1
|
Kumar H, Tiwari M, Dugyala VR, Basavaraj MG. Single-Step Formation of Pickering Double Emulsions by Exploiting Differential Wettability of Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7860-7870. [PMID: 38557075 DOI: 10.1021/acs.langmuir.3c03374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We present a modular single-step strategy for the formation of single and Pickering double emulsions (DEs). To this end, we consider the role of surface modification of particles and their dispersibility in different phases in the context of the design of Pickering emulsions by varying the volume fraction of oil in the oil-water mixture (ϕoil) used for emulsification. In particular, the experiments are performed by considering (a) model spherical and nonspherical colloids of different wettabilities which are tailored by oleic acid treatment, (b) immiscible liquids with or without particles, and (c) varying ϕoil from 0.1 to 0.9. We show that it is possible to affect a transition from (i) oil-in-water (O/W) emulsion to water-in-oil (W/O) emulsion and (ii) oil-in-water (O/W) to oil-in-water-in-oil (O/W/O) to water-in-oil (W/O) as ϕoil is systematically varied. We elucidate that the range of ϕoil at which particle stabilized DEs of the O/W/O type form can be tuned by engineering surface modification of particles to different extents. Furthermore, the arrangement of particles on the surface of droplets in the Pickering DEs is discussed. Our results conclusively establish that the differential wettability of particles is the key for the design of Pickering DEs. The versatility of the proposed strategy is established by developing DEs using a number of model colloidal systems.
Collapse
Affiliation(s)
- Hemant Kumar
- Polymer Engineering and Colloid Science (PECS) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Madhvi Tiwari
- Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Venkateshwar Rao Dugyala
- Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Madivala G Basavaraj
- Polymer Engineering and Colloid Science (PECS) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
2
|
McKenzie TJ, Brunet T, Kissell LN, Strobbia P, Ayres N. Polydimethylsiloxane Polymerized Emulsions for Acoustic Materials Prepared Using Reactive Triblock Copolymer Surfactants. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58917-58930. [PMID: 38063480 DOI: 10.1021/acsami.3c14859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Porous polymers have interesting acoustic properties including wave dampening and acoustic impedance matching and may be used in numerous acoustic applications, e.g., waveguiding or acoustic cloaking. These materials can be prepared by the inclusion of gas-filled voids, or pores, within an elastic polymer network; therefore, porous polymers that have controlled porosity values and a wide range of possible mechanical properties are needed, as these are key factors that impact the sound-dampening properties. Here, the synthesis of acoustic materials with varying porosities and mechanical properties that could be controlled independent of the pore morphology using emulsion-templated polymerizations is described. Polydimethylsiloxane-based ABA triblock copolymer surfactants were prepared using reversible addition-fragmentation chain transfer polymerizations to control the emulsion template and act as an additional cross-linker in the polymerization. Acoustic materials prepared with reactive surfactants possessed a storage modulus of ∼300 kPa at a total porosity of 71% compared to materials prepared using analogous nonreactive surfactants that possessed storage modulus values of ∼150 kPa at similar porosities. These materials display very low longitudinal sound speeds of ∼35 m/s at ultrasonic frequencies, making them excellent candidates in the preparation of acoustic devices such as metasurfaces or lenses.
Collapse
Affiliation(s)
- Tucker J McKenzie
- Department of Chemistry, The University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221, United States
| | - Thomas Brunet
- Institut de Mécanique et d'Ingénierie, University of Bordeaux─CNRS─Bordeaux INP, Talence 33405, France
| | - Lyndsay N Kissell
- Department of Chemistry, University of Cincinnati, 201 Crosley Tower, 301 Clifton Ct, Cincinnati, Ohio 45221, United States
| | - Pietro Strobbia
- Department of Chemistry, University of Cincinnati, 201 Crosley Tower, 301 Clifton Ct, Cincinnati, Ohio 45221, United States
| | - Neil Ayres
- Department of Chemistry, The University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221, United States
| |
Collapse
|
3
|
Douliez JP. Double Emulsion Droplets as a Plausible Step to Fatty Acid Protocells. SMALL METHODS 2023; 7:e2300530. [PMID: 37574259 DOI: 10.1002/smtd.202300530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/07/2023] [Indexed: 08/15/2023]
Abstract
It is assumed that life originated on the Earth from vesicles made of fatty acids. These amphiphiles are the simplest chemicals, which can be present in the prebiotic soup, capable of self-assembling into compartments mimicking modern cells. Production of fatty acid vesicles is widely studied, as their growing and division. However, how prebiotic chemicals require to further yield living cells encapsulated within protocells remains unclear. Here, one suggests a scenario based on recent studies, which shows that phospholipid vesicles can form from double emulsions affording facile encapsulation of cargos. In these works, water-in-oil-in-water droplets are produced by microfluidics, having dispersed lipids in the oil. Dewetting of the oil droplet leaves the internal aqueous droplet covered by a lipid bilayer, entrapping cargos. In this review, formation of fatty acid protocells is briefly reviewed, together with the procedure for preparing double emulsions and vesicles from double emulsion and finally, it is proposed that double emulsion droplets formed in the deep ocean where undersea volcano expulsed materials, with fatty acids (under their carboxylic form) and alkanols as the oily phase, entrapping hydrosoluble prebiotic chemicals in a double emulsion droplet core. Once formed, double emulsion droplets can move up to the surface, where an increase of pH, variation of pressure and/or temperature may have allowed dewetting of the oily droplet, leaving a fatty acid vesicular protocell with encapsulated prebiotic materials.
Collapse
Affiliation(s)
- Jean-Paul Douliez
- Biologie du Fruit et Pathologie, UMR 1332, Institut National de Recherche Agronomique (INRAE), Université De Bordeaux, Villenave d'Ornon, F-33140, France
| |
Collapse
|
4
|
Douliez JP, Arlaut A, Beven L, Fameau AL, Saint-Jalmes A. One step generation of single-core double emulsions from polymer-osmose-induced aqueous phase separation in polar oil droplets. SOFT MATTER 2023; 19:7562-7569. [PMID: 37751151 DOI: 10.1039/d3sm00970j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Water-in-oil-in-water emulsions (W/O/W) are aqueous droplet(s) embedded within oil droplets dispersed in a continuous water phase. They are attracting interest due to their possible applications from cosmetic to food science since both hydrosoluble and liposoluble cargos can be encapsulated within. They are generally prepared using a one-step or a two-step method, phase inversion and also via spontaneous emulsification. Here, we describe a general and simple one-step method based on hydrophilic polymers dispersed in polar oils to generate osmose-induced diffusion of water into oil droplets, forming polymer-rich aqueous droplets inside the oil droplets. Polyethylene glycol, but also other hydrophilic polymers (branched polyethylene imine or polyvinyl pyrrolidone) were successfully dispersed in 1-octanol or other polar oils (oleic acid or tributyrin) to produce an O/W emulsion that spontaneously transformed into a W1/O/W2 emulsion, with the inner aqueous droplet (W1) only containing the hydrophilic polymer initially dispersed in oil. By combining single drop experiments, with macroscopic viscosity measurements, we demonstrated that the double emulsion resulted of water diffusion, which amplitude could be adjusted by the polymer concentration. The production of high internal phase emulsions was also achieved, together with a pH-induced transition from multiple to single core double emulsion. We expect this new method for producing double emulsions to find applications in domains of microencapsulation and materials chemistry.
Collapse
Affiliation(s)
- Jean-Paul Douliez
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave dOrnon, France.
| | - Anais Arlaut
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes), UMR 6251, F-35000, Rennes, France.
| | - Laure Beven
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave dOrnon, France.
| | - Anne-Laure Fameau
- University Lille, CNRS, INRAE, Centrale Lille, UMET, 369 Rue Jules Guesde, F-59000 Lille, France
| | - Arnaud Saint-Jalmes
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes), UMR 6251, F-35000, Rennes, France.
| |
Collapse
|
5
|
Yang S, Qin W, Zhao X, He F, Liu H, Zhou Q, Huang J, Yu G, Feng Y, Li J. Light-adjusted supramolecular host-guest interfacial recognition for reconfiguring soft colloidal aggregates. J Colloid Interface Sci 2023; 645:580-590. [PMID: 37167908 DOI: 10.1016/j.jcis.2023.04.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/13/2023]
Abstract
The soft interfacial template-assisted confined self-assembly of block copolymers (BCPs) guiding colloidal aggregates has been extensively investigated by interfacial instability. Whether the macromolecular polymer architectonics possessed stimulus-responsive self-regulated structural controllability more readily implement the morphological diversity of colloidal aggregates. Herein, we in-situ constructed the alginate-modified β-cyclodextrin/azobenzene-functionalized alkyl chains (Alg-β-CD/AzoC12) system by supramolecular host-guest interfacial recognition-engineered strategy, in which possessed photo-stimulated responsive structural reconfigurability by modulating assembly/disassembly behaviors between CD and Azo at oil/water interface. The host-guest droplet interfaces acted as soft templates managing interfacial instability by synergistically integrating supra-amphiphilic host-guest polymers with cosurfactants, further constructing various soft supracolloidal aggregates, including soft nanoaggregates, microspheres with tunable degrees of surface roughness. Additionally, the stimuli-altering structural reconfigurability of supramolecular host-guest polymers was regulated by ultraviolet/visible irradiation, endowing soft aggregates with structural diversity. It's highly anticipated that the supramolecular host-guest interfacial recognition self-assembly establishes great bridge between supramolecular host-guest chemistry and colloid interface science.
Collapse
Affiliation(s)
- Shujuan Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Wenqi Qin
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Xinyu Zhao
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Furui He
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Haifang Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Qichang Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Junhao Huang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Gaobo Yu
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Yuhong Feng
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
| | - Jiacheng Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
| |
Collapse
|
6
|
Zhang T, Jiang H, Hong L, Ngai T. Multiple Pickering emulsions stabilized by surface-segregated micelles with adaptive wettability. Chem Sci 2022; 13:10752-10758. [PMID: 36320716 PMCID: PMC9491070 DOI: 10.1039/d2sc03783a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
Surface-segregated micelles (SSMs) with adaptive wettability have considerable potential for application in Pickering emulsions and bioanalytical technology. In this study, spherical SSMs were prepared via polymerization-induced self-assembly co-mediated with a binary mixture of macromolecular chain transfer agents: pH-responsive poly(2-(dimethylamino) ethyl methacrylate) and hydrophobic polydimethylsiloxane. Using these SSMs as the sole emulsifier, we adjusted the pH to successfully produce both water-in-oil-in-water (W/O/W) and oil-in-water-in-oil (O/W/O) multiple emulsions through a single-step emulsification process. Moreover, we demonstrated that multiple emulsion systems with adjustable pH are suitable for the development of an efficient and recyclable interfacial catalytic system. Multiple emulsion microreactors increase the area of the oil–water interface and are therefore more efficient than the commonly used O/W and W/O emulsion systems. Surface-segregated micelles (SSMs) with adaptive wettability have considerable potential for application in Pickering emulsions and microreactors.![]()
Collapse
Affiliation(s)
- Tongtong Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Hang Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Liangzhi Hong
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, P. R. China
| |
Collapse
|
7
|
Yang S, Qin W, He F, Zhao X, Zhou Q, Lin F, Gong H, Zhang S, Yu G, Feng Y, Li J. Tuning Supramolecular Polymers' Amphiphilicity via Host-Guest Interfacial Recognition for Stabilizing Multiple Pickering Emulsions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51661-51672. [PMID: 34696581 DOI: 10.1021/acsami.1c13715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Supramolecular host-guest chemistry bridging the adjustable amphiphilicity and macromolecular self-assembly is well advanced in aqueous media. However, the interfacial self-assembled behaviors have not been further exploited. Herein, we designed a β-cyclodextrin-grafted alginate/azobenzene-functionalized dodecyl (Alg-β-CD/AzoC12) supra-amphiphilic system that possessed tunable amphiphilicity by host-guest interfacial self-assembly. Especially, supra-amphiphilic aggregates could be utilized as highly efficient soft colloidal emulsifiers for stabilizing water-in-oil-water (W/O/W) Pickering emulsions due to the excellent interfacial activity. Meanwhile, the assembled particle structures could be modulated by adjusting the oil-water ratio, resulting from the tunable aggregation behavior of supra-amphiphilic macromolecules. Additionally, the interfacial adsorption films could be partially destroyed/reconstructed upon ultraviolet/visible irradiation due to the stimuli-altering balance of amphiphilicity of Alg-β-CD/AzoC12 polymers, further constructing the stimulus-responsive Pickering emulsions. Therefore, the supramolecular interfacial self-assembly-mediated approach not only technologically advances the continued development of creative templates to construct multifunctional soft materials with anisotropic structures but also serves as a creative bridge between supramolecular host-guest chemistry, colloidal interface science, and soft material technology.
Collapse
Affiliation(s)
- Shujuan Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Wenqi Qin
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Furui He
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Xinyu Zhao
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Qichang Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Feilin Lin
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Houkui Gong
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Siqi Zhang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Gaobo Yu
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Yuhong Feng
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Jiacheng Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| |
Collapse
|
8
|
An emulsion-templated and amino diol-dictated porous material as an efficient and well recyclable boric acid scavenger. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Yu H, Zhu Y, Hui A, Wang A. Preparation of porous microspherical adsorbent via pine pollen stabilized O1/W/O2 double emulsion for high-efficient removal of cationic dyes. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Abstract
The formation of spontaneous double emulsions is a peculiar phenomenon in emulsion systems. When compared to the traditional one-step and two-step methods for preparing double emulsions, spontaneous emulsification can not only steadily load uniform water droplets into an oil phase, but can also facilitate the preparation of emulsions with higher stability. However, the limited solubility of salts, which are typically used to modify osmotic pressure, in organic oils has inhibited the viability of this method for the preparation of W/O/W double emulsions. In this paper, a redox-driven spontaneous emulsification method is developed and investigated. Instead of employing oil-soluble salts, an oxidation reaction is implemented in the oil phase, which produces cation radicals and iodide counterions to generate osmotic pressure. Additionally, amphiphilic polymer chains are harnessed as stabilizers for the newly formed W/O interfaces. Various characterization methods have been used to elucidate the mechanism of both the oxidation reaction and the spontaneous formation of double emulsions.
Collapse
Affiliation(s)
- Ruiting Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhen Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xinglei Tao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Jichen Jia
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xiaodong Lian
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yapei Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
11
|
Xia Y, Na X, Wu J, Ma G. The Horizon of the Emulsion Particulate Strategy: Engineering Hollow Particles for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801159. [PMID: 30260511 DOI: 10.1002/adma.201801159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/06/2018] [Indexed: 05/13/2023]
Abstract
With their hierarchical structures and the substantial surface areas, hollow particles have gained immense research interest in biomedical applications. For scalable fabrications, emulsion-based approaches have emerged as facile and versatile strategies. Here, the recent achievements in this field are unfolded via an "emulsion particulate strategy," which addresses the inherent relationship between the process control and the bioactive structures. As such, the interior architectures are manipulated by harnessing the intermediate state during the emulsion revolution (intrinsic strategy), whereas the external structures are dictated by tailoring the building blocks and solidification procedures of the Pickering emulsion (extrinsic strategy). Through integration of the intrinsic and extrinsic emulsion particulate strategy, multifunctional hollow particles demonstrate marked momentum for label-free multiplex detections, stimuli-responsive therapies, and stem cell therapies.
Collapse
Affiliation(s)
- Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangming Na
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jie Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, 211816, P. R. China
| |
Collapse
|
12
|
Chakrabarty A, Miyagi K, Maiti M, Teramoto Y. Topological Transition in Spontaneously Formed Cellulosic Liquid-Crystalline Microspheres in a w/o Emulsion. Biomacromolecules 2018; 19:4650-4657. [DOI: 10.1021/acs.biomac.8b01367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Xiao M, Xu A, Zhang T, Hong L. Tailoring the Wettability of Colloidal Particles for Pickering Emulsions via Surface Modification and Roughness. Front Chem 2018; 6:225. [PMID: 29971230 PMCID: PMC6018170 DOI: 10.3389/fchem.2018.00225] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/30/2018] [Indexed: 11/13/2022] Open
Abstract
Pickering emulsions are water or oil droplets that are stabilized by colloidal particles and have been intensely studied since the late 90s. The surfactant-free nature of these emulsions has little adverse effects such as irritancy and contamination of environment and typically exhibit enhanced stability compared to surfactant-stabilized emulsions. Therefore, they offer promising applications in cosmetics, food science, controlled release, and the manufacturing of microcapsules and porous materials. The wettability of the colloidal particles is the main parameter determining the formation and stability of Pickering emulsions. Tailoring the wettability by surface chemistry or surface roughness offers considerable scope for the design of a variety of hybrid nanoparticles that may serve as novel efficient Pickering emulsion stabilizers. In this review, we will discuss the recent advances in the development of surface modification of nanoparticles.
Collapse
Affiliation(s)
| | | | | | - Liangzhi Hong
- Department of Polymer Materials Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
14
|
|
15
|
Wang Z, Liao S, Wang Y. Supramolecular Polymer Emulsifiers for One-step Complex Emulsions. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-018-2084-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Yang Z, Chen X, Xu Z, Xiao M, Hong L, Ngai T. Shear-Assisted Fabrication of Block Copolymer Agglomerates with Various Morphologies in Viscous Medium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2829-2836. [PMID: 28233501 DOI: 10.1021/acs.langmuir.7b00119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this work, we have investigated the effect of laminar flow shearing on the formation of block copolymer agglomerates in viscous medium. Under a laminar flow shearing, the block copolymer solution droplets were spontaneously emulsified and were then elongated into protofibers, which in turn transformed into particles with various morphologies. Besides micro-/nanorods, which were previously reported for homopolymers, sphere and sheetlike structures were unexpectedly fabricated from block copolymers depending on the solvent quality, solvent exchange rates, and the entanglement of the polymer chains. In particular, the sheet structure, fabricated from poly(ethylene glycol)-b-polystyrene (PEG-b-PS), can be fixed by UV irradiation when photo-crosslinkable azide groups were introduced onto the polystyrene block. Surprisingly, we found that the fixed sheetlike structures show demulsification capability in tens of seconds, which may have great potential application in the separation of oil from emulsions.
Collapse
Affiliation(s)
- Zongpeng Yang
- Department of Polymer Materials Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Xiaoli Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences , Guangzhou 510640, China
| | - Zhou Xu
- Department of Polymer Materials Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Meina Xiao
- Department of Polymer Materials Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Liangzhi Hong
- Department of Polymer Materials Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong , Shatin N.T., Hong Kong, China
| |
Collapse
|
17
|
Protat M, Bodin N, Gobeaux F, Malloggi F, Daillant J, Pantoustier N, Guenoun P, Perrin P. Biocompatible Stimuli-Responsive W/O/W Multiple Emulsions Prepared by One-Step Mixing with a Single Diblock Copolymer Emulsifier. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10912-10919. [PMID: 27615806 DOI: 10.1021/acs.langmuir.6b02590] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Multiple water-in-oil-in-water (W/O/W) emulsions are promising materials in designing carriers of hydrophilic molecules or drug delivery systems, provided stability issues are solved and biocompatible chemicals can be used. In this work, we designed a biocompatible amphiphilic copolymer, poly(dimethylsiloxane)-b-poly(2-(dimethylamino)ethyl methacrylate) (PDMS-b-PDMAEMA), that can stabilize emulsions made with various biocompatible oils. The hydrophilic/hydrophobic properties of the copolymer can be adjusted using both pH and ionic strength stimuli. Consequently, the making of O/W (oil in water), W/O (water in oil), and W/O/W emulsions can be achieved by sweeping the pH and ionic strength. Of importance, W/O/W emulsions are formulated over a large pH and ionic strength domain in a one-step emulsification process via transitional phase inversion and are stable for several months. Cryo-TEM and interfacial tension studies show that the formation of these W/O/W emulsions is likely to be correlated to the interfacial film curvature and microemulsion morphology.
Collapse
Affiliation(s)
- Marine Protat
- Sciences et Ingénierie de la Matière Molle, UMR CNRS 7615, ESPCI ParisTech, PSL Research University , 10 rue Vauquelin, Paris 75005, France
- LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay , CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Noémie Bodin
- Sciences et Ingénierie de la Matière Molle, UMR CNRS 7615, ESPCI ParisTech, PSL Research University , 10 rue Vauquelin, Paris 75005, France
- LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay , CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Frédéric Gobeaux
- LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay , CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Florent Malloggi
- LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay , CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Jean Daillant
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Nadège Pantoustier
- Sciences et Ingénierie de la Matière Molle, UMR CNRS 7615, ESPCI ParisTech, PSL Research University , 10 rue Vauquelin, Paris 75005, France
- Sorbonne-Universités, UPMC Université Paris 06, SIMM , 10 rue Vauquelin, Paris 75005, France
| | - Patrick Guenoun
- LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay , CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Patrick Perrin
- Sciences et Ingénierie de la Matière Molle, UMR CNRS 7615, ESPCI ParisTech, PSL Research University , 10 rue Vauquelin, Paris 75005, France
- Sorbonne-Universités, UPMC Université Paris 06, SIMM , 10 rue Vauquelin, Paris 75005, France
| |
Collapse
|
18
|
Silva BF, Rodríguez-Abreu C, Vilanova N. Recent advances in multiple emulsions and their application as templates. Curr Opin Colloid Interface Sci 2016. [DOI: 10.1016/j.cocis.2016.07.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Clegg PS, Tavacoli JW, Wilde PJ. One-step production of multiple emulsions: microfluidic, polymer-stabilized and particle-stabilized approaches. SOFT MATTER 2016; 12:998-1008. [PMID: 26576500 DOI: 10.1039/c5sm01663k] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Multiple emulsions have great potential for application in food science as a means to reduce fat content or for controlled encapsulation and release of actives. However, neither production nor stability is straightforward. Typically, multiple emulsions are prepared via two emulsification steps and a variety of approaches have been deployed to give long-term stability. It is well known that multiple emulsions can be prepared in a single step by harnessing emulsion inversion, although the resulting emulsions are usually short lived. Recently, several contrasting methods have been demonstrated which give rise to stable multiple emulsions via one-step production processes. Here we review the current state of microfluidic, polymer-stabilized and particle-stabilized approaches; these rely on phase separation, the role of electrolyte and the trapping of solvent with particles respectively.
Collapse
Affiliation(s)
- Paul S Clegg
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
| | - Joe W Tavacoli
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
| | - Pete J Wilde
- Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK
| |
Collapse
|