohydr Polym 2025; 351:123093. [PMID: 39779010 DOI: 10.1016/j.carbpol.2024.123093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/08/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
Chitosan (CS) is a versatile polysaccharide with numerous inherent biological activity, while the lack of amphiphilicity limits its application in emulsion-based systems. In this study, erythorbyl myristate (EM) with interfacial activity was chemically modified to 5-O-succinyl EM (EMS) and grafted onto CS to improve the emulsifying properties. The grafting reaction was conducted by the catalysis of protease, with the progress of the reaction monitored by HPLC analysis and UV absorbance measurement. Structural identification by FTIR and two-dimensional 1H13C HSQC NMR spectroscopy confirmed the protease-catalyzed grafting of EMS onto CS. The grafting ratio of synthesized EMS-grafted CS (EMS-g-CS) was determined to be 13.30 ± 0.60 % according to the UV absorbance measurement and 1H NMR analysis. Evaluation of the emulsifying properties of EMS-g-CS revealed that the grafting reaction significantly enhanced both emulsifying activity and emulsion stability, compared to the CS, EM, and their mixture. The oil-in-water emulsion stabilized with 1 % (w/v) EMS-g-CS exhibited emulsifying activity index of 6.03 ± 0.13 m2/g with homogeneous and stable droplet size distribution and exhibited a turbiscan stability index of 2.05 after 3 days. These findings suggested that EMS-g-CS synthesized via the chemoenzymatic process can be a promising polymeric emulsifier for utilization in emulsion-based systems.
Collapse
Affiliation(s)
- Jihoon Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunjong Yu
- Major of Food Science and Biotechnology, Division of Bio-Convergence, Kyonggi University, Suwon 16227, Republic of Korea
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Manaprasertsak A, Malmberg P, Leepasert T, Karpkird T. Imaging the distribution of DMPBD and terpinen-4-ol inclusion complexes with 2-hydroxypropyl-β-cyclodextrin by using TOF-SIMS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:84-89. [PMID: 33300895 DOI: 10.1039/d0ay02018d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The distribution of terpinen-4-ol (TP4ol) and DMPBD inclusion complexes with 2-hydroxypropyl-β-cyclodextrin (HPbCD) in human skin has been investigated using the TOF-SIMS technique. TP4ol and DMPBD have been found to be major components of Zingiber cassumunar Roxb. (Plai) oil extracted by steam distillation. The results mainly show accumulation of TP4ol and DMPBD inclusion complexes with HPbCD in the epidermis and dermis whereas these two compounds without cyclodextrin cannot penetrate into the epidermis. This approach can be expanded for investigation of anti-inflammatory action and relief of muscle pain.
Collapse
Affiliation(s)
- Auraya Manaprasertsak
- Department of Chemistry, Faculty of Science, Kasetsart University, 10900 Bangkok, Thailand.
| | | | | | | |
Collapse
|
3
|
Budinčić JM, Petrović L, Đekić L, Fraj J, Bučko S, Katona J, Spasojević L. Study of vitamin E microencapsulation and controlled release from chitosan/sodium lauryl ether sulfate microcapsules. Carbohydr Polym 2021; 251:116988. [PMID: 33142560 DOI: 10.1016/j.carbpol.2020.116988] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 11/17/2022]
Abstract
Potential benefit of microencapsulation is its ability to deliver and protect incorporated ingredients such as vitamin E. Microcapsule wall properties can be changed by adding of coss-linking agents that are usually considered toxic for application. The microcapsules were prepared by a spray-drying technique using coacervation method, by depositing the coacervate formed in the mixture of chitosan and sodium lauryl ether sulfate to the oil/water interface. All obtained microcapsules suspensions had slightly lower mean diameter compared to the starting emulsion (6.85 ± 0.213 μm), which shows their good stability during the drying process. The choice and absence of cross-linking agents had influence on kinetics of vitamin E release. Encapsulation efficiency of microcapsules without cross-linking agent was 73.17 ± 0.64 %. This study avoided the use of aldehydes as cross-linking agents and found that chitosan/SLES complex can be used as wall material for the microencapsulation of hydrophobic active molecules in cosmetic industry.
Collapse
Affiliation(s)
- Jelena Milinković Budinčić
- Faculty of Technology Novi Sad, University of Novi Sad, Department of Biotechnology and Pharmaceutical Engineering, Serbia.
| | - Lidija Petrović
- Faculty of Technology Novi Sad, University of Novi Sad, Department of Biotechnology and Pharmaceutical Engineering, Serbia
| | - Ljiljana Đekić
- Faculty of Pharmacy, University of Belgrade, Department of Pharmaceutical Technology and Cosmetology, Serbia
| | - Jadranka Fraj
- Faculty of Technology Novi Sad, University of Novi Sad, Department of Biotechnology and Pharmaceutical Engineering, Serbia
| | - Sandra Bučko
- Faculty of Technology Novi Sad, University of Novi Sad, Department of Biotechnology and Pharmaceutical Engineering, Serbia
| | - Jaroslav Katona
- Faculty of Technology Novi Sad, University of Novi Sad, Department of Biotechnology and Pharmaceutical Engineering, Serbia
| | - Ljiljana Spasojević
- Faculty of Technology Novi Sad, University of Novi Sad, Department of Biotechnology and Pharmaceutical Engineering, Serbia
| |
Collapse
|
4
|
Electrospun nanofibers of poly(vinyl alcohol) and chitosan-based emulsions functionalized with cabreuva essential oil. Int J Biol Macromol 2020; 160:307-318. [DOI: 10.1016/j.ijbiomac.2020.05.096] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/03/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022]
|
5
|
Chitosan/carboxymethylcellulose-stabilized poly(lactide-co-glycolide) particles as bio-based drug delivery carriers. Carbohydr Polym 2020; 242:116417. [PMID: 32564826 DOI: 10.1016/j.carbpol.2020.116417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/20/2020] [Accepted: 05/01/2020] [Indexed: 12/15/2022]
Abstract
Poly(lactide-co-glycolide) (PLGA) colloidal particles stabilized by complexes of two oppositely charged polysaccharides, chitosan (cationic, CS) and sodium carboxymethylcellulose (anionic, NaCMC), were fabricated. Dichloromethane containing dissolved PLGA was first emulsified in an aqueous phase containing mixtures of CS and NaCMC. Evaporation of dichloromethane from the resulting emulsion led to CS/NaCMC-covered-PLGA particles. CS and NaCMC contents affected the short-term stability of PLGA particles and also their intrinsic characteristics. The particles displayed pH-dependent characteristic. Zeta potential varied from +54 to -50 mV when pH was varied from 3 to 10. CS/NaCMC-covered-PLGA particles showed colloidal stability, over a wider pH range as compared to CS-covered-PLGA particles. Curcumin, a model hydrophobic drug, was encapsulated into the particles up to 10 wt% of PLGA. The CS/NaCMC-covered-PLGA particles loaded with curcumin showed delayed release in mildly acidic conditions and faster release in neutral and basic conditions. Cytotoxicity experiments were carried out with human colorectal carcinoma cells.
Collapse
|
6
|
Luesakul U, Puthong S, Sansanaphongpricha K, Muangsin N. Quaternized chitosan-coated nanoemulsions: A novel platform for improving the stability, anti-inflammatory, anti-cancer and transdermal properties of Plai extract. Carbohydr Polym 2020; 230:115625. [PMID: 31887856 DOI: 10.1016/j.carbpol.2019.115625] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/24/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022]
|
7
|
Lupo N, Jalil A, Nazir I, Gust R, Bernkop-Schnürch A. In vitro evaluation of intravesical mucoadhesive self-emulsifying drug delivery systems. Int J Pharm 2019; 564:180-187. [PMID: 30981873 DOI: 10.1016/j.ijpharm.2019.04.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/29/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022]
Abstract
Intravesical mucoadhesive self-emulsifying drug delivery system (SEDDS) have been developed via synthesis and incorporation of S-protected chitosan CS-MNA into SEDDS. N-acetyl cysteine-6-mercaptonicotinamide (NAC-6-MNA) was synthetized via disulphide exchange reaction between N-acetyl cysteine and 6-mercaptonicotinamide dimer. NAC-6-MNA was attached to chitosan (CS) via carbodiimide mediated amide bond formation. The S-protected chitosan (CS-MNA) and chitosan (CS) were complexed with sodium dodecyl sulfate (CS-SDS and CS-MNA-SDS) and incorporated in SEDDS at a concentration of 1% (m/m). SEDDS, SEDDS-CS-SDS and SEDDS-CS-MNA-SDS were characterized regarding size and zeta potential. 6-MNA release from SEDDS-CS-MNA-SDS in presence of glutathione was evaluated. Mucoadhesive properties of these novel formulations were assessed via rheology measurements and residence time evaluation on porcine bladder. Cytotoxicity of formulations was determined on porcine bladder. S-protected chitosan displayed 465.42 ± 75.64 µmol of NAC-6-MNA per gram of polymer. SEDDS and SEDDS-CS-SDS and SEDDS-CS-MNA-SDS displayed a size of 22.5 ± 0.9, 37.4 ± 0.1 and 98.5 ± 5.7 nm at a concentration of 20% (m/v) in simulated urine pH 6.2, and a zeta potential of -5.1 ± 0.2, -1.6 ± 0.1 and -1.4 ± 0.2 mV at a concentration of 1% (m/v) in water at pH 6, respectively. 80% of MNA was released from SEDDS-CS-MNA-SDS in presence of glutathione. Viscosity of SEDDS-CS-SDS/mucus and SEDDS-CS-MNA-SDS/mucus was 6- and 18-fold higher than SEDDS/mucus after 90 min incubation. 2.6%, 5.8% and 14% of SEDDS, SEDDS-CS-SDS and SEDDS-CS-MNA-SDS remained on bladder mucosa within 120 min, respectively. No pronounced bladder cytotoxicity was observed in presence of 0.5% (m/v) formulations. According to these results, SEDDS-CS-MNA-SDS might be a promising carrier for intravesical drug administration.
Collapse
Affiliation(s)
- Noemi Lupo
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, Austria
| | - Aamir Jalil
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, Austria
| | - Imran Nazir
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, Austria; Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Ronald Gust
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, Austria.
| |
Collapse
|
8
|
Interfacial and emulsifying properties of chitosan/sodium lauryl ether sulfate system. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.06.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Clavijo-Romero A, Quintanilla-Carvajal MX, Ruiz Y. Stability and antimicrobial activity of eucalyptus essential oil emulsions. FOOD SCI TECHNOL INT 2018; 25:24-37. [PMID: 30149730 DOI: 10.1177/1082013218794841] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We evaluated various formulations of oil-in-water emulsions prepared from eucalyptus essential oil, for their stability and antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. These formulations were developed using a response surface experimental design and analyzed with Design-Expert® 10 software. The emulsions were prepared in a colloid mill, and emulsion characterization was performed using the zeta ( ζ)-potential, droplet size distribution, and phase separation. The antimicrobial effects were assessed by death kinetics. The droplet size and ζ-potential of the 16 emulsions ranged from 1.071 to 1.865 µm (based on Feret's diameter) and -34.8 to -24 mV, respectively. Three formulations (14, 15, and 16) demonstrated the highest stability parameters (no phase separation) during the 28 days of evaluation. Eucalyptus essential oil emulsions exhibited antimicrobial activity against E. coli, S. aureus, and P. aeruginosa in less than 1 min.
Collapse
Affiliation(s)
| | - María X Quintanilla-Carvajal
- 2 Grupo de Procesos Agroindustriales, Ingeniería de Producción Agroindustrial, Universidad de La Sabana, Chía, Colombia
| | - Yolanda Ruiz
- 2 Grupo de Procesos Agroindustriales, Ingeniería de Producción Agroindustrial, Universidad de La Sabana, Chía, Colombia
| |
Collapse
|
10
|
Effects of environmental factors on the physical stability of pickering-emulsions stabilized by chitosan particles. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.04.023] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Priprem A, Janpim K, Nualkaew S, Mahakunakorn P. Topical Niosome Gel of Zingiber cassumunar Roxb. Extract for Anti-inflammatory Activity Enhanced Skin Permeation and Stability of Compound D. AAPS PharmSciTech 2016; 17:631-9. [PMID: 26292930 DOI: 10.1208/s12249-015-0376-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/20/2015] [Indexed: 01/22/2023] Open
Abstract
An extract of Zingiber cassumunar Roxb. (ZC) was encapsulated in niosomes of which a topical gel was formed. (E)-4-(3',4'-dimethoxyphenyl)but-3-en-1-ol or compound D detected by a gradient HPLC was employed as the marker and its degradation determined to follow zero-order kinetics. Niosomes significantly retarded thermal-accelerated decomposition of compound D in the gel (p < 0.05) but did not change the activation energy of compound D. Niosomes enhanced in vitro permeation rate of compound D from the gel. Topical applications of ZC noisome gel gave a faster change in tail flick latency than piroxicam gel and hydrocortisone cream (p < 0.05) while there were insignificant differences in anti-inflammatory activity up to 6 h using croton oil-induced ear edema model in mice (p > 0.05). Thus, encapsulation of ZC extract in niosomes enhanced chemical stability and skin permeation with comparable topical anti-inflammatory effects to steroid and NSAID.
Collapse
Affiliation(s)
- Aroonsri Priprem
- Division of Pharmaceutical Technology, Faculty of Pharmaceutical Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Khwanhatai Janpim
- Program in Pharmaceutical Chemistry and Natural Products, Faculty of Pharmaceutical Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Somsak Nualkaew
- Division of Pharmacognosy and Medicinal Chemistry, Faculty of Pharmacy, Mahasarakham University, Mahasarakham, 44150, Thailand
| | - Pramote Mahakunakorn
- Division of Toxicology, Faculty of Pharmaceutical Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
12
|
Comparative study of gel emulsification and direct mechanical emulsification methods. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2015.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Chatterjee S, Judeh ZM. Impact of encapsulation on the physicochemical properties and gastrointestinal stability of fish oil. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Zhang S, Zhou Y, Yang C. Pickering emulsions stabilized by the complex of polystyrene particles and chitosan. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.06.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Gumus ZP, Guler E, Demir B, Barlas FB, Yavuz M, Colpankan D, Senisik AM, Teksoz S, Unak P, Coskunol H, Timur S. Herbal infusions of black seed and wheat germ oil: Their chemical profiles, in vitro bio-investigations and effective formulations as Phyto-Nanoemulsions. Colloids Surf B Biointerfaces 2015; 133:73-80. [PMID: 26087391 DOI: 10.1016/j.colsurfb.2015.05.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/21/2015] [Accepted: 05/26/2015] [Indexed: 01/11/2023]
Abstract
The reported studies related to black seed oil (BSO) and wheat germ oil (WGO) have illustrated that they have a wide range of biological activities. Therefore, enhancing the amount of bio-active compounds that caused higher cell based anti-oxidative effect as well as cell proliferation, etc. in seed oils, infusion of crude plant material has been gained importance as a traditional technique. Herein, we accomplished the infusion of Calendula flowers that also contains many phyto-constituents into BSO and WGO. After the infusion of oils, the change of phytochemical amount was investigated and evaluated according to the oils by chromatography, radical scavenging activity. Subsequently, for investigating the biological impact upon live cells, cytotoxicity, cell-based antioxidant capacity, wound healing and radioprotective activity were tested with monkey kidney fibroblast like cells (Vero) and HaCaT keratinocytes. In vitro cell based experiments (wound healing and radioprotective activity) confirmed that Calendula infused BSO and WGO have greater bio-activity when compared to those plain forms. The herbal oils prepared with an effective extraction technique were incorporated into nanoemulsion systems which will be then called as 'Phyto-Nanoemulsion'. After herbal oil biomolecules were encapsulated into nanoemulsion based delivery systems, the designed formulations were investigated in terms of biological activities. In conclusion, these preparations could be a good candidate as a part of dermal cosmetic products or food supplements which have the therapeutic efficiency, especially after radio- or chemotherapy.
Collapse
Affiliation(s)
- Z Pinar Gumus
- Institute of Drug Abuse Toxicology & Pharmaceutical Sciences, Ege University, 35100 Bornova, Izmir, Turkey
| | - Emine Guler
- Institute of Drug Abuse Toxicology & Pharmaceutical Sciences, Ege University, 35100 Bornova, Izmir, Turkey; Faculty of Science, Biochemistry Department, Ege University, 35100 Bornova, Izmir, Turkey
| | - Bilal Demir
- Faculty of Science, Biochemistry Department, Ege University, 35100 Bornova, Izmir, Turkey
| | - F Baris Barlas
- Faculty of Science, Biochemistry Department, Ege University, 35100 Bornova, Izmir, Turkey
| | - Murat Yavuz
- Faculty of Science, Chemistry Department, Dicle University, 21280 Diyarbakir, Turkey
| | - Dilara Colpankan
- Faculty of Science, Biochemistry Department, Ege University, 35100 Bornova, Izmir, Turkey
| | | | - Serap Teksoz
- Institute of Nuclear Sciences, Ege University, 35100 Bornova, Izmir, Turkey
| | - Perihan Unak
- Institute of Nuclear Sciences, Ege University, 35100 Bornova, Izmir, Turkey
| | - Hakan Coskunol
- Institute of Drug Abuse Toxicology & Pharmaceutical Sciences, Ege University, 35100 Bornova, Izmir, Turkey; School of Medicine, Department of Psychiatry, Ege University, 35100 Bornova, Izmir, Turkey; Ege LS, Ege University, 35100 Bornova, Izmir, Turkey
| | - Suna Timur
- Institute of Drug Abuse Toxicology & Pharmaceutical Sciences, Ege University, 35100 Bornova, Izmir, Turkey; Faculty of Science, Biochemistry Department, Ege University, 35100 Bornova, Izmir, Turkey.
| |
Collapse
|
16
|
Chiappisi L, Gradzielski M. Co-assembly in chitosan-surfactant mixtures: thermodynamics, structures, interfacial properties and applications. Adv Colloid Interface Sci 2015; 220:92-107. [PMID: 25865361 DOI: 10.1016/j.cis.2015.03.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/23/2015] [Accepted: 03/23/2015] [Indexed: 01/23/2023]
Abstract
In this review, different aspects characterizing chitosan-surfactant mixtures are summarized and compared. Chitosan is a bioderived cationic polysaccharide that finds wide-ranged applications in various field, e.g., medical or food industry, in which synergistic effects with surfactant can play a fundamental role. In particular, the behavior of chitosan interacting with strong and weak anionic, nonionic as well as cationic surfactants is reviewed. We put a focus on oppositely charged systems, as they exhibit the most interesting features. In that context, we discuss the thermodynamic description of the interaction and in particular the structural changes as they occur as a function of the mixed systems and external parameters. Moreover, peculiar properties of chitosan coated phospholipid vesicles are summarized. Finally, their co-assembly at interfaces is briefly reviewed. Despite the behavior of the mentioned systems might strongly differ, resulting in a high variety of properties, few general rules can be pointed out which improve the understanding of such complex systems.
Collapse
|
17
|
Chatterjee S, Judeh ZM. Encapsulation of fish oil with N-stearoyl O-butylglyceryl chitosan using membrane and ultrasonic emulsification processes. Carbohydr Polym 2015; 123:432-42. [DOI: 10.1016/j.carbpol.2015.01.072] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 12/18/2014] [Accepted: 01/30/2015] [Indexed: 01/15/2023]
|