1
|
Zhang W, Zeng Y, Cai F, Wei H, Wu Y, Yu H. Facile preparation of interpenetrating network hydrogel adsorbent from starch- chitosan for effective removal of methylene blue in water. Int J Biol Macromol 2024; 277:134340. [PMID: 39094889 DOI: 10.1016/j.ijbiomac.2024.134340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/10/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Hydrogels based on biopolymers have attracted considerable interest in the last decades. Herein, an interpenetrating network hydrogel (IPN-Gel) adsorbent from starch-chitosan was fabricated facilely in one-pot through tandem Schiff base reaction and photopolymerization. First, aldehyde starch (DAS) was synthesized by the reaction of soluble starch with sodium periodate. Afterward, acrylamide (AM), 2-acrylamido-2-methylpropanesulfonic acid (AMPS), polyethylene glycol dimethacrylate (PEGDMA), photoinitiator, chitosan and DAS were dissolved in water to obtain a clear solution. Schiff base reaction between chitosan and DAS took place quickly to form the first network, and then photopolymerization of AM, AMPS, and PEGDMA occurred under ultraviolet radiation to form the second network. The preparation conditions of the as-prepared IPN-Gel were optimized with two indexes of gel mass fraction and swelling ratio. Its swelling behavior with pH and temperature change was explored. Finally, its adsorption performance was characterized with methylene blue (MB) as a model contaminant. The maximum adsorption capacity of IPN-Gel can reach 2039 mg·g-1 at pH =10. Its adsorption performance accords with Langmuir isothermal model and pseudo-second-order kinetic model and it was mainly controlled by chemisorption. This strategy is expected to found broad application prospects in the preparation of hydrogel adsorbents.
Collapse
Affiliation(s)
- Wenjing Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Yin Zeng
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Fengying Cai
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Hongliang Wei
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, PR China; School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China.
| | - Yuxuan Wu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Hui Yu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| |
Collapse
|
2
|
Jahan MN, Alam MA, Rahman MM, Hoque SM, Ahmad H. Mesoporous Fe 3O 4/SiO 2/poly(2-carboxyethyl acrylate) composite polymer particles for pH-responsive loading and targeted release of bioactive molecules. RSC Adv 2024; 14:23560-23573. [PMID: 39071478 PMCID: PMC11276395 DOI: 10.1039/d4ra03160a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
pH-responsive polymer microspheres undergoing reversible changes in their surface properties have been proved useful for drug delivery to targeted sites. This paper is aimed at preparing pH-responsive polymer-modified magnetic mesoporous SiO2 particles. First, mesoporous magnetic (Fe3O4) core-particles are prepared using a one-pot solvothermal method. Then, magnetic Fe3O4 particles are covered with a C[double bond, length as m-dash]C functional mesoporous SiO2 layer before seeded emulsion polymerization of 2-carboxyethyl acrylate (2-CEA). The composite polymer particles are named Fe3O4/SiO2/P(2-CEA). The average diameters of the Fe3O4 core and Fe3O4/SiO2/P(2-CEA) composite polymer particles are 414 and 595 nm, respectively. The mesoporous (pore diameter = 3.41 nm) structure of Fe3O4/SiO2/P(2-CEA) composite polymer particles is confirmed from Brunauer-Emmett-Teller (BET) surface analysis. The synthesized Fe3O4/SiO2/P(2-CEA) composite polymer exhibited pH-dependent changes in volume and surface charge density due to deprotonation of the carboxyl group under alkaline pH conditions. The change in the surface properties of Fe3O4/SiO2/P(2-CEA) composite polymer particles following pH change is confirmed from the pH-dependent sorption of cationic methylene blue (MB) and anionic methyl orange (MO) dye molecules. The opening of the pH-responsive P(2-CEA) gate valve at pH 10.0 allowed the release of loaded vancomycin up to 99% after 165 min and p-acetamido phenol (p-AP) up to 46% after 225 min. Comparatively, the amount of release is lower at pH 8.0 but still suitable for drug delivery applications. These results suggested that the mesoporous Fe3O4/SiO2 composite seed acted as a microcapsule, while P(2-CEA) functioned as a gate valve across the porous channel. The prepared composite polymer can therefore be useful for treating intestine/colon cancer, where the pH is comparatively alkaline.
Collapse
Affiliation(s)
- Most Nusrat Jahan
- Department of Chemistry, Research Laboratory of Polymer Colloids and Nanomaterials, Rajshahi University Rajshahi 6205 Bangladesh
| | - Md Ashraful Alam
- Department of Chemistry, Research Laboratory of Polymer Colloids and Nanomaterials, Rajshahi University Rajshahi 6205 Bangladesh
| | - Md Mahabur Rahman
- Department of Chemistry, Research Laboratory of Polymer Colloids and Nanomaterials, Rajshahi University Rajshahi 6205 Bangladesh
- Department of Chemistry, Pabna University of Science and Technology 6600 Pabna Bangladesh
| | - S Manjura Hoque
- Materials Science Division, Bangladesh Atomic Energy Commission Dhaka Bangladesh
| | - Hasan Ahmad
- Department of Chemistry, Research Laboratory of Polymer Colloids and Nanomaterials, Rajshahi University Rajshahi 6205 Bangladesh
| |
Collapse
|
3
|
Bongiovanni Abel S, Busatto CA, Karp F, Estenoz D, Calderón M. Weaving the next generation of (bio)materials: Semi-interpenetrated and interpenetrated polymeric networks for biomedical applications. Adv Colloid Interface Sci 2023; 321:103026. [PMID: 39491440 DOI: 10.1016/j.cis.2023.103026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/01/2023] [Accepted: 10/12/2023] [Indexed: 11/05/2024]
Abstract
Advances in polymer science have led to the development of semi-interpenetrated and interpenetrated networks (SIPN/IPN). The interpenetration procedure allows enhancing several important properties of a polymeric material, including mechanical properties, swelling capability, stimulus-sensitive response, and biological performance, among others. More interestingly, the interpenetration (or semi-interpenetration) can be achieved independent of the material size, that is at the macroscopic, microscopic, or nanometric scale. SIPN/IPN have been used for a wide range of applications, especially in the biomedical field, including tissue engineering, delivery of chemical compounds or biological macromolecules, and multifunctional systems as theragnostic platforms. In the last years, this fascinating field has gained a great interest in the area of polymers for therapeutics; therefore, a comprehensive revision of the topic is timely. In this review, we describe in detail the most relevant synthetic approaches to fabricate polymeric IPN and SIPN, ranging from nanoscale to macroscale. The advantages of typical synthetic methods are analyzed, as well as novel and promising trends in the field of advanced material fabrication. Furthermore, the characterization techniques employed for these materials are summarized from physicochemical, thermal, mechanical, and biological perspectives. The applications of novel (semi-)interpenetrated structures are discussed with a focus on drug delivery, tissue engineering, and regenerative medicine, as well as combinations thereof.
Collapse
Affiliation(s)
- Silvestre Bongiovanni Abel
- Biomedical Polymers Division, INTEMA (National University of Mar del Plata-CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina; POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Carlos A Busatto
- Group of Polymers and Polymerization Reactors, INTEC (National University of Litoral-CONICET), Güemes 3450, Santa Fe 3000, Argentina
| | - Federico Karp
- Group of Polymeric Nanomaterials, INIFTA (National University of La Plata-CONICET), Diagonal 113, La Plata 1900, Argentina
| | - Diana Estenoz
- Group of Polymers and Polymerization Reactors, INTEC (National University of Litoral-CONICET), Güemes 3450, Santa Fe 3000, Argentina
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain.
| |
Collapse
|
4
|
Ding K, You Y, Tang L, Zhang X, Qin Z, Yin X. "One-pot" preparation and adsorption performance of chitosan-based La 3+/Y 3+ dual-ion-imprinted thermosensitive hydrogel. Carbohydr Polym 2023; 316:121071. [PMID: 37321747 DOI: 10.1016/j.carbpol.2023.121071] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/02/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023]
Abstract
Temperature-sensitive materials are increasingly of deep interest to researchers. Ion imprinting technology is widely used in the field of metal recovery. In order to solve the problem of rare earth metal recovery, we designed a temperature-sensitive dual-imprinted hydrogel adsorption product (CDIH) with chitosan as the matrix, N-isopropylacrylamide as a thermally responsive monomer, and La3+ and Y3+ as the co-templates. The reversible thermal sensitivity and ion-imprinted structure were determined by differential scanning calorimetry, Fourier transform infrared spectrometer, Raman spectra, Thermogravimetric analysis, X-ray photoelectron spectroscopy, Scanning electron microscopy and X-ray energy spectroscopy various characterizations and analyses. The simultaneous adsorption amount of CDIH for La3+ and Y3+ was 87.04 mg/g and 90.70 mg/g, respectively. The quasi-secondary kinetic model and Freundlich isotherms model well described the adsorption mechanism of CDIH. It's worthy to mention that CDIH could be well regenerated through washing with deionized water at 20 °C, with a desorption rate of 95.29 % for La3+ and 96.03 % for Y3+. And after 10 cycles of reuse, 70 % of the adsorption amount could be maintained, revealing excellent reusability. Furthermore, CDIH expressed better adsorption selectivity to La3+ and Y3+ than its non-imprinted counterparts in a solution containing six metal ions.
Collapse
Affiliation(s)
- Kaiqi Ding
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan 570228, PR China
| | - Ying You
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan 570228, PR China
| | - Liweng Tang
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan 570228, PR China
| | - Xinyue Zhang
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan 570228, PR China
| | - Ziyu Qin
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan 570228, PR China
| | - Xueqiong Yin
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan 570228, PR China.
| |
Collapse
|
5
|
Facile one-step synthesis of poly(styrene-glycidyl methacrylate)-Fe3O4 nanocomposite particles and application potency in glucose biosensors. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
6
|
Dutta S, Gupta RS, Pathan S, Bose S. Interpenetrating polymer networks for desalination and water remediation: a comprehensive review of research trends and prospects. RSC Adv 2023; 13:6087-6107. [PMID: 36814875 PMCID: PMC9939980 DOI: 10.1039/d2ra07843k] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/22/2023] [Indexed: 02/22/2023] Open
Abstract
Interpenetrating polymer network (IPN) architectures have gained a lot of interest in recent decades, mainly due to their wide range of applications including water treatment and environmental remediation. IPNs are composed of two or more crosslinked polymeric matrices that are physically entangled but not chemically connected. In polymer science, the interpenetrating network structure with its high polymer chain entanglement is commonly used to generate materials with many functional properties, such as mechanical robustness and adaptable structure. In order to remove a targeted pollutant from contaminated water, it is feasible to modify the network architectures to increase the selectivity by choosing the monomer appropriately. This review aims to give a critical overview of the recent design concepts of IPNs and their applications in desalination and water treatment and their future prospects. This article also discusses the inclusion of inorganic nanoparticles into traditional polymeric membrane networks and its advantages. In the first part, the current scenario for desalination, water pollution and conventional desalination technologies along with their challenges is discussed. Subsequently, the main strategies for the synthesis of semi-IPNs and full-IPNs, and their relevant properties in water remediation are presented based on the nature of the networks and mechanism, with an emphasis on the IPN membrane. This review article has thoroughly investigated and critically assessed published works that describe the latest study on developing IPN membranes, hydrogels and composite materials in water purification and desalination. The goal of this critical analysis is to elicit fresh perspectives regarding the application and advantages of IPNs in desalination and water treatment. This article will also provide a glimpse into future areas of research to address the challenges relating to advanced water treatment as well as its emerging sustainable approaches. The study has put forward a convincing justification and establishes the relevance of IPNs being one of the most intriguing and important areas for achieving a sustainable generation of advanced materials that could benefit mankind.
Collapse
Affiliation(s)
- Soumi Dutta
- Department of Materials Engineering, Indian Institute of Science Bengaluru 560012 India
| | - Ria Sen Gupta
- Department of Materials Engineering, Indian Institute of Science Bengaluru 560012 India
| | - Shabnam Pathan
- Department of Materials Engineering, Indian Institute of Science Bengaluru 560012 India
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science Bengaluru 560012 India
| |
Collapse
|
7
|
Taktak FF, Özyaranlar E. Semi-interpenetrating network based on xanthan gum-cl-2-(N-morpholinoethyl methacrylate)/titanium oxide for the single and binary removal of cationic dyes from water. Int J Biol Macromol 2022; 221:238-255. [DOI: 10.1016/j.ijbiomac.2022.08.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/15/2022] [Accepted: 08/20/2022] [Indexed: 11/29/2022]
|
8
|
Zhao Z, Zhang Z, Zhu Z, Zou X, Zhao Y, Shi J, Wang J. Photothermal responsive hydrogel for adsorbing heavy metal ions in aqueous solution. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Abousalman-Rezvani Z, Roghani-Mamaqani H, Riazi H, Abousalman-Rezvani O. Water treatment using stimuli-responsive polymers. Polym Chem 2022. [DOI: 10.1039/d2py00992g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Stimuli-responsive polymers are a new category of smart materials used in water treatment via a stimuli-induced purification process and subsequent regeneration processes.
Collapse
Affiliation(s)
- Zahra Abousalman-Rezvani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
- CSIRO, Manufacturing–Biomedical Manufacturing, Ian Wark Laboratory, Research Way, Clayton, VIC 3168, Australia
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran
| | - Hossein Riazi
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, USA
| | | |
Collapse
|
10
|
Nagaraja K, Krishna Rao KSV, Zo S, Soo Han S, Rao KM. Synthesis of Novel Tamarind Gum- co-poly(acrylamidoglycolic acid)-Based pH Responsive Semi-IPN Hydrogels and Their Ag Nanocomposites for Controlled Release of Chemotherapeutics and Inactivation of Multi-Drug-Resistant Bacteria. Gels 2021; 7:237. [PMID: 34940297 PMCID: PMC8701875 DOI: 10.3390/gels7040237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022] Open
Abstract
In this paper, novel pH-responsive, semi-interpenetrating polymer hydrogels based on tamarind gum-co-poly(acrylamidoglycolic acid) (TMGA) polymers were synthesized using simple free radical polymerization in the presence of bis[2-(methacryloyloxy)ethyl] phosphate as a crosslinker and potassium persulfate as a initiator. In addition, these hydrogels were used as templates for the green synthesis of silver nanoparticles (13.4 ± 3.6 nm in diameter, TMGA-Ag) by using leaf extract of Teminalia bellirica as a reducing agent. Swelling kinetics and the equilibrium swelling behavior of the TMGA hydrogels were investigated in various pH environments, and the maximum % of equilibrium swelling behavior observed was 2882 ± 1.2. The synthesized hydrogels and silver nanocomposites were characterized via UV, FTIR, XRD, SEM and TEM. TMGA and TMGA-Ag hydrogels were investigated to study the characteristics of drug delivery and antimicrobial study. Doxorubicin hydrochloride, a chemotherapeutic agent successfully encapsulated with maximum encapsulation efficiency, i.e., 69.20 ± 1.2, was used in in vitro release studies in pH physiological and gastric environments at 37 °C. The drug release behavior was examined with kinetic models such as zero-order, first-order, Higuchi, Hixson Crowell and Korsmeyer-Peppas. These release data were best fitted with the Korsemeyer-Peppas transport mechanism, with n = 0.91. The effects of treatment on HCT116 human colon cancer cells were assessed via cell viability and cell cycle analysis. The antimicrobial activity of TMGA-Ag hydrogels was studied against Staphylococcus aureus and Klebsiella pneumonia. Finally, the results demonstrate that TMGA and TMGA-Ag are promising candidates for anti-cancer drug delivery and the inactivation of pathogenic bacteria, respectively.
Collapse
Affiliation(s)
- Kasula Nagaraja
- Polymer Biomaterial Design and Synthesis Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa 516005, Andhra Pradesh, India;
| | - Kummari S. V. Krishna Rao
- Polymer Biomaterial Design and Synthesis Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa 516005, Andhra Pradesh, India;
| | - Sunmi Zo
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Korea; (S.Z.); (S.S.H.)
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Korea; (S.Z.); (S.S.H.)
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Korea
| | - Kummara Madhususdana Rao
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Korea; (S.Z.); (S.S.H.)
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Korea
| |
Collapse
|
11
|
Moosavi S, Manta O, El-Badry YA, Hussein EE, El-Bahy ZM, Mohd Fawzi NFB, Urbonavičius J, Moosavi SMH. A Study on Machine Learning Methods' Application for Dye Adsorption Prediction onto Agricultural Waste Activated Carbon. NANOMATERIALS 2021; 11:nano11102734. [PMID: 34685171 PMCID: PMC8540925 DOI: 10.3390/nano11102734] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022]
Abstract
The adsorption of dyes using 39 adsorbents (16 kinds of agro-wastes) were modeled using random forest (RF), decision tree (DT), and gradient boosting (GB) models based on 350 sets of adsorption experimental data. In addition, the correlation between variables and their importance was applied. After comprehensive feature selection analysis, five important variables were selected from nine variables. The RF with the highest accuracy (R2 = 0.9) was selected as the best model for prediction of adsorption capacity of agro-waste using the five selected variables. The results suggested that agro-waste characteristics (pore volume, surface area, agro-waste pH, and particle size) accounted for 50.7% contribution for adsorption efficiency. The pore volume and surface area are the most important influencing variables among the agro-waste characteristics, while the role of particle size was inconspicuous. The accurate ability of the developed models’ prediction could significantly reduce experimental screening efforts, such as predicting the dye removal efficiency of agro-waste activated carbon according to agro-waste characteristics. The relative importance of variables could provide a right direction for better treatments of dyes in the real wastewater.
Collapse
Affiliation(s)
- Seyedehmaryam Moosavi
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
- Correspondence:
| | - Otilia Manta
- Romanian Academy, Center for Financial and Monetary Research “Victor Slavescu”, 050711 Bucharest, Romania;
- Research Department, Romanian-American University, 012101 Bucharest, Romania
| | - Yaser A. El-Badry
- Chemistry Department, Faculty of Science, Taif University, Khurma, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Enas E. Hussein
- National Water Research Centre, P.O. Box 74, Shubra EI-Kheima 13411, Egypt;
| | - Zeinhom M. El-Bahy
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt;
| | - Noor fariza Binti Mohd Fawzi
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University for Malaya (UM), Kuala Lumpur 50603, Malaysia;
| | - Jaunius Urbonavičius
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| | - Seyed Mohammad Hossein Moosavi
- Faculty of Engineering, Centre for Transportation Research (CTR), University of Malaya (UM), Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
12
|
Pan Z, Huang Y, Guo H, Huang T, Wen G, Yu H, He J. Synthesis of dual
pH
‐ and temperature‐sensitive poly(N‐isopropylacrylamide‐co‐acrylic acid)/sewage sludge ash hydrogel with the simultaneously high performance of swelling and deswelling. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Zhihui Pan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta Guangzhou University Guangzhou China
- School of Civil Engineering Guangzhou University Guangzhou China
| | - Yingru Huang
- School of Civil Engineering Guangzhou University Guangzhou China
| | - Haoyong Guo
- School of Civil Engineering Guangzhou University Guangzhou China
| | - Tingjian Huang
- School of Civil Engineering Guangzhou University Guangzhou China
| | - Gang Wen
- Shanxi Key Laboratory of Environmental Engineering Xi'an University of Architecture and Technology Xi'an China
| | - Huarong Yu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta Guangzhou University Guangzhou China
- School of Civil Engineering Guangzhou University Guangzhou China
| | - Junguo He
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta Guangzhou University Guangzhou China
- School of Civil Engineering Guangzhou University Guangzhou China
| |
Collapse
|
13
|
Naseem K. Magnetic nanoparticles (Fe3O4 NPs) fabricated composite microgels and their applications in different fields. REV CHEM ENG 2021. [DOI: 10.1515/revce-2021-0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
This article encircles the research progress of Fe3O4 NPs loaded composite microgel particles. Preparation methodologies, properties and applications of Fe3O4 NPs loaded composite microgel particles are elaborated here. The effect of different factors on the stability and tunable properties of Fe3O4 NPs loaded composite microgel particles was also investigated in detail. These composite particles have exceptional magnetic properties that make them demanding composite nano-formulation in different fields. Applications of these composite microgel particles in different fields as micro-reactor, drug delivery vehicles, and in adsorption and catalysis have also been elaborated in detail. These composite microgel particles can easily be recovered from the reaction mixture by applying an external magnet due to the presence of fabricated Fe3O4 NPs.
Collapse
Affiliation(s)
- Khalida Naseem
- Department of Chemistry , Faculty of Sciences, University of Central Punjab , Lahore , 54590 , Pakistan
| |
Collapse
|
14
|
Brown K, Mendoza M, Tinsley T, Bee-DiGregorio MY, Bible M, Brooks JL, Colorado M, Esenther J, Farag A, Gill R, Kalivas EN, Lara R, Lutz A, Nazaire J, Rasines Mazo A, Rodriguez RS, Schwabacher JC, Zestos AG, Hartings MR, Fox DM. Polyvinyl alcohol-montmorillonite composites for water purification: Analysis of clay mineral cation exchange and composite particle synthesis. Polyhedron 2021; 205. [PMID: 34305255 DOI: 10.1016/j.poly.2021.115297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Municipal and residential water purification rely heavily on activated carbon (AC), but regeneration of AC is costly and cannot be performed at the point-of-use. Clay minerals (CMs) comprise a class of naturally abundant materials with known capacities for analyte adsorbance. However, the gel-forming properties of CMs in aqueous suspension pose problems for these materials being used in water-purification. In this study, we have taken three main steps to optimize the use of CMs in these applications. First, we produced several variants of montmorillonite CMs to evaluate the effect of interstitial cation hydrophobicity on the ability of the CM to uptake chargecarrying organic pollutants. These variants include CMs with the following cations: sodium, hexyl(triphenyl) phosphonium, hexyadecyl(triphenyl)phosphonium, and hexyl(tributyl)phosphonium. Second, we synthesized polymer-clay mineral composite films composed of polyvinyl alcohol (PVA), crosslinked in the presence of a CM variant. These films were evaluated for their ability to uptake malachite green (MG). Finally, we developed a one-pot synthetic method for the generation of polymer-clay particles for use in a continuous column process. We synthesized polymer-clay mineral particles using the highest performing CM (based on the film experiments) and evaluated the equilibrium capacity and kinetics of MG uptake from solution.
Collapse
Affiliation(s)
- Karlena Brown
- American University, Department of Chemistry, 4400 Massachusetts Ave, NW, Washington, DC 20016, United States
| | - Mary Mendoza
- American University, Department of Chemistry, 4400 Massachusetts Ave, NW, Washington, DC 20016, United States
| | - Tamanika Tinsley
- American University, Department of Chemistry, 4400 Massachusetts Ave, NW, Washington, DC 20016, United States
| | - Madeleine Y Bee-DiGregorio
- American University, Department of Chemistry, 4400 Massachusetts Ave, NW, Washington, DC 20016, United States
| | - Michael Bible
- American University, Department of Chemistry, 4400 Massachusetts Ave, NW, Washington, DC 20016, United States
| | - Jerin L Brooks
- American University, Department of Chemistry, 4400 Massachusetts Ave, NW, Washington, DC 20016, United States
| | - Melvin Colorado
- American University, Department of Chemistry, 4400 Massachusetts Ave, NW, Washington, DC 20016, United States
| | - Jacob Esenther
- American University, Department of Chemistry, 4400 Massachusetts Ave, NW, Washington, DC 20016, United States
| | - Andrew Farag
- American University, Department of Chemistry, 4400 Massachusetts Ave, NW, Washington, DC 20016, United States
| | - Rachel Gill
- American University, Department of Chemistry, 4400 Massachusetts Ave, NW, Washington, DC 20016, United States
| | - Eleni N Kalivas
- American University, Department of Chemistry, 4400 Massachusetts Ave, NW, Washington, DC 20016, United States
| | - Raquel Lara
- American University, Department of Chemistry, 4400 Massachusetts Ave, NW, Washington, DC 20016, United States
| | - Alex Lutz
- American University, Department of Chemistry, 4400 Massachusetts Ave, NW, Washington, DC 20016, United States
| | - Jasmine Nazaire
- American University, Department of Chemistry, 4400 Massachusetts Ave, NW, Washington, DC 20016, United States
| | - Alicia Rasines Mazo
- American University, Department of Chemistry, 4400 Massachusetts Ave, NW, Washington, DC 20016, United States
| | - Rebeca S Rodriguez
- American University, Department of Chemistry, 4400 Massachusetts Ave, NW, Washington, DC 20016, United States
| | - James C Schwabacher
- American University, Department of Chemistry, 4400 Massachusetts Ave, NW, Washington, DC 20016, United States
| | - Alexander G Zestos
- American University, Department of Chemistry, 4400 Massachusetts Ave, NW, Washington, DC 20016, United States
| | - Matthew R Hartings
- American University, Department of Chemistry, 4400 Massachusetts Ave, NW, Washington, DC 20016, United States
| | - Douglas M Fox
- American University, Department of Chemistry, 4400 Massachusetts Ave, NW, Washington, DC 20016, United States
| |
Collapse
|
15
|
Nayeem J, Al-Bari MAA, Mahiuddin M, Rahman MA, Mefford OT, Ahmad H, Rahman MM. Silica coating of iron oxide magnetic nanoparticles by reverse microemulsion method and their functionalization with cationic polymer P(NIPAm-co-AMPTMA) for antibacterial vancomycin immobilization. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Kaur S, Jindal R. Exploring the heavy metal ion sequestration ability of gum copal‐collagen hybrid based interpenetrating polymer network: Kinetics, isotherms, and biodegradation studies. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/pls2.10007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Savneet Kaur
- Department of Chemistry Dr. B.R. Ambedkar National Institute of Technology Jalandhar Punjab India
| | - Rajeev Jindal
- Department of Chemistry Dr. B.R. Ambedkar National Institute of Technology Jalandhar Punjab India
| |
Collapse
|
17
|
Naseem K, Farooqi ZH, Begum R, Ur Rehman MZ, Ghufran M, Wu W, Najeeb J, Irfan A. Synthesis and characterization of poly(N-isopropylmethacrylamide-acrylic acid) smart polymer microgels for adsorptive extraction of copper(II) and cobalt(II) from aqueous medium: kinetic and thermodynamic aspects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28169-28182. [PMID: 32415448 DOI: 10.1007/s11356-020-09145-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Extraction of toxic heavy metal ions from aqueous medium using poly(N-isopropylmethacrylamide-acrylic acid) (P(NiPmA-Ac)) microgels as adsorbent has been investigated in present study. P(NiPmA-Ac) microgel particles were prepared by free radical precipitation polymerization in aqueous medium. Morphology and size of the prepared microgel particles was investigated by transmission electron microscopy (TEM). The Fourier transform infrared (FT-IR) analysis of pure and metal ion-loaded microgel particles was performed to confirm the presence of various functionalities of microgel particles and their interaction with metal ions extracted from aqueous medium. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to investigate the thermal stability and thermal behavior of pure and metal ion-loaded microgel particles. Contents of metal ions loaded into microgel particles were determined by TGA analysis. It was observed that P(NiPmA-Ac) particles have a potential to extract Cu2+ and Co2+ ions from aqueous medium. The Freundlich adsorption isotherm model best interprets the adsorption process as compared with the Langmuir model. Value of R2 according to the Freundlich adsorption isotherm was found to be 0.994 and 0.993 for Cu2+ and Co2+ ions, respectively. Adsorption process was followed by pseudo second order kinetics for Cu2+ and Co2+ ions with R2 values of 0.999 for both metal ions. Thermodynamic study showed that adsorption process was spontaneous, feasible, and endothermic in nature. Entropy was decreased at adsorbate-adsorbent interface during adsorption process. Adsorbent was recycled and reused for removal of Cu2+ ions, and adsorption efficiency was found to be maintained up to three cycles. Microgel particles also have ability to extract Cu2+ ions efficiently from electroplating wastewater. Graphical abstract.
Collapse
Affiliation(s)
- Khalida Naseem
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, 54590, Pakistan
- Faculty of Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Zahoor H Farooqi
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, 54590, Pakistan.
| | - Robina Begum
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, 54590, Pakistan.
| | - Muhammad Zia Ur Rehman
- Department of Chemical Engineering, University of Engineering and Technology, Lahore, 54890, Pakistan
| | - Maida Ghufran
- Department of Chemistry, Kinnaird College for Women, Lahore, 54000, Pakistan
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jawayria Najeeb
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, 54590, Pakistan
| | - Ahmad Irfan
- Research Center for Advanced Materials Science, King Khalid University, Abha, Aseer, 61413, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Aseer, 61413, Saudi Arabia
| |
Collapse
|
18
|
Hossain MK, Minami H, Hoque SM, Rahman MM, Sharafat MK, Begum MF, Islam ME, Ahmad H. Mesoporous electromagnetic composite particles: Electric current responsive release of biologically active molecules and antibacterial properties. Colloids Surf B Biointerfaces 2019; 181:85-93. [DOI: 10.1016/j.colsurfb.2019.05.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022]
|
19
|
Jannat NE, Alam MA, Rahman M, Rahman M, Hossain M, Hossain S, Minami H, Ahmad H. Carboxylic acid modified pH-responsive composite polymer particles. JOURNAL OF POLYMER ENGINEERING 2019. [DOI: 10.1515/polyeng-2019-0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
pH-responsive polymers are attracting much interest from researchers because of their wide application potentials in areas like biosensor, bioseparator, bioreactor, biocatalysis, drug delivery, and water treatments. In this investigation a two-step process is evaluated to prepare carboxyl(–COOH) functional submicrometer-sized pH-responsive composite polymer particles. First, submicrometer-sized polystyrene (PS) particles are prepared by a modified conventional dispersion polymerization. In the second step, PS/poly(methacrylic acid-acrylamide-ethylene glycol dimethacrylate) [PS/P(MAA-AAm-EGDMA)] composite polymer particles are synthesized by seeded co-polymerization of methacrylic acid, acrylamide, and ethylene glycol dimethacrylate in the presence of PS seed particles. The size distributions and morphologies analyzed by electron micrographs suggested that seeded copolymerization smoothly occurred without formation of any secondary tiny copolymer particles. The surface composition and functionality are confirmed by Fourier transform infrared spectroscopy and proton nuclear magnetic resonance. The hydrodynamic diameter increased with the increase in pH values as part of the carboxyl groups are deprotonated, which favored the swelling of copolymer layer formed around the surface of PS particles. The adsorption of cationic and anionic surfactants at two different pH values showed that adsorption of cationic surfactant is favored at higher pH value whereas that of anionic surfactant is favored at lower pH value.
Collapse
Affiliation(s)
- Nur E. Jannat
- Department of Chemistry , Rajshahi University , Rajshahi 6205 , Bangladesh
| | - Md. Ashraful Alam
- Department of Chemistry , Rajshahi University , Rajshahi 6205 , Bangladesh
| | - M.A. Rahman
- Department of Chemistry , Rajshahi University , Rajshahi 6205 , Bangladesh
| | - M.M. Rahman
- Department of Chemistry , Rajshahi University , Rajshahi 6205 , Bangladesh
| | - M.K. Hossain
- Department of Chemistry , Rajshahi University , Rajshahi 6205 , Bangladesh
| | - S. Hossain
- Department of Chemistry , Rajshahi University , Rajshahi 6205 , Bangladesh
| | - H. Minami
- Graduate School of Engineering , Kobe University , Kobe 657-8501 , Japan
| | - Hasan Ahmad
- Department of Chemistry , Rajshahi University , Rajshahi 6205 , Bangladesh
| |
Collapse
|
20
|
Naseem K, Farooqi ZH, Begum R, Ghufran M, Rehman MZU, Najeeb J, Irfan A, Al-Sehemi AG. Poly(N-isopropylmethacrylamide-acrylic acid) microgels as adsorbent for removal of toxic dyes from aqueous medium. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Chen T, Hou K, Ren Q, Chen G, Wei P, Zhu M. Nanoparticle-Polymer Synergies in Nanocomposite Hydrogels: From Design to Application. Macromol Rapid Commun 2018; 39:e1800337. [DOI: 10.1002/marc.201800337] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/10/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Tao Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P.R. China
| | - Kai Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P.R. China
| | - Qianyi Ren
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P.R. China
| | - Guoyin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P.R. China
| | - Peiling Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P.R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P.R. China
| |
Collapse
|
22
|
Tanjim M, Rahman MA, Rahman MM, Minami H, Hoque SM, Sharafat MK, Gafur MA, Ahmad H. Mesoporous magnetic silica particles modified with stimuli-responsive P(NIPAM-DMA) valve for controlled loading and release of biologically active molecules. SOFT MATTER 2018; 14:5469-5479. [PMID: 29923579 DOI: 10.1039/c8sm00560e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mesoporous magnetic silica particles bearing a stimuli-responsive polymer valve were prepared and their performance as a microcapsule was evaluated. In this study, first, mesoporous magnetic iron oxide (Fe3O4) particles were prepared by a solvothermal method. Then, the magnetic particles were coated with silica and functionalized with vinyl groups using 3-(trimethoxysilyl)-propyl methacrylate (MPS). Subsequently, the Fe3O4/SiO2 composite particles grafted with MPS were used to carry out the seeded precipitation copolymerization of N-isopropylacrylamide (NIPAM) and 2,2-dimethylaminoethyl methacrylate (DMA). Here N,N'-methylenebisacrylamide (MBA) was used as a cross-linker. Brunauer-Emmett-Teller (BET) surface analysis suggested that the mesoporous structure was retained in the final Fe3O4/SiO2/P(NIPAM-DMA-MBA) composite hydrogel particles. The prepared Fe3O4/SiO2/P(NIPAM-DMA-MBA) composite hydrogel microspheres exhibited a pH-dependent volume phase transition. At lower pH values (<7), the inclusion of DMA shifted the volume phase transition to higher temperature because of the protonation of the tertiary amine groups. The composite hydrogel particles possessed a high saturation magnetization (51 emu g-1) and moved under the influence of an external magnetic field. The loading-release behaviour of these biologically active molecules suggested that a portion of the encapsulated guest molecules was released at a temperature below the lower critical solution temperature, LCST (<35 °C).
Collapse
Affiliation(s)
- Mustahida Tanjim
- Department of Chemistry, Rajshahi University, Rajshahi 6205, Bangladesh.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Cubic polyhedral oligomeric silsesquioxane nano-cross-linked hybrid hydrogels: Synthesis, characterization, swelling and dye adsorption properties. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
Kaur S, Jindal R, Kaur Bhatia J. Synthesis and RSM-CCD optimization of microwave-induced green interpenetrating network hydrogel adsorbent based on gum copal for selective removal of malachite green from waste water. POLYM ENG SCI 2018. [DOI: 10.1002/pen.24851] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Savneet Kaur
- Department of Chemistry; Dr. B.R. Ambedkar National Institute of Technology; Jalandhar Punjab 144011
| | - Rajeev Jindal
- Department of Chemistry; Dr. B.R. Ambedkar National Institute of Technology; Jalandhar Punjab 144011
| | | |
Collapse
|
25
|
Padmajan Sasikala S, Mahesh KV, Prabhakaran P, Peer Mohammed A, Ananthakumar S. Multiwall carbon nanotube reinforced teflon fibrils for oil spill clean up and its effective recycling as textile dye sorbent. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 211:198-205. [PMID: 29408067 DOI: 10.1016/j.jenvman.2018.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
Surface functionalized multiwall carbon nanotube (MWCNT) reinforced teflon fibrils (MWCNT@Teflon) were successfully tested as an - oil - absorbent that can be used as a potential oil recovery material at the time of oil spill accidents in water. We found that oleic acid functionalization of MWCNTs was important for their adhesion onto teflon fibrils and at the same time prevented the MWCNT leaching into oil/water interface. The fibrils had displayed superior mechanical and thermal stability and provided a new insight to oil spill clean-up applications with easy recovery of absorbed oil by simple squeezing. Recycling of exhausted MWCNT@Teflon fibrils after oil recovery applications was conducted by pyrolysis under inert atmosphere in presence of magnetic clay. The magnetic clay absorbed the pyrolysis products, resulting in a heterostructured magnetic clay carbon composite (MCC) which was found super paramagnetic and chemically stable in all pH. The MCC was found capable of adsorbing textile dye from water ultra-fast with in a maximum contact time of 2 min and magnetically separable after adsorption experiments.
Collapse
Affiliation(s)
- Suchithra Padmajan Sasikala
- Functional Materials, Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum, Kerala, India, 695 019.
| | - K V Mahesh
- Functional Materials, Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum, Kerala, India, 695 019
| | - Prem Prabhakaran
- Department of Advanced Materials and Chemical Engineering, Hannam University, Daejeon, 34054, South Korea
| | - A Peer Mohammed
- Functional Materials, Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum, Kerala, India, 695 019
| | - S Ananthakumar
- Functional Materials, Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum, Kerala, India, 695 019.
| |
Collapse
|
26
|
Naseem K, Hussain Farooqi Z, Zia Ur Rehman M, Atiq Ur Rehman M, Ghufran M. Microgels as efficient adsorbents for the removal of pollutants from aqueous medium. REV CHEM ENG 2018. [DOI: 10.1515/revce-2017-0042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Abstract
Due to their responsive behavior, high stability, and reusability, microgels have gained importance as adsorbents for the removal of aqueous pollutants such as heavy metals, nitroarenes, organic matter, and toxic dyes. However, there are few challenges that need to be addressed to make microgels as potential adsorbents for the removal of aqueous pollutants. This review article encircles the recent developments in the field of microgel usage as adsorbents for the extraction of aqueous pollutants. Many factors that influence the adsorption of pollutants such as pH, temperature of the medium, agitation time, pollutant concentration, microgel dose, and feed contents of microgels have been discussed in detail. Different adsorption isotherms as well as the kinetic and thermodynamic aspects of the adsorption process have also been enlightened to interpret the insight of the adsorption process. Microgel recovery from the reaction mixture as well as reusability is discussed from the financial point of view. The biodegradability of microgels induced due to the incorporation of specific biomacromolecules is also discussed.
Collapse
Affiliation(s)
- Khalida Naseem
- Institute of Chemistry , University of the Punjab, New Campus , Lahore 54590 , Pakistan
- Department of Chemistry , Kinnaird College for Women , Lahore 54000 , Pakistan
| | | | - Muhammad Zia Ur Rehman
- Department of Chemical Engineering , University of Engineering and Technology , Lahore 54890 , Pakistan
| | | | - Maida Ghufran
- Department of Chemistry , Kinnaird College for Women , Lahore 54000 , Pakistan
| |
Collapse
|
27
|
Kang J, Tang Y, Gao S, Liu L. One-dimensional controllable crosslinked polymers grafted with N-methyl-d-glucamine for effective boron adsorption. NEW J CHEM 2018. [DOI: 10.1039/c8nj00461g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modified one-dimensional crosslinked polymers exhibit good adsorption performances for boron, and magnetic separation is realized by doping Fe3O4 nanoparticles.
Collapse
Affiliation(s)
- Jingjing Kang
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Xinjiang University
- Institute of Applied Chemistry
- Urumqi 830046
| | - Yakun Tang
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Xinjiang University
- Institute of Applied Chemistry
- Urumqi 830046
| | - Shasha Gao
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Xinjiang University
- Institute of Applied Chemistry
- Urumqi 830046
| | - Lang Liu
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education
- Xinjiang University
- Institute of Applied Chemistry
- Urumqi 830046
| |
Collapse
|
28
|
Core-shell structured epoxide functional NiO/SiO2 nanocomposite particles and photocatalytic decolorization of congo red aqueous solution. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.06.081] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Duan L, Wang Y, Zhang Y, Wang Z, Li Y, He P. pH/redox/thermo-stimulative nanogels with enhanced thermosensitivity via incorporation of cationic and anionic components for anticancer drug delivery. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1323215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Lanlan Duan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, People’s Republic of China
| | - Yifeng Wang
- The State Key Laboratory of Bioreactor Engineering and Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Yuhong Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, People’s Republic of China
| | - Zhiguo Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, People’s Republic of China
| | - Yulin Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, People’s Republic of China
- The State Key Laboratory of Bioreactor Engineering and Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People’s Republic of China
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, Funchal, Portugal
| | - Peixin He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, People’s Republic of China
| |
Collapse
|
30
|
Li X, Li X, Lu X. Synthesis and Characterization of Multifunctional Interpenetrating Polymer and Its Applications in Protein Adsorption and Magnetite Loading. ChemistrySelect 2017. [DOI: 10.1002/slct.201700878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaoxiao Li
- College of Chemistry; Chemical Engineering and Biotechnology; Donghua University; Shanghai 201620 People's Republic of China
| | - Xueting Li
- College of Chemistry; Chemical Engineering and Biotechnology; Donghua University; Shanghai 201620 People's Republic of China
| | - Xihua Lu
- College of Chemistry; Chemical Engineering and Biotechnology; Donghua University; Shanghai 201620 People's Republic of China
| |
Collapse
|
31
|
Magnetite loaded cross-linked polystyrene composite particles prepared by modified suspension polymerization and their potential use as adsorbent for arsenic(III). Macromol Res 2017. [DOI: 10.1007/s13233-017-5065-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Wang Y, Xiong Y, Wang J, Zhang X. Ultrasonic-assisted fabrication of montmorillonite-lignin hybrid hydrogel: Highly efficient swelling behaviors and super-sorbent for dye removal from wastewater. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.02.050] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Multi-responsive magnetic microsphere of poly(N-isopropylacrylamide)/carboxymethylchitosan hydrogel for drug controlled release. Carbohydr Polym 2016; 151:251-259. [DOI: 10.1016/j.carbpol.2016.05.081] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/21/2016] [Accepted: 05/23/2016] [Indexed: 11/20/2022]
|
34
|
Ahmad H, Ali MA, Rahman MM, Alam MA, Tauer K, Minami H, Shabnam R. Novel carboxyl functional spherical electromagnetic polypyrrole nanocomposite polymer particles with good magnetic and conducting properties. POLYM INT 2016. [DOI: 10.1002/pi.5169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hasan Ahmad
- Department of Chemistry; Rajshahi University; Rajshahi 6205 Bangladesh
| | - Mohammad A Ali
- Department of Chemistry; Rajshahi University; Rajshahi 6205 Bangladesh
| | - Mohammad M Rahman
- Department of Chemistry; Rajshahi University; Rajshahi 6205 Bangladesh
| | - Mohammad A Alam
- Department of Chemistry; Rajshahi University; Rajshahi 6205 Bangladesh
| | - Klaus Tauer
- Graduate School of Engineering; Kobe University; Kobe 657-8501 Japan
| | - Hideto Minami
- Max Planck Institute of Colloid and Interfaces; Am Mühlenberg 14476 Golm Germany
| | - Rukhsana Shabnam
- Department of Chemistry; Rajshahi University; Rajshahi 6205 Bangladesh
| |
Collapse
|
35
|
Zhu B, Ma D, Wang J, Zhang J, Zhang S. Multi-responsive hydrogel based on lotus root starch. Int J Biol Macromol 2016; 89:599-604. [DOI: 10.1016/j.ijbiomac.2016.05.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/25/2016] [Accepted: 05/09/2016] [Indexed: 01/08/2023]
|
36
|
Karimi AR, Rahimi L, Azadikhah F, Ghadimi S. Preparation and lower critical solution temperature behavior investigation of new thermoresponsive poly( N-isopropylacrylamide-co-phthalocyanine) magnetic nanocomposites containing phthalocyanine-coated Fe 3O 4 hybrid. CAN J CHEM 2016. [DOI: 10.1139/cjc-2016-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
New thermoresponsive poly(N-isopropyl acrylamide-co-phthalocyanine) magnetic nanocomposites were prepared by in situ dispersion polymerization. 4-Nitrophthalic acid and CoCl2 were employed to synthesize tetranitrophthalocyanine and then it was converted to tetraaminophthalocyanine by sodium sulfide. The cobalt tetra(N-carbonylacrylic)aminophthalocyanine monomer was obtained by reaction of tetraaminophthalocyanine with maleic anhydrid. N-isopropylacrylamide as the main monomers, N,N′-methylenebisacrylamide as the cross-linker, poly(N-vinylpyrrolidone) as the steric stabilizer, potassium persulfate as the initiator, and new Fe-phthalocyanine oligomer/Fe3O4 nanohybrid particles (FePc/Fe3O4) as nanoparticles were used. The magnetite nanocomposites were characterized by Fourier-transform infrared spectrum, X-ray diffraction spectroscopy, scanning electron microscopy, thermogravimetric analysis, vibrating sample magnetometer, and differential scanning calorimetry. The results showed that the lower critical solution temperatures of the hydrogel nanocomposits were influenced by the content of FePc/Fe3O4 hybrid nanoparticles. The lower critical solution temperatures of the magnetic hydrogel nanocomposites F3 and F4 were at about 34 and 40 °C. The results show that the increase of FePc/Fe3O4 nanoparticle content caused the LCSTs of the hydrogels to increase. FePc/Fe3O4 nanoparticles were prepared from 4,4′-isopropyliden-bis-dioxydiphthalonitrile and FeCl3·6H2O via the solvothermal route. The sizes of nanoparticles were determined by scanning electron microscopy. They are spherical in shape and the average size of them is between 30 and 70 nm.
Collapse
Affiliation(s)
- Ali Reza Karimi
- Department of Chemistry, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
- Department of Chemistry, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
| | - Leila Rahimi
- Department of Chemistry, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
- Department of Chemistry, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
| | - Farnaz Azadikhah
- Department of Chemistry, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
- Department of Chemistry, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
| | - Sahar Ghadimi
- Department of Chemistry, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
- Department of Chemistry, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
| |
Collapse
|
37
|
Preparation of Uniform-Sized and Dual Stimuli-Responsive Microspheres of Poly( N-Isopropylacrylamide)/Poly(Acrylic acid) with Semi-IPN Structure by One-Step Method. Polymers (Basel) 2016; 8:polym8030090. [PMID: 30979184 PMCID: PMC6432549 DOI: 10.3390/polym8030090] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/31/2016] [Accepted: 03/14/2016] [Indexed: 02/06/2023] Open
Abstract
A novel strategy was developed to synthesize uniform semi-interpenetrating polymer network (semi-IPN) microspheres by premix membrane emulsification combined with one-step polymerization. Synthesized poly(acrylic acid) (PAAc) polymer chains were added prior to the inner water phase, which contained N-isopropylacrylamide (NIPAM) monomer, N,N′-methylene bisacrylamide (MBA) cross-linker, and ammonium persulfate (APS) initiator. The mixtures were pressed through a microporous membrane to form a uniform water-in-oil emulsion. By crosslinking the NIPAM in a PAAc-containing solution, microspheres with temperature- and pH-responsive properties were fabricated. The semi-IPN structure and morphology of the microspheres were confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The average diameter of the obtained microspheres was approximately 6.5 μm, with Span values of less than 1. Stimuli-responsive behaviors of the microspheres were studied by the cloud-point method. The results demonstrated that semi-IPN microspheres could respond independently to both pH and temperature changes. After storing in a PBS solution (pH 7.0) at 4 °C for 6 months, the semi-IPN microspheres remained stable without a change in morphology or particle size. This study demonstrated a promising method for controlling the synthesis of semi-IPN structure microspheres with a uniform size and multiple functionalities.
Collapse
|
38
|
|
39
|
Ahmad H, Alam MM, Rahman MA, Minami H, Gafur MA. Epoxide Functional Temperature-Sensitive Semi-IPN Hydrogel Microspheres for Isolating Inorganic Nanoparticles. ADVANCES IN POLYMER TECHNOLOGY 2016. [DOI: 10.1002/adv.21645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- H. Ahmad
- Department of Chemistry; Rajshahi University; Rajshahi 6205 Bangladesh
| | - M. M. Alam
- Department of Chemistry; Rajshahi University; Rajshahi 6205 Bangladesh
| | - M. A. Rahman
- Department of Chemistry; Rajshahi University; Rajshahi 6205 Bangladesh
| | - H. Minami
- Graduate School of Engineering; Kobe University; Kobe 657-8501 Japan
| | - M. A. Gafur
- Pilot Plant and Process Development Centre; BCSIR; Dhaka 1205 Bangladesh
| |
Collapse
|
40
|
Hou C, Ma K, Jiao T, Xing R, Li K, Zhou J, Zhang L. Preparation and dye removal capacities of porous silver nanoparticle-containing composite hydrogels via poly(acrylic acid) and silver ions. RSC Adv 2016. [DOI: 10.1039/c6ra23371f] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hierarchical composite hydrogels (PAA–Ag/AgNPs) are prepared via a simple self-assembly process and coordination reaction, and demonstrate good catalytic capability for wide applications.
Collapse
Affiliation(s)
- Caili Hou
- State Key Laboratory of Metastable Materials Science and Technology
- Yanshan University
- Qinhuangdao 066004
- P. R. China
- Hebei Key Laboratory of Applied Chemistry
| | - Kai Ma
- Hebei Key Laboratory of Applied Chemistry
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao 066004
- P. R. China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology
- Yanshan University
- Qinhuangdao 066004
- P. R. China
- Hebei Key Laboratory of Applied Chemistry
| | - Ruirui Xing
- Hebei Key Laboratory of Applied Chemistry
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao 066004
- P. R. China
| | - Kaikai Li
- Hebei Key Laboratory of Applied Chemistry
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao 066004
- P. R. China
| | - Jingxin Zhou
- Hebei Key Laboratory of Applied Chemistry
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao 066004
- P. R. China
| | - Lexin Zhang
- Hebei Key Laboratory of Applied Chemistry
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao 066004
- P. R. China
| |
Collapse
|
41
|
Development and characterization of a new hydrogel based on galactomannan and κ-carrageenan. Carbohydr Polym 2015; 134:673-9. [DOI: 10.1016/j.carbpol.2015.08.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/14/2015] [Accepted: 08/14/2015] [Indexed: 12/17/2022]
|
42
|
Taktak F, Bütün V. Novel zwitterionic ABA-type triblock copolymer for pH- and salt-controlled release of risperidone. INT J POLYM MATER PO 2015. [DOI: 10.1080/00914037.2015.1099100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Lorenzo RA, Carro AM, Concheiro A, Alvarez-Lorenzo C. Stimuli-responsive materials in analytical separation. Anal Bioanal Chem 2015; 407:4927-48. [DOI: 10.1007/s00216-015-8679-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/30/2015] [Accepted: 04/07/2015] [Indexed: 02/07/2023]
|
44
|
Shabnam R, Ahmad H. Hydrophobic poly(lauryl methacrylate)-coated magnetic nano-composite particles for removal of organic pollutants. POLYM ADVAN TECHNOL 2015. [DOI: 10.1002/pat.3468] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rukhsana Shabnam
- Department of Chemistry; Rajshahi University; Rajshahi 6205 Bangladesh
| | - Hasan Ahmad
- Department of Chemistry; Rajshahi University; Rajshahi 6205 Bangladesh
| |
Collapse
|