1
|
Bhatt S, Smethurst PA, Garnier G, Routh AF. Front-Tracking and Gelation in Sessile Droplet Suspensions: What Can They Tell Us about Human Blood? Biomacromolecules 2024. [PMID: 39486045 DOI: 10.1021/acs.biomac.4c00753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Recently developed imaging techniques have been used to examine the redistribution of human red blood cells and comparator particles dispersed in carrier fluids within evaporating droplets. We demonstrate that progressive gelation initiates along an annular front, isolating a central pool that briefly remains open to particulate advection before gelation completes across the droplet center. Transition to an elastic solid is evidenced by cracking initiating proximal to front locations. The arrested flow of cellular components, termed a "halted front", has been investigated using a time-lapse analysis "signature". The presence of a deformable biocellular component is seen to be essential for front-halting. We show a dependence of front-halt radius on cell volume-fraction, potentially offering a low-cost means of measuring hematocrit. A simple model yields an estimate of the gel zero-shear yield-stress. This approach to understanding the drying dynamics of blood droplets may lead to a new generation of point-of-care diagnostics.
Collapse
Affiliation(s)
- Sheila Bhatt
- Institute for Energy and Environmental Flows, University of Cambridge, Bullard Laboratories, Madingley Road, Cambridge, CB3 0EZ, United Kingdom
| | - Peter A Smethurst
- Component Development Laboratory, NHS Blood and Transplant, Cambridge Donor Centre, Cambridge, CB2 0PT, United Kingdom
| | - Gil Garnier
- BioPRIA, Department of Chemical Engineering, Monash University, Clayton VIC 31688, Australia
| | - Alexander F Routh
- Institute for Energy and Environmental Flows, University of Cambridge, Bullard Laboratories, Madingley Road, Cambridge, CB3 0EZ, United Kingdom
| |
Collapse
|
2
|
Hidalgo RBP, Molina-Courtois JN, Carreón YJP, Díaz-Hernández O, González-Gutiérrez J. Dried blood drops on vertical surfaces. Colloids Surf B Biointerfaces 2024; 234:113716. [PMID: 38160474 DOI: 10.1016/j.colsurfb.2023.113716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/03/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
The analysis of structures in dried droplets has made it possible to detect the presence and conformational state of macromolecules in relevant biofluids. Therefore, the implementation of novel drying strategies for pattern formation could facilitate the identification of biomarkers for the diagnosis of pathologies. We present an experimental study of patterns formed by evaporating water-diluted blood droplets on a vertical surface. Three significant morphological features were observed in vertical droplet deposits: (1) The highest concentration of non-volatile molecules is consistently deposited in the lower part of the droplet, regardless of erythrocyte concentration. (2) The central region of deposits decreases rapidly with hematocrit; (3) At high erythrocyte concentrations (36-40% HCT), a broad coating of blood serum is produced in the upper part of the deposit. These findings are supported by the radial intensity profile, the relative thickness of the crown, the aspect ratio of the deformation, the relative area of the central region, and the Entropy of the Gray Level Co-occurrence Matrix Entropy (GLCM). Moreover, we explore the pattern formation during the drying of vertical blood drops. We found that hematocrit concentration has a significant impact on droplet drying dynamics. Finally, we conducted a proof-of-concept test to investigate the impact of vertical droplet evaporation on blood droplets with varying lipid concentrations. The results revealed that it is possible to differentiate between deposits with normal, slightly elevated, and moderately elevated lipid levels using only the naked eye.
Collapse
Affiliation(s)
- Roxana Belen Pérez Hidalgo
- Facultad de Ciencias en Física y Matemáticas Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas, México
| | - Josías N Molina-Courtois
- Facultad de Ciencias en Física y Matemáticas Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas, México
| | - Yojana J P Carreón
- Facultad de Ciencias en Física y Matemáticas Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas, México; CONACyT, México City, México
| | - Orlando Díaz-Hernández
- Facultad de Ciencias en Física y Matemáticas Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas, México
| | - Jorge González-Gutiérrez
- Facultad de Ciencias en Física y Matemáticas Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas, México.
| |
Collapse
|
3
|
Demir R, Koc S, Ozturk DG, Bilir S, Ozata Hİ, Williams R, Christy J, Akkoc Y, Tinay İ, Gunduz-Demir C, Gozuacik D. Artificial intelligence assisted patient blood and urine droplet pattern analysis for non-invasive and accurate diagnosis of bladder cancer. Sci Rep 2024; 14:2488. [PMID: 38291121 PMCID: PMC10827787 DOI: 10.1038/s41598-024-52728-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Bladder cancer is one of the most common cancer types in the urinary system. Yet, current bladder cancer diagnosis and follow-up techniques are time-consuming, expensive, and invasive. In the clinical practice, the gold standard for diagnosis remains invasive biopsy followed by histopathological analysis. In recent years, costly diagnostic tests involving the use of bladder cancer biomarkers have been developed, however these tests have high false-positive and false-negative rates limiting their reliability. Hence, there is an urgent need for the development of cost-effective, and non-invasive novel diagnosis methods. To address this gap, here we propose a quick, cheap, and reliable diagnostic method. Our approach relies on an artificial intelligence (AI) model to analyze droplet patterns of blood and urine samples obtained from patients and comparing them to cancer-free control subjects. The AI-assisted model in this study uses a deep neural network, a ResNet network, pre-trained on ImageNet datasets. Recognition and classification of complex patterns formed by dried urine or blood droplets under different conditions resulted in cancer diagnosis with a high specificity and sensitivity. Our approach can be systematically applied across droplets, enabling comparisons to reveal shared spatial behaviors and underlying morphological patterns. Our results support the fact that AI-based models have a great potential for non-invasive and accurate diagnosis of malignancies, including bladder cancer.
Collapse
Affiliation(s)
- Ramiz Demir
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Soner Koc
- Department of Computer Engineering, Koç University, Istanbul, Turkey
- KUIS AI Center, Koç University, Istanbul, Turkey
| | - Deniz Gulfem Ozturk
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Sukriye Bilir
- SUNUM Nanotechnology Research and Application Center, Istanbul, Turkey
| | | | - Rhodri Williams
- School of Engineering, University of Edinburgh, Edinburgh, UK
| | - John Christy
- School of Engineering, University of Edinburgh, Edinburgh, UK
| | - Yunus Akkoc
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - İlker Tinay
- Anadolu Medical Center, Gebze, Kocaeli, Turkey
| | - Cigdem Gunduz-Demir
- Department of Computer Engineering, Koç University, Istanbul, Turkey.
- KUIS AI Center, Koç University, Istanbul, Turkey.
- School of Medicine, Koç University, Istanbul, Turkey.
| | - Devrim Gozuacik
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.
- SUNUM Nanotechnology Research and Application Center, Istanbul, Turkey.
- School of Medicine, Koç University, Istanbul, Turkey.
| |
Collapse
|
4
|
Mehta S, Bahadur J, Sharma SK, Sen D. Interparticle interaction-dependent jamming in colloids: insights into glass transition and morphology modulation during rapid evaporation-induced assembly. SOFT MATTER 2024; 20:375-387. [PMID: 38099855 DOI: 10.1039/d3sm01186k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Understanding the role of interparticle interactions in jamming phenomena is essential for gaining insights into the intriguing glass transition behavior observed in atomic and molecular systems. In this study, we investigate the jamming behavior of colloids with tunable interparticle interactions during evaporation-induced assembly (EIA). By manipulating the interaction among charged colloids using cationic polyethyleneimine (PEI) through electro-sorption and subsequent free polymer induced repulsion, we observe distinct jamming behavior in silica colloids during EIA, depending on the interparticle interactions. Silica colloids with strong repulsive interactions exhibit a repulsive colloidal glass state with a volume fraction of silica colloids in supraparticle ϕ ∼ 0.70. On the other hand, PEI-mediated attractive interactions among silica colloids lead to an attractive colloidal glass phase with a significantly lower ϕ ∼ 0.43. Free polymer induced repulsion of colloids at higher PEI concentration once again results in a repulsive glassy state with ϕ ∼ 0.61. Furthermore, we revealed that interparticle interactions not only influence the jamming behavior but also play a significant role in shaping the morphology of self-assembled structures during EIA, and the assembled structure undergoes a morphological reentrant transition from a doughnut-like shape to a spherical form and again back to a doughnut-like configuration. Jamming-dependent evolution of micropores and dynamics of the confined PEI have been probed using positron annihilation lifetime spectroscopy (PALS) and broadband dielectric spectroscopy (BDS). PALS reveals distinct variations in the micropores of the supraparticles with different PEI loadings, confirming the impact of jamming on the evolution of the micropores within the supraparticles. BDS measurements uncover non-monotonic dynamics of PEI molecules confined in the evolved pore network. It is revealed that the reentrant jamming behavior of colloids, modulated by PEI, holds profound significance for the long-term stability of supraparticles.
Collapse
Affiliation(s)
- Swati Mehta
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Jitendra Bahadur
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Sandeep K Sharma
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Debasis Sen
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
5
|
Fonseca ACS, Pereira JFQ, Honorato RS, Bro R, Pimentel MF. Classification of bloodstains deposited at different times on floor tiles using hierarchical modelling and a handheld NIR spectrometer. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5459-5465. [PMID: 37728415 DOI: 10.1039/d3ay01204b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Bloodstains are commonly encountered at crime scenes, especially on floor tiles, and can be deposited over different periods and intervals. Therefore, it is crucial to develop techniques that can accurately identify bloodstains deposited at different times. This study builds upon a previous investigation and aims to enhance the performance of three distinct hierarchical models (HMs) designed to differentiate and identify stains of human blood (HB), animal blood (AB), and common false positives (CFPs) on nine different types of floor tiles. Soft Independent Modeling Class Analogies (SIMCA), and Partial Least Squares-Discriminant Analysis (PLS-DA) were employed as decision rules in this process. The originally published model was constructed using a training set that included samples with a known time of deposit of six days. This model was then tested to predict samples with various deposition times, including human blood samples aged for 0, 1, 9, 20, 30, and 162 days, as well as animal blood samples aged for 0, 1, 10, 13, 20, 29, 105, and 176 days. To improve the identification of human blood, the models were modified by adding zero-day and one-day-old bloodstains to the original training set. All models showed improvement when fresher samples were included in the training set. The best results were achieved with the hierarchical model that used partial least squares-discriminant analysis as the second decision rule and incorporated one-day-old samples in the training set. This model yielded sensitivity values above 0.92 and specificity values above 0.7 for samples aged between zero and 30 days.
Collapse
Affiliation(s)
- Aline C S Fonseca
- Department of Fundamental Chemistry, Federal University of Pernambuco, Av. Jornalista An í bal Fernandes , Cidade Universitária, 50.740-560, Recife, Brazil
| | - José F Q Pereira
- Federal Rural University of Pernambuco, Serra Talhada Academic Unit, Av. Gregório Ferraz Nogueira, s/n, Serra Talhada, PE, 56909-535, Brazil
| | | | - Rasmus Bro
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg, Denmark
| | - Maria Fernanda Pimentel
- Department of Chemical Engineering, Federal University of Pernambuco, Av. dos Economistas, Cidade Universitária, s/n, 50.740-590, Recife, PE, Brazil.
| |
Collapse
|
6
|
Vale B, Orr A, Elliott C, Stotesbury T. Optical profilometry for forensic bloodstain imaging. Microsc Res Tech 2023; 86:1401-1408. [PMID: 37133225 DOI: 10.1002/jemt.24338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/22/2023] [Indexed: 05/04/2023]
Abstract
Understanding the physical, chemical and biological changes that occur during the drying of a bloodstain is important in many aspects of forensic science including bloodstain pattern analysis and time since deposition estimation. This research assesses the use of optical profilometry to analyze changes in the surface morphology of degrading bloodstains created using three different volumes (4, 11, and 20 μL) up to 4 weeks after deposition. We analyzed six surface characteristics, including surface average roughness, kurtosis, skewness, maximum height, number of cracks and pits, and height distributions from the topographical scans obtained from bloodstains. Full and partial optical profiles were obtained to examine long-term (minimum of 1.5-h intervals) and short-term (5-min intervals) changes. The majority of the changes in surface characteristics occurred within the first 35 min after bloodstain deposition, in agreement with current research in bloodstain drying. Optical profilometry is a nondestructive and efficient method to obtain surface profiles of bloodstains, and can be integrated easily into additional research workflows including but not limited to time since deposition estimation. Optical profilometry is a non-contact tool to scan bloodstains in ambient conditions Drying phases are observable in small drip bloodstains Significant surface morphology changes occur within 35 min after deposition.
Collapse
Affiliation(s)
- Brayden Vale
- Forensic Science Undergraduate Program, Ontario Tech University, Oshawa, Canada
| | - Amanda Orr
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Canada
| | - Colin Elliott
- Applied Bioscience Graduate Program, Faculty of Science, Ontario Tech University, Oshawa, Canada
| | - Theresa Stotesbury
- Faculty of Science, Forensic Science, Ontario Tech University, Oshawa, Canada
| |
Collapse
|
7
|
Ramos SMM, Soubeyrand D, Fulcrand R, Barentin C. Drying Drops of Paint Suspension: From "Fried Eggs" to Quasi-Homogeneous Patterns. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13579-13587. [PMID: 37706446 DOI: 10.1021/acs.langmuir.3c01605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Drying of multicomponent sessile drops is a complex phenomenon involving intricate mechanisms. Here, we study the evaporation of drops made of paint suspension and investigate the influence of the substrate temperature and suspension concentration on the resulting deposit patterns. At low concentrations and temperatures, the pigments appear highly concentrated in a narrow area at the center of the drop, a morphology we call "fried eggs". Increasing the temperature or concentration leads to more homogeneous patterns. From a top-view camera used for monitoring the whole evaporative process, we identify three mechanisms responsible for the final pattern: inward/outward flows that convect the pigments, gelation of the paint suspension where pigments accumulate, and final drying of the drop that freezes the location of the pigments onto the substrate. The relative kinetics of these three mechanisms upon concentration and temperature govern the deposit growth and the morphology of the final pattern. These observations are quantitatively supported by rheological measurements highlighting a strong increase of the viscosity with concentration, consistent with the gelation mechanism. Finally, we show that the kinetics of drop drying is controlled by the substrate temperature.
Collapse
Affiliation(s)
- Stella M M Ramos
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Damien Soubeyrand
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Rémy Fulcrand
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Catherine Barentin
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| |
Collapse
|
8
|
Li K, Xie Y, Yang S, Ritasalo R, Mariam J, Yu M, Bi J, Ding H, Lu L. Synergetic Effects of Nanoscale ALD-HfO 2 Coatings and Bionic Microstructures for Antiadhesive Surgical Electrodes: Improved Cutting Performance, Antibacterial Property, and Biocompatibility. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43550-43562. [PMID: 37672350 DOI: 10.1021/acsami.3c09374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The high temperature induced by surgical electrodes is highly susceptible to severe surface adhesion and thermal damage to adjacent tissues, which is a major challenge in improving the quality of electrosurgery. Herein, we reported a coupled electrode with micro/nano hierarchical structures fabricated by depositing nanoscale hafnium oxide (HfO2) coatings on bionic microstructures (BMs) via laser texturing, acid washing, and atomic layer deposition (ALD) techniques. The synergistic effect of HfO2 coatings and BMs greatly enhanced the hemophobicity of the electrode with a blood contact angle of 162.15 ± 3.16°. Furthermore, the coupled surface was proven to have excellent antiadhesive properties to blood when heated above 100 °C, and the underlying mechanism was discussed. Further experiments showed that the coupled electrode had significant advantages in reducing cutting forces, thermal damage, and tissue adhesion mass. Moreover, the antibacterial rates against Escherichia coli and Staphylococcus aureus were 97.2% and 97.9%, respectively. In addition, the noncytotoxicity levels of HfO2 coatings were verified by cell apoptosis and cycle assays, indirectly endowing the coupled electrode with biocompatibility. Overall, the coupled electrode was shown to have broad potential for application in the field of electrosurgery, and this work could provide new insights into antiadhesion properties under high-temperature conditions.
Collapse
Affiliation(s)
- Kaikai Li
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yingxi Xie
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| | - Shu Yang
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| | | | | | - Min Yu
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
| | - Junming Bi
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Huanwen Ding
- Department of Orthopedics, Guangzhou First People's Hospital, Guangzhou 510180, China
| | - Longsheng Lu
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
9
|
Pal A, Gope A, Sengupta A. Drying of bio-colloidal sessile droplets: Advances, applications, and perspectives. Adv Colloid Interface Sci 2023; 314:102870. [PMID: 37002959 DOI: 10.1016/j.cis.2023.102870] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 04/03/2023]
Abstract
Drying of biologically-relevant sessile droplets, including passive systems such as DNA, proteins, plasma, and blood, as well as active microbial systems comprising bacterial and algal dispersions, has garnered considerable attention over the last decades. Distinct morphological patterns emerge when bio-colloids undergo evaporative drying, with significant potential in a wide range of biomedical applications, spanning bio-sensing, medical diagnostics, drug delivery, and antimicrobial resistance. Consequently, the prospects of novel and thrifty bio-medical toolkits based on drying bio-colloids have driven tremendous progress in the science of morphological patterns and advanced quantitative image-based analysis. This review presents a comprehensive overview of bio-colloidal droplets drying on solid substrates, focusing on the experimental progress during the last ten years. We provide a summary of the physical and material properties of relevant bio-colloids and link their native composition (constituent particles, solvent, and concentrations) to the patterns emerging due to drying. We specifically examined the drying patterns generated by passive bio-colloids (e.g., DNA, globular, fibrous, composite proteins, plasma, serum, blood, urine, tears, and saliva). This article highlights how the emerging morphological patterns are influenced by the nature of the biological entities and the solvent, micro- and global environmental conditions (temperature and relative humidity), and substrate attributes like wettability. Crucially, correlations between emergent patterns and the initial droplet compositions enable the detection of potential clinical abnormalities when compared with the patterns of drying droplets of healthy control samples, offering a blueprint for the diagnosis of the type and stage of a specific disease (or disorder). Recent experimental investigations of pattern formation in the bio-mimetic and salivary drying droplets in the context of COVID-19 are also presented. We further summarized the role of biologically active agents in the drying process, including bacteria, algae, spermatozoa, and nematodes, and discussed the coupling between self-propulsion and hydrodynamics during the drying process. We wrap up the review by highlighting the role of cross-scale in situ experimental techniques for quantifying sub-micron to micro-scale features and the critical role of cross-disciplinary approaches (e.g., experimental and image processing techniques with machine learning algorithms) to quantify and predict the drying-induced features. We conclude the review with a perspective on the next generation of research and applications based on drying droplets, ultimately enabling innovative solutions and quantitative tools to investigate this exciting interface of physics, biology, data sciences, and machine learning.
Collapse
Affiliation(s)
- Anusuya Pal
- University of Warwick, Department of Physics, Coventry CV47AL, West Midlands, UK; Worcester Polytechnic Institute, Department of Physics, Worcester 01609, MA, USA.
| | - Amalesh Gope
- Tezpur University, Department of Linguistics and Language Technology, Tezpur 784028, Assam, India
| | - Anupam Sengupta
- University of Luxembourg, Physics of Living Matter, Department of Physics and Materials Science, Luxembourg L-1511, Luxembourg
| |
Collapse
|
10
|
Howard NS, Archer AJ, Sibley DN, Southee DJ, Wijayantha KGU. Surfactant Control of Coffee Ring Formation in Carbon Nanotube Suspensions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:929-941. [PMID: 36607610 PMCID: PMC9878724 DOI: 10.1021/acs.langmuir.2c01691] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The coffee ring effect regularly occurs during the evaporation of colloidal droplets and is often undesirable. Here we show that adding a specific concentration of a surfactant can mitigate this effect. We have conducted experiments on aqueous suspensions of carbon nanotubes that were prepared with cationic surfactant dodecyltrimethylammonium bromide added at 0.2, 0.5, 1, 2, 5, and 10 times the critical micelle concentration. Colloidal droplets were deposited on candidate substrates for printed electronics with varying wetting characteristics: glass, polyethylene terephthalate, fluoroethylene propylene copolymer, and polydimethylsiloxane. Following drying, four pattern types were observed in the final deposits: dot-like, uniform, coffee ring deposits, and combined patterns (coffee ring with a dot-like central deposit). Evaporation occurred predominantly in constant contact radius mode for most pattern types, except for some cases that led to uniform deposits in which early stage receding of the contact line occurred. Image analysis and profilometry yielded deposit thicknesses, allowing us to identify a coffee ring subfeature in all uniform deposits and to infer the percentage coverage in all cases. Importantly, a critical surfactant concentration was identified for the generation of highly uniform deposits across all substrates. This concentration resulted in visually uniform deposits consisting of a coffee ring subfeature with a densely packed center, generated from two distinct evaporative phases.
Collapse
Affiliation(s)
- N. S. Howard
- Department
of Chemistry, Loughborough University, Loughborough LE11 3TU, U.K.
| | - A. J. Archer
- Department
of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, U.K.
- Interdisciplinary
Centre for Mathematical Modelling, Loughborough
University, Loughborough LE11 3TU, U.K.
| | - D. N. Sibley
- Department
of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, U.K.
- Interdisciplinary
Centre for Mathematical Modelling, Loughborough
University, Loughborough LE11 3TU, U.K.
| | - D. J. Southee
- School
of Design and Creative Arts, Loughborough
University, Loughborough LE11 3TU, U.K.
| | - K. G. U. Wijayantha
- Department
of Chemistry, Loughborough University, Loughborough LE11 3TU, U.K.
- Centre
for Renewable and Low Carbon Energy, Cranfield
University, Cranfield, Bedfordshire MK43 0AL, U.K.
| |
Collapse
|
11
|
Mailleur A, Pirat C, Simon G, Fulcrand R, Colombani J. Ring shells obtained from pure water drops evaporating on a soluble substrate. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Frey BS, Damon DE, Badu-Tawiah AK. The Effect of the Physical Morphology of Dried Biofluids on the Chemical Stability of Analytes Stored in Paper and Direct Analysis by Mass Spectrometry. Anal Chem 2022; 94:9618-9626. [PMID: 35759462 PMCID: PMC9973730 DOI: 10.1021/acs.analchem.2c00711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Three-dimensional (3D) dried blood spheroids formed on hydrophobic paper are a new microsampling platform that can stabilize labile molecules in whole blood stored in ambient air at room temperature. In this study, we define the ideal conditions for preparing the dried blood spheroids. The physical morphology of 3D dried blood spheroids is found to be largely impacted by the unregulated relative humidity of the surrounding environment. A solution of KOH placed in an enclosed chamber offers a facile way to control humidity. We also report a general polymer coating strategy that serves to stabilize dried biofluids when prepared under ordinary ambient conditions without regulation of humidity. Dried blood spheroids coated in xanthan gum polymer exhibited enhanced chemical and physical stability. The same xanthan gum polymer provided chemical stability for 2D dried blood spots when compared with the conventional noncoated samples. We have expanded the application of xanthan gum to less viscous biofluids such as urine to induce an artificial protective barrier that also provides enhanced stability for labile performance-enhancing drugs stored at room temperature. The impact of polymer coating on direct biofluid analysis via paper spray mass spectrometry was determined by comparing the relative ionization efficiency, percent difference of ionization efficiency, and matrix effects of performance-enhancing drugs that were spiked in undiluted raw urine. Acceptable analytical performance was recorded for all three criteria, including high ionization efficiencies that ranged from 77 to 93% in the presence of the xanthan gum polymer.
Collapse
Affiliation(s)
- Benjamin S. Frey
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus OH 43210
| | - Deidre E. Damon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus OH 43210
| | - Abraham K. Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus OH 43210,Corresponding Author: Abraham K. Badu-Tawiah – Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, United States; Phone: 614-292-4276; , Fax: 614-292-1685
| |
Collapse
|
13
|
Hennessy MG, Craster RV, Matar OK. Drying-induced stresses in poroelastic drops on rigid substrates. Phys Rev E 2022; 105:054602. [PMID: 35706225 DOI: 10.1103/physreve.105.054602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
We develop a theory for drying-induced stresses in sessile, poroelastic drops undergoing evaporation on rigid surfaces. Using a lubrication-like approximation, the governing equations of three-dimensional nonlinear poroelasticity are reduced to a single thin-film equation for the drop thickness. We find that thin drops experience compressive elastic stresses but the total in-plane stresses are tensile. The mechanical response of the drop is dictated by the initial profile of the solid skeleton, which controls the in-plane deformation, the dominant components of elastic stress, and sets a limit on the depth of delamination that can potentially occur. Our theory suggests that the alignment of desiccation fractures in colloidal drops is selected by the shape of the drop at the point of gelation. We propose that the emergence of three distinct fracture patterns in dried blood drops is a consequence of a nonmonotonic drop profile at gelation. We also show that depletion fronts, which separate wet and dry solid, can invade the drop from the contact line and localize the generation of mechanical stress during drying. Finally, the finite element method is used to explore the stress profiles in drops with large contact angles.
Collapse
Affiliation(s)
- Matthew G Hennessy
- Department of Engineering Mathematics, University of Bristol, Ada Lovelace Building, Bristol BS8 1TW, United Kingdom
| | - Richard V Craster
- Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Omar K Matar
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
14
|
Efstratiou M, Christy JRE, Bonn D, Sefiane K. Transition from Dendritic to Cell-like Crystalline Structures in Drying Droplets of Fetal Bovine Serum under the Influence of Temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4321-4331. [PMID: 35357835 PMCID: PMC9009182 DOI: 10.1021/acs.langmuir.2c00019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/11/2022] [Indexed: 06/14/2023]
Abstract
The desiccation of biofluid droplets leads to the formation of complex deposits which are morphologically affected by the environmental conditions, such as temperature. In this work, we examine the effect of substrate temperatures between 20 and 40 °C on the desiccation deposits of fetal bovine serum (FBS) droplets. The final dried deposits consist of different zones: a peripheral protein ring, a zone of protein structures, a protein gel, and a central crystalline zone. We focus on the crystalline zone showing that its morphological and topographical characteristics vary with substrate temperature. The area of the crystalline zone is found to shrink with increasing substrate temperature. Additionally, the morphology of the crystalline structures changes from dendritic at 20 °C to cell-like for substrate temperatures between 25 and 40 °C. Calculation of the thermal and solutal Bénard-Marangoni numbers shows that while thermal effects are negligible when drying takes place at 20 °C, for higher substrate temperatures (25-40 °C), both thermal and solutal convective effects manifest within the drying drops. Thermal effects dominate earlier in the evaporation process leading, we believe, to the development of instabilities and, in turn, to the formation of convective cells in the drying drops. Solutal effects, on the other hand, are dominant toward the end of drying, maintaining circulation within the cells and leading to crystallization of salts in the formed cells. The cell-like structures are considered to form because of the interplay between thermal and solutal convection during drying. Dendritic growth is associated with a thicker fluid layer in the crystalline zone compared to cell-like growth with thinner layers. For cell-like structures, we show that the number of cells increases and the area occupied by each cell decreases with temperature. The average distance between cells decreases linearly with substrate temperature.
Collapse
Affiliation(s)
- Marina Efstratiou
- Division
of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PL, U.K.
- Institute
of Multiscale Thermofluids, School of Engineering, The University of Edinburgh, King’s Buildings, James Clerk Maxwell Building, Peter Guthrie
Tait Road, King’s Buildings, Edinburgh EH9 3FD, U.K.
| | - John R. E. Christy
- Institute
of Multiscale Thermofluids, School of Engineering, The University of Edinburgh, King’s Buildings, James Clerk Maxwell Building, Peter Guthrie
Tait Road, King’s Buildings, Edinburgh EH9 3FD, U.K.
| | - Daniel Bonn
- Institute
of Physics, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Khellil Sefiane
- Institute
of Multiscale Thermofluids, School of Engineering, The University of Edinburgh, King’s Buildings, James Clerk Maxwell Building, Peter Guthrie
Tait Road, King’s Buildings, Edinburgh EH9 3FD, U.K.
| |
Collapse
|
15
|
Frey BS, Damon DE, Allen DM, Baker J, Asamoah S, Badu-Tawiah AK. Protective mechanism of dried blood spheroids: stabilization of labile analytes in whole blood, plasma, and serum. Analyst 2021; 146:6780-6787. [PMID: 34636822 PMCID: PMC8887831 DOI: 10.1039/d1an01132d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three-dimensional (3D) dried blood spheroids form when whole blood is deposited onto hydrophobic paper and allowed to dry in ambient air. The adsorbed 3D dried blood spheroid present at the surface of the hydrophobic paper is observed to offer enhanced stability for labile analytes that would otherwise degrade if stored in the traditional two-dimensional (2D) dried blood spot method. The protective mechanism for the dried blood spheroid microsampling platform was studied using scanning electron microscopy (SEM), which revealed the presence of a passivation thin film at the surface of the spheroid that serves to stabilize the interior of the spheroid against environmental stressors. Through time-course experiments based on sequential SEM analyses, we discovered that the surface protective thin film forms through the self-assembly of red blood cells following the evaporation of water from the blood sample. The bridging mechanism of red blood cell aggregation is evident in our experiments, which leads to the distinct rouleau conformation of stacked red blood cells in less than 60 min after creating the blood spheroid. The stack of self-assembled red blood cells at the exterior of the spheroid subsequently lyse to afford the surface protective layer detected to be approximately 30 μm in thickness after three weeks of storage in ambient air. We applied this mechanistic insight to plasma and serum to enhance stability when stored under ambient conditions. In addition to physical characterization of these thin biofilms, we also used paper spray (PS) mass spectrometry (MS) to examine chemical changes that occur in the stored biofluid. For example, we present stability data for cocaine spiked in whole blood, plasma, and serum when stored under ambient conditions on hydrophilic and hydrophobic paper substrates.
Collapse
Affiliation(s)
- Benjamin S Frey
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | - Deidre E Damon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | - Danyelle M Allen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | - Jill Baker
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | - Samuel Asamoah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
16
|
Rivers DB. Differential responses of adult Calliphora vicina to dry bloodstains on porous versus non-porous surface materials. Forensic Sci Int 2021; 328:111041. [PMID: 34649100 DOI: 10.1016/j.forsciint.2021.111041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Necrophagous flies are presumed to feed on wet and dried blood at crime scenes, but no empirical information exists detailing fly interactions with dried bloodstains. In the present study, the foraging behavior of adult Calliphora vicina was characterized during interactions with dried bloodstains formed on a variety of porous, and non-porous materials that are commonly encountered in a household. Continuous digital recording and image analysis were used to monitor fly interactions with dried bloodstains and to determine mechanisms of stain modification. Flies displayed differential responses to bloodstains based on the porosity and topography of the surface material. For instance, blood that was not tightly adhered to the materials was flaked or dislodged by fly activity and was not consumed by the flies. On other non-porous surfaces, most stains were consumed following moistening by regurgitation. Feeding activity on such bloodstains frequently yielded partial, perimeter and skeletal stains. In contrast, adult flies rarely mechanically altered dried blood on porous fabrics and there was no evidence of modification due to feeding. Feeding avoidance behavior was observed due to tactile inhibition with blood dried on rough, uneven surfaces like cotton and denim.
Collapse
Affiliation(s)
- David B Rivers
- Department of Biology and Forensic Pattern Analysis Program, Loyola University Maryland, Baltimore, MD 21210, USA.
| |
Collapse
|
17
|
The Effect of Substrate Temperature on the Evaporative Behaviour and Desiccation Patterns of Foetal Bovine Serum Drops. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5040043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The drying of bio-fluid drops results in the formation of complex patterns, which are morphologically and topographically affected by environmental conditions including temperature. We examine the effect of substrate temperatures between 20 °C and 40 °C, on the evaporative dynamics and dried deposits of foetal bovine serum (FBS) drops. The deposits consist of four zones: a peripheral protein ring, a zone of protein structures, a protein gel, and a central crystalline zone. We investigate the link between the evaporative behaviour, final deposit volume, and cracking. Drops dried at higher substrate temperatures in the range of 20 °C to 35 °C produce deposits of lower final volume. We attribute this to a lower water content and a more brittle gel in the deposits formed at higher temperatures. However, the average deposit volume is higher for drops dried at 40 °C compared to drops dried at 35 °C, indicating protein denaturation. Focusing on the protein ring, we show that the ring volume decreases with increasing temperature from 20 °C to 35 °C, whereas the number of cracks increases due to faster water evaporation. Interestingly, for deposits of drops dried at 40 °C, the ring volume increases, but the number of cracks also increases, suggesting an interplay between water evaporation and increasing strain in the deposits due to protein denaturation.
Collapse
|
18
|
|
19
|
Hertaeg MJ, Tabor RF, Routh AF, Garnier G. Pattern formation in drying blood drops. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200391. [PMID: 34148412 PMCID: PMC8405133 DOI: 10.1098/rsta.2020.0391] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 05/20/2023]
Abstract
Patterns in dried droplets are commonly observed as rings left after spills of dirty water or coffee have evaporated. Patterns are also seen in dried blood droplets and the patterns have been shown to differ from patients afflicted with different medical conditions. This has been proposed as the basis for a new generation of low-cost blood diagnostics. Before these diagnostics can be widely used, the underlying mechanisms leading to pattern formation in these systems must be understood. We analyse the height profile and appearance of dispersions prepared with red blood cells (RBCs) from healthy donors. The red cell concentrations and diluent were varied and compared with simple polystyrene particle systems to identify the dominant mechanistic variables. Typically, a high concentration of non-volatile components suppresses ring formation. However, RBC suspensions display a greater volume of edge deposition when the red cell concentration is higher. This discrepancy is caused by the consolidation front halting during drying for most blood suspensions. This prevents the standard horizontal drying mechanism and leads to two clearly defined regions in final crack patterns and height profile. This article is part of a discussion meeting issue 'A cracking approach to inventing new tough materials: fracture stranger than friction'.
Collapse
Affiliation(s)
- Michael. J. Hertaeg
- BioPRIA and Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Rico F. Tabor
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Alexander F. Routh
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, Cambridgeshire CB3 0AS, UK
| | - Gil Garnier
- BioPRIA and Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
20
|
Yu M, Le Floch-Fouéré C, Pauchard L, Boissel F, Fu N, Chen XD, Saint-Jalmes A, Jeantet R, Lanotte L. Skin layer stratification in drying droplets of dairy colloids. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Morphogenesis and characterization of wheat xerogel structure and insights into its 4D transformation. FOOD STRUCTURE 2021. [DOI: 10.1016/j.foostr.2020.100170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Lohani D, Sarkar S. Interconnected drying phenomena in nanoparticle laden water-ethanol binary droplets. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:35. [PMID: 33742250 DOI: 10.1140/epje/s10189-021-00045-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Understanding the evaporation of a multi-component droplet has found immense importance in various technological applications. This study investigates the evaporation behaviour of a colloidal binary droplet system comprising of the ethanol-water mixture and polystyrene nanoparticles. The wetting and evaporation dynamics were studied with an emphasis on the collective influence of ethanol and nanoparticle concentrations. The temporal behaviour of the contact angles, shapes and volumes of the droplets was monitored in order to analyse the evaporative behaviour. With increase of ethanol concentrations, the binary droplet volumes were found to decrease nonlinearly with time. Ethanol being more volatile evaporated in the initial stage. Towards the end of the evaporation process, the evaporation characteristics mimics the behaviour of pure water. Our study shows that the initial contact angle decreases monotonically with increased concentration of ethanol in the mixture. The contact angle is maximum for a particular nanoparticle concentration. Droplets with higher ethanol concentration show higher wettability which in its turn is maximum for low nanoparticle concentrations. This trend shows the interconnected effect of ethanol and nanoparticle concentrations on evaporation. Rim width of the final deposition pattern increases with nanoparticle concentration although it is almost independent of ethanol concentration. Finally, it is noticed that fast evaporation of a relatively more volatile component in a binary mixture droplet leads to nanoparticle segregation for low nanoparticle concentrations. Thus for binary mixtures, the evaporation of the more volatile component, ethanol for our case, offers characteristic differences in the resulting evaporation dynamics from that of pure water which finds applicability for multi-component evaporation processes.
Collapse
Affiliation(s)
- Deepa Lohani
- Department of Physics, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab, 140001, India
| | - Subhendu Sarkar
- Department of Physics, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab, 140001, India.
| |
Collapse
|
23
|
Tanis-Kanbur MB, Kumtepeli V, Kanbur BB, Ren J, Duan F. Transient Prediction of Nanoparticle-Laden Droplet Drying Patterns through Dynamic Mode Decomposition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2787-2799. [PMID: 33577318 DOI: 10.1021/acs.langmuir.0c03546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanoparticle-laden sessile droplet drying has a wide impact on applications. However, the complexity affected by the droplet evaporation dynamics and particle self-assembly behavior leads to challenges in the accurate prediction of the drying patterns. We initiate a data-driven machine learning algorithm by using a single data collection point via a top-view camera to predict the transient drying patterns of aluminum oxide (Al2O3) nanoparticle-laden sessile droplets with three cases according to particle sizes of 5 and 40 nm and Al2O3 concentrations of 0.1 and 0.2 wt %. Dynamic mode decomposition is used as the data-driven learning model to recognize each nanoparticle-laden droplet as an individual system and then apply the transfer learning procedure. Along 270 s of droplet drying experiments, the training period of the first 100 s is selected, and then the rest of the 170 s is predicted with less than a 10% error between the predicted and the actual droplet images. The developed data-driven approach has also achieved the acceptable prediction for the droplet diameter with less than 0.13% error and a coffee-ring thickness over a range of 2.0 to 6.7 μm. Moreover, the proposed machine learning algorithm can recognize the volume of the droplet liquid and the transition of the drying regime from one to another according to the predicted contact line and the droplet height.
Collapse
Affiliation(s)
| | - Volkan Kumtepeli
- Energy Research Institute, Nanyang Technological University, Singapore 637371
| | - Baris Burak Kanbur
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798
| | - Junheng Ren
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798
| | - Fei Duan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798
| |
Collapse
|
24
|
Harindran A, Hashmi S, Madhurima V. Pattern formation of dried droplets of milk during different processes and classifying them using artificial neural networks. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1880927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Aswini Harindran
- Department of Physics, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Sabin Hashmi
- Department of Physics, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - V. Madhurima
- Department of Physics, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| |
Collapse
|
25
|
Pal A, Gope A, Iannacchione G. Temperature and Concentration Dependence of Human Whole Blood and Protein Drying Droplets. Biomolecules 2021; 11:231. [PMID: 33562850 PMCID: PMC7915023 DOI: 10.3390/biom11020231] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/24/2021] [Accepted: 02/01/2021] [Indexed: 12/31/2022] Open
Abstract
The drying of bio-colloidal droplets can be used in many medical and forensic applications. The whole human blood is the most complex bio-colloid system, whereas bovine serum albumin (BSA) is the simplest. This paper focuses on the drying characteristics and the final morphology of these two bio-colloids. The experiments were conducted by varying their initial concentrations, and the solutions were dried under various controlled substrate temperatures using optical and scanning electron microscopy. The droplet parameters (the contact angle, the fluid front, and the first-order image statistics) reveal the drying process's unique features. Interestingly, both BSA and blood drying droplets' contact angle measurements show evidence of a concentration-driven transition as the behavior changes from non-monotonic to monotonic decrease. This result indicates that this transition behavior is not limited to multi-component bio-colloid (blood) only, but may be a phenomenon of a bio-colloidal solution containing a large number of interacting components. The high dilution of blood behaves like the BSA solution. The ring-like deposition, the crack morphology, and the microstructures suggest that the components have enough time to segregate and deposit onto the substrate under ambient conditions. However, there is insufficient time for evaporative-driven segregation to occur at elevated temperatures, as expected.
Collapse
Affiliation(s)
- Anusuya Pal
- Order-Disorder Phenomena Laboratory, Department of Physics, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
| | - Amalesh Gope
- Department of English, Tezpur University, Tezpur 784028, Assam, India;
| | - Germano Iannacchione
- Order-Disorder Phenomena Laboratory, Department of Physics, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
| |
Collapse
|
26
|
Kumar S, Medale M, Marco PD, Brutin D. Sessile volatile drop evaporation under microgravity. NPJ Microgravity 2020; 6:37. [PMID: 33311490 PMCID: PMC7733520 DOI: 10.1038/s41526-020-00128-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/13/2020] [Indexed: 11/09/2022] Open
Abstract
The evaporation of sessile drops of various volatile and non-volatile liquids, and their internal flow patterns with or without instabilities have been the subject of many investigations. The current experiment is a preparatory one for a space experiment planned to be installed in the European Drawer Rack 2 (EDR-2) of the International Space Station (ISS), to investigate drop evaporation in weightlessness. In this work, we concentrate on preliminary experimental results for the evaporation of hydrofluoroether (HFE-7100) sessile drops in a sounding rocket that has been performed in the frame of the MASER-14 Sounding Rocket Campaign, providing the science team with the opportunity to test the module and perform the experiment in microgravity for six consecutive minutes. The focus is on the evaporation rate, experimentally observed thermo-capillary instabilities, and the de-pinning process. The experimental results provide evidence for the relationship between thermo-capillary instabilities and the measured critical height of the sessile drop interface. There is also evidence of the effects of microgravity and Earth conditions on the sessile drop evaporation rate, and the shape of the sessile drop interface and its influence on the de-pinning process.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Aix-Marseille Universite, CNRS, IUSTI UMR 7343, Marseille, 13013, France.
| | - Marc Medale
- Aix-Marseille Universite, CNRS, IUSTI UMR 7343, Marseille, 13013, France
| | - Paolo Di Marco
- DESTEC, University of Pisa, Largo Lazzarino 1, Pisa, 56122, Italy
| | - David Brutin
- Aix-Marseille Universite, CNRS, IUSTI UMR 7343, Marseille, 13013, France. .,Institut Universitaire de France, Paris, 75231, France.
| |
Collapse
|
27
|
Pal A, Gope A, Obayemi JD, Iannacchione GS. Concentration-driven phase transition and self-assembly in drying droplets of diluting whole blood. Sci Rep 2020; 10:18908. [PMID: 33144671 PMCID: PMC7609771 DOI: 10.1038/s41598-020-76082-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/23/2020] [Indexed: 12/25/2022] Open
Abstract
Multi-colloidal systems exhibit a variety of structural and functional complexity owing to their ability to interact amongst different components into self-assembled structures. This paper presents experimental confirmations that reveal an interesting sharp phase transition during the drying state and in the dried film as a function of diluting concentrations ranging from 100% (undiluted whole blood) to 12.5% (diluted concentrations). An additional complementary contact angle measurement exhibits a monotonic decrease with a peak as a function of drying. This peak is related to a change in visco-elasticity that decreases with dilution, and disappears at the dilution concentration for the observed phase transition equivalent to 62% (v/v). This unique behavior is clearly commensurate with the optical image statistics and morphological analysis; and it is driven by the decrease in the interactions between various components within this bio-colloid. The implications of these phenomenal systems may address many open-ended questions of complex hierarchical structures.
Collapse
Affiliation(s)
- Anusuya Pal
- Order-Disorder Phenomena Laboratory, Department of Physics, Worcester Polytechnic Institute, Worcester, 01609, USA.
| | - Amalesh Gope
- Department of English, Tezpur University, Tezpur, 784028, India
| | - John D Obayemi
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, 01609, USA
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, 01609, USA
| | - Germano S Iannacchione
- Order-Disorder Phenomena Laboratory, Department of Physics, Worcester Polytechnic Institute, Worcester, 01609, USA
| |
Collapse
|
28
|
Iqbal R, Shen AQ, Sen A. Understanding of the role of dilution on evaporative deposition patterns of blood droplets over hydrophilic and hydrophobic substrates. J Colloid Interface Sci 2020; 579:541-550. [DOI: 10.1016/j.jcis.2020.04.109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/06/2020] [Accepted: 04/26/2020] [Indexed: 11/24/2022]
|
29
|
Evaporating droplets on oil-wetted surfaces: Suppression of the coffee-stain effect. Proc Natl Acad Sci U S A 2020; 117:16756-16763. [PMID: 32616571 DOI: 10.1073/pnas.2006153117] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The evaporation of suspension droplets is the underlying mechanism in many surface-coating and surface-patterning applications. However, the uniformity of the final deposit suffers from the coffee-stain effect caused by contact line pinning. Here, we show that control over particle deposition can be achieved through droplet evaporation on oil-wetted hydrophilic surfaces. We demonstrate by flow visualization, theory, and numerics that the final deposit of the particles is governed by the coupling of the flow field in the evaporating droplet, the movement of its contact line, and the wetting state of the thin film surrounding the droplet. We show that the dynamics of the contact line can be tuned through the addition of a surfactant, thereby controlling the surface energies, which then leads to control over the final particle deposit. We also obtain an analytical expression for the radial velocity profile which reflects the hindering of the evaporation at the rim of the droplet by the nonvolatile oil meniscus, preventing flow toward the contact line, thus suppressing the coffee-stain effect. Finally, we confirm our physical interpretation by numerical simulations that are in qualitative agreement with the experiment.
Collapse
|
30
|
Hertaeg MJ, Tabor RF, Berry JD, Garnier G. Radial Wicking of Biological Fluids in Paper. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8209-8217. [PMID: 32574068 DOI: 10.1021/acs.langmuir.0c01318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, we analyze stain growth kinetics from droplets of biological fluids such as blood, plasma, and protein solutions on paper both experimentally and numerically. The primary difference of biological fluids from a simple fluid is a significant wetting/dewetting hysteresis in paper. This becomes important in later stages of droplet wicking, after the droplet has been completely absorbed into paper. This is shown by anomalous power dependence of area with time in the later stages of radial wicking. At early stages, current numerical wicking models can predict stain growth of biological fluids. However, at later stages, the introduction of hysteresis complicates modeling significantly. We show that the cause of the observed hysteresis is due to contact angle effects and that this is the dominant mechanism that leads to the anomalous stain growth kinetics measured uniquely in biological fluids. Results presented will streamline the design process of paper-based diagnostics, allowing a modeling approach instead of a trial and error method.
Collapse
Affiliation(s)
- Michael J Hertaeg
- BioPRIA and Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Joseph D Berry
- Department of Chemical and Biomolecular Engineering and the Particulate Fluids Processing Centre, University of Melbourne, Parkville, VIC 3052, Australia
| | - Gil Garnier
- BioPRIA and Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
31
|
Abstract
We construct a theoretical framework to understand the crack density of bloodstains by modeling whole blood as a suspension of binary size colloid particles. Our analysis based upon theories of soft capillarity and porous flows explains the observed increase of the crack density with increase of blood viscosity and decrease of environmental humidity. The results have direct implications on forensic science and medical diagnosis.
Collapse
Affiliation(s)
- Junhee Choi
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Wonjung Kim
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Republic of Korea.
| | - Ho-Young Kim
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
32
|
Smith FR, Nicloux C, Brutin D. A new forensic tool to date human blood pools. Sci Rep 2020; 10:8598. [PMID: 32451419 PMCID: PMC7248111 DOI: 10.1038/s41598-020-65465-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 04/29/2020] [Indexed: 11/16/2022] Open
Abstract
Courtrooms are asking for reliable scientific evidence in order to prevent wrongful convictions. Thus, a more rigorous approach to forensic science approved by scientific methods is promoted. The study of human blood dynamics in the context of forensic science is becoming a widespread research topic, although the physics behind wetting and drying of blood is not completely understood. Based on the morphological changes of drying blood pools, the following work presents a patentable method to quantitatively date these blood pools for forensic purposes. As for drying drops of blood, cracking patterns are observed but they are more disordered. Similar disordered crack patterns are observed in the case of gels, their evaporation process is, therefore, presented since this topic has been thoroughly investigated. We aim to find reliable patterns that could give information concerning the evolution of a blood pool over time to lead to practical application of this knowledge. An empirical model is established between final dried blood patterns and the generating mechanism, yielding application in bloodstain pattern analysis for forensic investigations.
Collapse
Affiliation(s)
- F R Smith
- Aix-Marseille University, IUSTI UMR CNRS 7343, 13007, Marseille, France.
| | - C Nicloux
- Institut de Recherche Criminelle de la Gendarmerie Nationale, 95300 Pontoise, France, Cergy, France
| | - D Brutin
- Aix-Marseille University, IUSTI UMR CNRS 7343, 13007, Marseille, France
- Institut Universitaire de France, 75231, Paris, France
| |
Collapse
|
33
|
Pal A, Gope A, Athair AS, Iannacchione GS. A comparative study of the drying evolution and dried morphology of two globular proteins in de-ionized water solutions. RSC Adv 2020; 10:16906-16916. [PMID: 35496925 PMCID: PMC9053175 DOI: 10.1039/d0ra01748e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/15/2020] [Indexed: 01/10/2023] Open
Abstract
Pattern formation in drying protein droplets continues to attract considerable research attention because it can be linked to specific protein-protein interactions. An extensive study of the drying evolution and the final crack patterns is presented, highlighting the concentration dependence (from 1 to 13 wt%) of two globular proteins, lysozyme (Lys) and bovine serum albumin (BSA), in de-ionized water. The drying evolution starts with a constant contact radius mode and shifts to a mixed mode where both fluid front and contact angle changes. The contact angle monotonically decreases, whereas, the fluid front exhibits two regimes: an initial linear regime and a later non-linear regime. Unlike the linear regime, the non-linear regime is faster for Lys droplets. This results in the formation of a "mound"-like structure in the central region. A new feature, a "dimple" is observed in this mound which is found to be dependent on the initial concentration. The different crack morphology of BSA and Lys depends strongly on the initial state of the solution and can be interpreted using a simple mechanical model. In fact, when dried under uniform conditions (surface, humidity, temperature, droplet diameter, etc.), the evolution and the final pattern displays as a fingerprint of the initial state.
Collapse
Affiliation(s)
- Anusuya Pal
- Department of Physics, Order-Disorder Phenomena Laboratory, Worcester Polytechnic Institute Worcester MA 01609 USA
| | - Amalesh Gope
- Department of English, Tezpur University Tezpur Assam 784028 India
| | - Ari S Athair
- Department of Physics, Order-Disorder Phenomena Laboratory, Worcester Polytechnic Institute Worcester MA 01609 USA
| | - Germano S Iannacchione
- Department of Physics, Order-Disorder Phenomena Laboratory, Worcester Polytechnic Institute Worcester MA 01609 USA
| |
Collapse
|
34
|
Mukhopadhyay M, Ray R, Ayushman M, Sood P, Bhattacharyya M, Sarkar D, DasGupta S. Interfacial energy driven distinctive pattern formation during the drying of blood droplets. J Colloid Interface Sci 2020; 573:307-316. [PMID: 32289626 DOI: 10.1016/j.jcis.2020.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 01/26/2023]
Abstract
HYPOTHESIS Dried blood droplet morphology may potentially serve as an alternative biomarker for several patho-physiological conditions. The deviant properties of the red blood cells and the abnormal composition of diseased samples are hypothesized to manifest through unique cell-cell and cell-substrate interactions leading to different morphological patterns. Identifying distinctive morphological trait from a large sample size and proposing confirmatory explanations are necessary to establish the signatory pattern as a potential biomarker to differentiate healthy and diseased samples. EXPERIMENTS Comprehensive experimental investigation was undertaken to identify the signatory dried blood droplet patterns. The corresponding image based analysis was in turn used to differentiate the blood samples with a specific haematological disorder "Thalassaemia" from healthy ones. Relevant theoretical analysis explored the role of cell-surface and cell-cell interactions pertinent to the formation of the distinct dried patterns. FINDINGS The differences observed in the dried blood patterns, specifically the radial crack lengths, were found to eventuate from the differences in the overall interaction energies of the system. A first-generation theoretical analysis, with the mean field approximation, also confirmed similar outcome and justified the role of the different physico-chemical properties of red blood cells in diseased samples resulting in shorter radial cracks.
Collapse
Affiliation(s)
- Manikuntala Mukhopadhyay
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Pin 721302 West Bengal, India
| | - Rudra Ray
- Institute of Haematology & Transfusion Medicine, Medical College, Kolkata, Pin 700073 West Bengal, India
| | - Manish Ayushman
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Pin 721302 West Bengal, India
| | - Pourush Sood
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Pin 721302 West Bengal, India
| | - Maitreyee Bhattacharyya
- Institute of Haematology & Transfusion Medicine, Medical College, Kolkata, Pin 700073 West Bengal, India
| | - Debasish Sarkar
- Department of Chemical Engineering, University of Calcutta, Pin 700009 West Bengal, India
| | - Sunando DasGupta
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Pin 721302 West Bengal, India.
| |
Collapse
|
35
|
Hamadeh L, Imran S, Bencsik M, Sharpe GR, Johnson MA, Fairhurst DJ. Machine Learning Analysis for Quantitative Discrimination of Dried Blood Droplets. Sci Rep 2020; 10:3313. [PMID: 32094359 PMCID: PMC7040018 DOI: 10.1038/s41598-020-59847-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/24/2020] [Indexed: 01/30/2023] Open
Abstract
One of the most interesting and everyday natural phenomenon is the formation of different patterns after the evaporation of liquid droplets on a solid surface. The analysis of dried patterns from blood droplets has recently gained a lot of attention, experimentally and theoretically, due to its potential application in diagnostic medicine and forensic science. This paper presents evidence that images of dried blood droplets have a signature revealing the exhaustion level of the person, and discloses an entirely novel approach to studying human dried blood droplet patterns. We took blood samples from 30 healthy young male volunteers before and after exhaustive exercise, which is well known to cause large changes to blood chemistry. We objectively and quantitatively analysed 1800 images of dried blood droplets, developing sophisticated image processing analysis routines and optimising a multivariate statistical machine learning algorithm. We looked for statistically relevant correlations between the patterns in the dried blood droplets and exercise-induced changes in blood chemistry. An analysis of the various measured physiological parameters was also investigated. We found that when our machine learning algorithm, which optimises a statistical model combining Principal Component Analysis (PCA) as an unsupervised learning method and Linear Discriminant Analysis (LDA) as a supervised learning method, is applied on the logarithmic power spectrum of the images, it can provide up to 95% prediction accuracy, in discriminating the physiological conditions, i.e., before or after physical exercise. This correlation is strongest when all ten images taken per volunteer per condition are averaged, rather than treated individually. Having demonstrated proof-of-principle, this method can be applied to identify diseases.
Collapse
Affiliation(s)
- Lama Hamadeh
- Department of Physics and Mathematics, School of Science and Technology, Nottingham Trent University, Nottingham, Clifton Campus, NG11 8NS, United Kingdom.
| | - Samia Imran
- Department of Physics and Mathematics, School of Science and Technology, Nottingham Trent University, Nottingham, Clifton Campus, NG11 8NS, United Kingdom
| | - Martin Bencsik
- Department of Physics and Mathematics, School of Science and Technology, Nottingham Trent University, Nottingham, Clifton Campus, NG11 8NS, United Kingdom
| | - Graham R Sharpe
- Exercise and Health Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Campus, NG11 8NS, United Kingdom
| | - Michael A Johnson
- Exercise and Health Research Group, Sport, Health and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Campus, NG11 8NS, United Kingdom
| | - David J Fairhurst
- Department of Physics and Mathematics, School of Science and Technology, Nottingham Trent University, Nottingham, Clifton Campus, NG11 8NS, United Kingdom
| |
Collapse
|
36
|
Young MA, Furr DP, McKeough RQ, Elliott GD, Trammell SR. Light-assisted drying for anhydrous preservation of biological samples: optical characterization of the trehalose preservation matrix. BIOMEDICAL OPTICS EXPRESS 2020; 11:801-816. [PMID: 32133224 PMCID: PMC7041451 DOI: 10.1364/boe.376630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/07/2019] [Accepted: 01/06/2020] [Indexed: 05/26/2023]
Abstract
Protein-based drugs have been developed to treat a variety of conditions and assays use immobilized capture proteins for disease detection. Freeze-drying is currently the standard for the preservation of proteins, but this method is expensive and requires lengthy processing times. Anhydrous preservation in a trehalose amorphous solid matrix offers a promising alternative to freeze-drying. Light assisted drying (LAD) is a processing method to create an amorphous trehalose matrix. Proteins suspended in a trehalose solution are dehydrated using near-infrared laser light. The laser radiation accelerates drying and as water is removed the trehalose forms a protective matrix. In this work, LAD samples are characterized to determine the crystallization kinetics of the trehalose after LAD processing and the distribution of amorphous trehalose in the samples. These characteristics influence the long-term stability of the samples. Polarized light imaging revealed that LAD processed samples are stable against crystallization during low-humidity storage at room temperature. Scanning white light interferometry and Raman spectroscopy indicated that trehalose was present across samples in an amorphous form. In addition, differential scanning microcalorimetry was used to measure the thermodynamic characteristics of the protein lysozyme after LAD processing. These results demonstrate that LAD does not change the properties of this protein.
Collapse
Affiliation(s)
- Madison A. Young
- University of North Carolina at Charlotte, Department of Physics and Optical Science, Charlotte, NC 28226, USA
| | - Daniel P. Furr
- University of North Carolina at Charlotte, Department of Physics and Optical Science, Charlotte, NC 28226, USA
| | - Riley Q. McKeough
- University of North Carolina at Charlotte, Department of Physics and Optical Science, Charlotte, NC 28226, USA
| | - Gloria D. Elliott
- University of North Carolina at Charlotte, Department of Mechanical Engineering, Charlotte, NC 28226, USA
| | - Susan R. Trammell
- University of North Carolina at Charlotte, Department of Physics and Optical Science, Charlotte, NC 28226, USA
| |
Collapse
|
37
|
Coupled effect of concentration, particle size and substrate morphology on the formation of coffee rings. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
38
|
Malla LK, Bhardwaj R, Neild A. Colloidal deposit of an evaporating sessile droplet on a non-uniformly heated substrate. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
39
|
Hydrodynamic and physicochemical phenomena in liquid droplets under the action of nanosecond spark discharges: A review. Adv Colloid Interface Sci 2019; 271:101986. [PMID: 31325652 DOI: 10.1016/j.cis.2019.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/02/2019] [Accepted: 07/06/2019] [Indexed: 12/17/2022]
Abstract
This review presents experimental studies of phenomena occurring in droplets of various liquids under the effect of nanosecond spark discharges. Inorganic liquids and liquids of biological origin are considered here. Attention is payed to hydrodynamic and physico-chemical phenomena in droplets, including a movement of sessile droplets on a substrate under the effect of the discharges, internal flows in droplets (excited by the discharges), plasma capillary phenomena, features of the droplets drying under the effect of the discharges, traces (patterns) left by the droplets, exposed to the discharges, on the substrates etc.
Collapse
|
40
|
Le Floch-Fouéré C, Lanotte L, Jeantet R, Pauchard L. The solute mechanical properties impact on the drying of dairy and model colloidal systems. SOFT MATTER 2019; 15:6190-6199. [PMID: 31328216 DOI: 10.1039/c9sm00373h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The evaporation of colloidal solutions is frequently observed in nature and in everyday life. The investigation of the mechanisms taking place during the desiccation of biological fluids is currently a scientific challenge with potential biomedical and industrial applications. In the last few decades, seminal works have been performed mostly on dried droplets of saliva, urine and plasma. However, the full understanding of the drying process in biocolloids is far from being achieved and, notably, the impact of solute properties on the morphological characteristics of the evaporating droplets, such as colloid segregation, skin formation and crack pattern development, is still to be elucidated. For this purpose, the use of model colloidal solutions, whose rheological behavior is more easily deducible, could represent a significant boost. In this work, we compare the drying of droplets of whey proteins and casein micelles, the two main milk protein classes, to that of dispersions of silica particles and polymer-coated silica particles, respectively. The mechanical behavior of such biological colloids and model silica dispersions was investigated through the analysis of crack formation, and the measurements of their mechanical properties using indentation testing. The study reveals numerous analogies between dairy and the corresponding model systems, thus confirming the latter as a plausible powerful tool to highlight the signature of the matter at the molecular scale during the drying process.
Collapse
Affiliation(s)
| | - Luca Lanotte
- Laboratoire STLO, UMR1253, INRA, Agrocampus Ouest, F-35000 Rennes, France.
| | - Romain Jeantet
- Laboratoire STLO, UMR1253, INRA, Agrocampus Ouest, F-35000 Rennes, France.
| | - Ludovic Pauchard
- Laboratoire FAST, Univ. Paris-Sud, CNRS, Université Paris-Saclay, F-91405 Orsay, France
| |
Collapse
|
41
|
do Nascimento RM, Ramos AP, Ciancaglini P, Hernandes AC. Blood droplets on functionalized surfaces: Chemical, roughness and superhydrophobic effects. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Abstract
The renewed interest in plasma desiccation patterns focuses on the potential of these patterns to be developed into a platform of low-cost and facile diagnostic methods to interpret health conditions of donors. During desiccation, several physical mechanisms are simultaneously acting on the plasma sessile drop; these include material redistribution, buildup/release of local internal stresses, protein aggregation, and salt crystallization. After desiccation, cracking patterns and "superimposed" crystal-like patterns are formed. It has been reported that these characteristic patterns were influenced by changes in plasma compositions caused by diseases. Potential applications of these patterns in diagnosis are, however, limited by our understanding of formation mechanisms of cracking patterns and chemical compositions of crystal-like patterns. To address these limitations, this research studied morphologies of desiccated plasma patterns and the influence of sodium chloride to the pattern formation at both macroscopic and microscopic levels. Experimental results show that cracking patterns of plasma from healthy adults form throughout the desiccated deposit; propagation directions of cracks are found to have correlations to local dominant stresses, which are governed by the development of gelation. Crystal-like patterns are located in the drop center, which are caused by the heterogeneous distribution of macromolecular proteins and sodium chloride within the plasma sessile drop during desiccation; these patterns are influenced by the concentration of sodium chloride. With the increase of the concentration of sodium chloride, the distribution area of crystal-like patterns enlarges; whereas, the number of cracks decreases.
Collapse
Affiliation(s)
- Ruoyang Chen
- National Local Joint Engineering Laboratory for Advanced Textile Processing and Clean Production, Science & Technology Institute, Wuhan Textile University, Jiangxia, Hubei 430200, P.R. China
- Department of Chemical Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Liyuan Zhang
- National Local Joint Engineering Laboratory for Advanced Textile Processing and Clean Production, Science & Technology Institute, Wuhan Textile University, Jiangxia, Hubei 430200, P.R. China
- Department of Chemical Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Hui He
- Department of Chemical Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Wei Shen
- Department of Chemical Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
43
|
Highly sensitive and accurate estimation of bloodstain age using smartphone. Biosens Bioelectron 2019; 130:414-419. [DOI: 10.1016/j.bios.2018.09.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/27/2018] [Accepted: 09/04/2018] [Indexed: 11/21/2022]
|
44
|
Malla LK, Bhardwaj R, Neild A. Analysis of profile and morphology of colloidal deposits obtained from evaporating sessile droplets. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.01.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Mailleur A, Pirat C, Pierre-Louis O, Colombani J. Hollow Rims from Water Drop Evaporation on Salt Substrates. PHYSICAL REVIEW LETTERS 2018; 121:214501. [PMID: 30517808 DOI: 10.1103/physrevlett.121.214501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/03/2018] [Indexed: 05/27/2023]
Abstract
We report on the observation of thin salt shells that form at the periphery of evaporating pure water drops on salt. Shell shapes range from rings of inclined walls to hollow toroidal rims. We interpret this phenomenon as a consequence of a molecular coffee-stain effect by which the dissolved salt is advected toward the pinned contact line where an increased evaporation takes place. The subsequent salt supersaturation in the vicinity of the triple line drives the crystallization of the shell at the liquid-air interface. This interpretation is supported by a simple model for shell growth.
Collapse
Affiliation(s)
- Alexandra Mailleur
- Institut Lumière Matière; Université de Lyon; Université Claude Bernard Lyon 1; CNRS UMR 5306; Domaine scientifique de la Doua, F-69622 Villeurbanne, France
| | - Christophe Pirat
- Institut Lumière Matière; Université de Lyon; Université Claude Bernard Lyon 1; CNRS UMR 5306; Domaine scientifique de la Doua, F-69622 Villeurbanne, France
| | - Olivier Pierre-Louis
- Institut Lumière Matière; Université de Lyon; Université Claude Bernard Lyon 1; CNRS UMR 5306; Domaine scientifique de la Doua, F-69622 Villeurbanne, France
| | - Jean Colombani
- Institut Lumière Matière; Université de Lyon; Université Claude Bernard Lyon 1; CNRS UMR 5306; Domaine scientifique de la Doua, F-69622 Villeurbanne, France
| |
Collapse
|
46
|
Lohani D, Sarkar S. Nanoscale Topographical Fluctuations: A Key Factor for Evaporative Colloidal Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12751-12758. [PMID: 30299962 DOI: 10.1021/acs.langmuir.8b02409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This work investigates the role of surface parameters such as the nanoscale roughness, topography, and skewness of smooth and rough Si surfaces in the shape of patterns left by evaporating colloidal droplets of spherical polystyrene particles. The droplet contact angle, colloidal deposition pattern, crack density, and rim growth velocities are experimentally evaluated for varying roughness. The contact angle and rim growth rate are found to be more for rough surfaces in comparison to smooth ones. Roughness also helps in reducing stress in the drying droplets, thereby impeding the process of crack formation as exemplified by the experimental results. The altered Derjaguin-Landau-Verwey-Overbeek (DLVO) interactions emerging from the contribution of nanoscale roughness are theoretically evaluated for each differently rough substrate-particle combination. The forces have been calculated by considering large- and small-scale roughness parameters of the experimental surfaces. The experimental findings have been duly corroborated by theoretical estimates. Finally, it is observed that the skewness of the surface and the small-scale asperity radius bear a correlation with the DLVO forces and subsequently with the ring deposit pattern. The present understanding of the influence of surface fluctuations on evaporative self-assembly would enable one to choose the right topographic surface for particular applications.
Collapse
Affiliation(s)
- Deepa Lohani
- Department of Physics , Indian Institute of Technology Ropar , Nangal Road , Rupnagar , Punjab 140001 , India
| | - Subhendu Sarkar
- Department of Physics , Indian Institute of Technology Ropar , Nangal Road , Rupnagar , Punjab 140001 , India
| |
Collapse
|
47
|
Chen R, Zhang L, Shen W. Controlling the contact angle of biological sessile drops for study of their desiccated cracking patterns. J Mater Chem B 2018; 6:5867-5875. [PMID: 32254708 DOI: 10.1039/c8tb01979g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Current exploration of cracking patterns of desiccated biological sessile drops as a new approach of scientific research is progressing rapidly. It has been proposed that biological fluids are naturally capable of storing information. Cracking patterns of desiccated biological sessile drops have the potential to provide a facile means to study the links between compositions of biofluids, their structures and their functions. This potential is, however, limited by our current inability to control the influences of non-pathological factors on cracking patterns. Among the non-pathological factors, the initial sessile drop contact angle has a strong influence on cracking patterns through affecting the material transport and stress distributions within the drop. In this work, we developed a method to control the initial drop contact angle on a glass surface to enable the investigation of the contact angle-induced pattern changes in a biological sessile drop. Human blood was selected as the biofluid in this study, because of its richness in cracking patterns. It has been found that the increase in the initial contact angle enlarges the orthoradial cracks close to the drop edge and compresses the width of the peripheral region. We have also concluded that the number of cracks in the central region of the desiccated pattern can be correlated with the drop contact angle. This work also provides a novel protocol for fabricating standardized substrates for studies of desiccation patterns of biological and other complex colloidal fluids.
Collapse
Affiliation(s)
- Ruoyang Chen
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | | | | |
Collapse
|
48
|
Prathapan R, McLiesh H, Garnier G, Tabor RF. Surface Engineering of Transparent Cellulose Nanocrystal Coatings for Biomedical Applications. ACS APPLIED BIO MATERIALS 2018; 1:728-737. [DOI: 10.1021/acsabm.8b00193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ragesh Prathapan
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Heather McLiesh
- Bioresources Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Gil Garnier
- Bioresources Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Rico F. Tabor
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
49
|
Nascimento RMD, Ramos SMM, Bechtold IH, Hernandes AC. Wettability Study on Natural Rubber Surfaces for Applications as Biomembranes. ACS Biomater Sci Eng 2018; 4:2784-2793. [DOI: 10.1021/acsbiomaterials.8b00723] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rodney Marcelo do Nascimento
- São Carlos Institute of Physics, University of São Paulo, Avenida João
Dagnone, 1100, Jardim Santa Angelina, CEP 13563-120, São Carlos, SP, Brazil
| | - Stella M. M. Ramos
- Institut Lumière Matière, UMR5306 Université Claude Bernard Lyon 1-CNRS, Université de Lyon, 43 Boulevard du 11 Novembre 1918, 69100, Villeurbanne, France
| | - Ivan Helmuth Bechtold
- Departamento de Fisica, Universidade Federal de Santa Catarina. Campus Reitor João David Ferreira Lima, s/n, Trindade, CEP 88040-900, Florianopolis, SC, Brazil
| | - Antônio Carlos Hernandes
- São Carlos Institute of Physics, University of São Paulo, Avenida João
Dagnone, 1100, Jardim Santa Angelina, CEP 13563-120, São Carlos, SP, Brazil
| |
Collapse
|
50
|
Smith F, Brutin D. Wetting and spreading of human blood: Recent advances and applications. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|