1
|
Zhang W, Wu W, Wu J, Liu X, Tian J, Li H, Li Q, Zheng Y. Surfactant enhanced thermally activated persulfate remediating PAHs-contaminated soil: Insight into compatibility, degradation processes and mechanisms. CHEMOSPHERE 2023:139086. [PMID: 37263513 DOI: 10.1016/j.chemosphere.2023.139086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/03/2023]
Abstract
Although advanced oxidation processes (AOPs) based on persulfate (PS) is an attractive approach for repairing polycyclic aromatic hydrocarbons (PAHs) contaminated soils, limited oxidizability of PAHs and efficient in-situ activation of PS hinder its practical applications. In this study, we comprehensively examined the contributions of five representative surfactants on the oxidative remediation of PAHs-contaminated soil in terms of degradation kinetics of the pollutants, and further proposed an innovative coupling strategy of surfactant-enhanced thermally activated PS remediating PAHs-contaminated soil. The results showed that the degradation process of PAHs in soil was significantly facilitated only via adding sodium dodecyl benzenesulfonate (SDBS) and fitted the pseudo-first-order kinetic pattern. The removal of phenanthrene (PHE) reached 98.56% at 50 mM PS, 50 °C, 5 g L-1 SDBS and 48 h reaction time, accompanying an increase of 25% in reaction rate constant from 0.0572 h-1 (without SDBS) to 0.0715 h-1. More importantly, SDBS-enhanced thermally activated PS degrading PAHs with higher benzene rings were more effective as the reaction rate constants of pyrene (PYR) and benzo(a)anthracene (BaA) were significantly increased by 49.40% and 56.86%. Additionally, only appropriate dosages (5-10 g L-1) of SDBS facilitated the oxidative degradation of PHE, as well as the aging time of contaminant-soil contact slowed down the enhancement of oxidative degradation of PHE by SDBS. Scavenger experiments demonstrated that SO4·- and 1O2 were the dominant reactive oxygen species. Finally, a possible oxidative degradation pathway of PHE was proposed, and the toxicity of derived intermediates got alleviation by the assessment using the Toxicity Estimation Software Tool. This investigation was promising for in situ scale-up remediation of PAHs-contaminated soil.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian, 361005, PR China
| | - Wenjie Wu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian, 361005, PR China
| | - Jianfei Wu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian, 361005, PR China
| | - Xiaobin Liu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian, 361005, PR China; College of the Environment & Ecology, Xiamen University, Xiamen, PR China
| | - Jian Tian
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian, 361005, PR China
| | - Heng Li
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Tan Kah Kee College, Xiamen University, Zhangzhou, PR China
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian, 361005, PR China; College of Food and Biology Engineering, Jimei University, 185 Yinjiang Road, Xiamen, Fujian, 361021, PR China.
| | - Yanmei Zheng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian, 361005, PR China.
| |
Collapse
|
2
|
Patel B, Singh S, Parikh K, Chavda V, Ray D, Aswal VK, Kumar S. Micro-Environment mapping of mole fraction inspired contrasting charged aqueous gemini micelles: A drug solubilization/release study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
3
|
Patel B, Singh S, Parikh K, Chavda V, Hirpara D, Ray D, Aswal VK, Kumar S. Composition triggered Aggregation/Solubilization behaviour of mixed counter charged gemini Surfactants: A Multi-technique investigations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Saroj, Sharma L. Influence of Nature of Spacer and Hydrocarbon Chain Length on Micellar Encapsulation of Polynuclear Aromatic Hydrocarbons by Carbohydrate Derived
Non‐Ionic
Gemini Surfactants in Aqueous Ethanol Medium. J SURFACTANTS DETERG 2020. [DOI: 10.1002/jsde.12446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Saroj
- Bipin Tripathi Kumaon Institute of Technology Dwarahat Almora 263653 Uttarakhand India
| | - Lalit Sharma
- Shaheed Bhagat Singh Technical Campus Ferozepur 152004 Punjab India
| |
Collapse
|
5
|
Liang Y, Zhang S, Li H, Mao X, Li Y, Xie X, Ren J, Li G, Lian R. Solubilization of polycyclic aromatic hydrocarbons by novel ester-bonded Gemini prolinol-based surfactant and its binary mixtures with conventional surfactants. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2019.1566924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yaqin Liang
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| | - Shuping Zhang
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| | - Hui Li
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| | - Xiaoming Mao
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| | - Yan Li
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| | - Xuanjie Xie
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| | - Jiaqi Ren
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| | - Gang Li
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| | - Rui Lian
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| |
Collapse
|
6
|
Singh S, Parikh K, Kumar S, Aswal V, Kumar S. Spacer nature and composition as key factors for structural tailoring of anionic/cationic mixed gemini micelles: Interaction and solubilization studies. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Oremusová J, Vitková Z, Vitko A, Tárník M, Miklovičová E, Ivánková O, Murgaš J, Krchňák D. Effect of Molecular Composition of Head Group and Temperature on Micellar Properties of Ionic Surfactants with C12 Alkyl Chain. Molecules 2019; 24:molecules24030651. [PMID: 30759856 PMCID: PMC6384972 DOI: 10.3390/molecules24030651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 12/05/2022] Open
Abstract
The paper analyses influences of the temperature and hydrophilic groups on micellar properties of ionic surfactants with 12-carbonic hydrophobic chains. The aim is to assess the impact of hydrophilic groups and temperature on thermodynamic parameters and micellization. This knowledge is indispensable for the formulation of new dosage forms. The method uses conductometric measurements. The following hydrophilic groups are analyzed: trimethylammonium bromide, trimethylammonium chloride, ethyldimethylammonium bromide, didodecyldimethylammonium bromide, pyridinium chloride, benzyldimethyl-ammonium chloride, methylephedrinium bromide, cis and trans-[(2-benzyloxy)-cyclohexyl-methyl]-N, N-dimethylammonium bromide, sodium sulphate and lithium sulphate. Except for a few cases, there is a good agreement between values of critical micellar concentrations (CMC) and critical vesicle concentration (CVC) obtained here and those which were obtained by other authors and/or by other physicochemical methods. Values of the CMC are compared with respect to the molar masses of hydrophilic groups. It was found that CMC values increased non-linearly with increasing system temperature. The degrees of counterion binding and thermodynamic parameters, like the standard molar Gibbs energy, enthalpy and entropy of micellization are determined and discussed in detail. The results obtained will be incorporated into in silico processes of modeling and design of optimal dosage forms, a current interdisciplinary research focus of the team.
Collapse
Affiliation(s)
- Jarmila Oremusová
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia.
| | - Zuzana Vitková
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia.
| | - Anton Vitko
- Institute of Robotics and Cybernetics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, 812 19 Bratislava, Slovakia.
| | - Marián Tárník
- Institute of Robotics and Cybernetics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, 812 19 Bratislava, Slovakia.
| | - Eva Miklovičová
- Institute of Robotics and Cybernetics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, 812 19 Bratislava, Slovakia.
| | - Oľga Ivánková
- Department of Structural Mechanics, Faculty of Civil Engineering, Slovak University of Technology, 810 05 Bratislava, Slovakia.
| | - Ján Murgaš
- Institute of Robotics and Cybernetics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, 812 19 Bratislava, Slovakia.
| | - Daniel Krchňák
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia.
| |
Collapse
|
8
|
Abdul Rub M. Aggregation and interfacial phenomenon of amphiphilic drug under the influence of pharmaceutical excipients (green/biocompatible gemini surfactant). PLoS One 2019; 14:e0211077. [PMID: 30726255 PMCID: PMC6364909 DOI: 10.1371/journal.pone.0211077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/07/2019] [Indexed: 12/04/2022] Open
Abstract
In the current study, we have examined the interaction amongst an antidepressant drug amitriptyline hydrochloride (AMH) and ethane-1, 2-diyl bis(N,N-dimethyl-N-cetylammoniumacetoxy) dichloride (16-E2-16, a green gemini surfactant) through tensiometric and fluorimetric techniques in aqueous/electrolyte/urea solutions. Significant variations are observed in the various evaluated parameters in the present study. Gemini 16-E2-16 has outstanding surface properties along with a much lower cmc value, demonstrating very little toxicity as well as considerable antimicrobial activity. The cmc values of mixtures decrease through increase in mole fraction (α1) of 16-E2-16, which specifies the nonideality of the solution mixtures, along with demonstrating the occurrence of mixed micellization too. Negative βRub values signify on the whole attractive force of interaction between constituents of mixed micelles. Owing to the incidence of electrolyte NaCl (50 mmol.kg–1), lowering of the micelles’ surface charge happens, resulting in aggregation taking place at lower concentration while the presence of urea (NH2CONH2) halts micellization taking place, which means the cmc value increases in the attendance of urea. The ΔGmo values for all systems were negative along with the presence of electrolyte/urea. The excess free energy (Gex) of studied mixed systems was also estimated and found to be negative for all the systems. Using the fluorescence quenching method, the micelle aggregation number (Nagg) was evaluated and it was found that the contribution of gemini surfactant was always more than that of the AMH and their value enhances in the existence of electrolyte while decreasing in the attendance of NH2CONH2 in the system. In addition, other fluorescence parameters such as micropolarity (I1/I3), dielectric constant (Dexp) as well as Stern–Volmer binding constants (Ksv) of mixed systems were evaluated and the results showed the synergistic performance of the AMH + 16-E2-16 mixtures. Along with tensiometric and fluorimetric techniques, FT-IR spectroscopy was also engaged to reveal the interaction among constituents.
Collapse
Affiliation(s)
- Malik Abdul Rub
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- * E-mail:
| |
Collapse
|
9
|
Mixed micellization/clouding assisted solubilization of polycyclic aromatic hydrocarbon: Potential in environmental remediation. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.09.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Fait ME, Hermet M, Vazquez R, Mate S, Daza Millone MA, Vela ME, Morcelle SR, Bakas L. Volume expansion of erythrocytes is not the only mechanism responsible for the protection by arginine-based surfactants against hypotonic hemolysis. Colloids Surf B Biointerfaces 2018; 171:134-141. [PMID: 30025375 DOI: 10.1016/j.colsurfb.2018.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/26/2018] [Accepted: 07/02/2018] [Indexed: 01/09/2023]
Abstract
A novel arginine-based cationic surfactant Nα-benzoyl-arginine dodecylamide (Bz-Arg-NHC12) was synthesized in our laboratory. In this paper we study the interaction of Bz-Arg-NHC12 with sheep and human red blood cells (SRBC and HRBC respectively) due to their different membrane physicochemical/biophysical properties. SRBC demonstrated to be slightly more resistant than HRBC to the hemolytic effect of the surfactant, being the micellar structure responsible for the hemolytic effect in both cases. Moreover, besides the hemolytic effect, a dual behavior was observed for the surfactant studied: Bz-Arg-NHC12 was also able to protect red blood cells against hypotonic lysis for HRBC in a wide range of surfactant concentrations. However, the degree of protection showed for SRBC was about 50% lower than for HBRC. In this regard, a remarkable volume expansion was evidenced only for SRBC treated with Bz-Arg-NHC12, although no correlation with the antihemolytic potency (pAH) was found. On the contrary, our surfactant showed a greater pAH when human erythrocytes were submitted to hypotonic stress, with a low volume expansion, showing a higher amount of solubilized phospholipids in the supernatant when compared with SRBC behavior. Surface plasmon resonance measurements show the molecular interaction of the surfactant with lipid bilayers from HRBC and SRBC lipids, demonstrating that in the latter neither microvesicle release or lipid extraction occurred. Our results demonstrate that the volume expansion of erythrocytes is not the only mechanism responsible for the protection by surfactants against hypotonic hemolysis: volume expansion could be compensated via microvesicle release or by the extraction of membrane components upon collisions between red blood cells and surfactant aggregates depending on the membrane composition.
Collapse
Affiliation(s)
- M Elisa Fait
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Melisa Hermet
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Romina Vazquez
- Instituto de Investigaciones Bioquímicas La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Sabina Mate
- Instituto de Investigaciones Bioquímicas La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - M Antonieta Daza Millone
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT- La Plata, CONICET, Universidad Nacional de La Plata, Sucursal 4 Casilla de Correo 16, 1900, La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - M Elena Vela
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT- La Plata, CONICET, Universidad Nacional de La Plata, Sucursal 4 Casilla de Correo 16, 1900, La Plata, Argentina
| | - Susana R Morcelle
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Laura Bakas
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina.
| |
Collapse
|
11
|
Fatma N, Panda M, Kabir-ud-Din. Solubility Enhancement of Polycyclic Aromatic Hydrocarbons by an Eco-Friendly Ester-Linked Gemini Surfactant and its Mixtures with Conventional Surfactants. TENSIDE SURFACT DET 2018. [DOI: 10.3139/113.110559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractThe present study deals with the solubility enhancement of the two polycyclic aromatic hydrocarbons (PAHs) anthracene and pyrene in the aqueous micellar system of the cationic ester-containing cleavable gemini surfactant ethane-1,2-diyl-bis(N,N-dimethyl-N-tetradecylammoniumacetoxy) dichloride (14-E2-14 = C14H29(CH3)2N+(CH2COOCH2)2N+(CH3)2C14H29 · 2Cl−)), and its equimolar binary mixtures with some typical conventional cationic, anionic and non-ionic surfactants. The surface tension and conductivity measurements were used to evaluate the physicochemical parameters such as the critical micelle concentration (CMC), the interaction parameter (βm) and Gibbs excess free energy of micellization (ΔGexm) of the systems. The extent of solubilization of the micellar systems towards PAHs has been quantified in terms of molar solublization ratio (MSR), micellar/water partition coefficient (ln Km) and the standard Gibbs free energy of solubilization (ΔGs0). Above the CMC, all studied single as well as binary gemini-conventional surfactant systems show an increase in solubilization of the PAHs. For pure systems, the MSR value of Brij 58 was found to be significantly higher than that of the other amphiphiles. Amongst the mixed surfactant systems, the solubility enhancement of anthracene is found to be maximum in the 14-E2-14 + SDS/SDBS system whereas the system14-E2-14 + Brij 58 shows a higher solubility for pyrene.
Collapse
|
12
|
Rigid amphipathic fusion inhibitors demonstrate antiviral activity against African swine fever virus. J Gen Virol 2018; 99:148-156. [DOI: 10.1099/jgv.0.000991] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Cabana Saavedra LC, Pachón Gómez EM, Oliveira RG, Fernández MA. Aggregation behaviour and solubilization capability of mixed micellar systems formed by a gemini lipoamino acid and a non-ionic surfactant. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Singh S, Bhadoria A, Parikh K, Yadav SK, Kumar S, Aswal VK, Kumar S. Self-Assembly in Aqueous Oppositely Charged Gemini Surfactants: A Correlation between Morphology and Solubilization Efficacy. J Phys Chem B 2017; 121:8756-8766. [DOI: 10.1021/acs.jpcb.7b03989] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sneha Singh
- Applied Chemistry
Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara 390 001, India
| | - Arti Bhadoria
- Applied Chemistry
Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara 390 001, India
| | - Kushan Parikh
- Department of Applied Science, Faculty of Life, Health & Applied Science, ITM Vocational University, Vadodara 391 760, India
| | - Sanjay Kumar Yadav
- Soft
Material Research Laboratory, Department of Chemistry, Faculty of
Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India
| | - Sugam Kumar
- Solid State Physics
Divison, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - V. K. Aswal
- Solid State Physics
Divison, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Sanjeev Kumar
- Applied Chemistry
Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara 390 001, India
| |
Collapse
|
15
|
Lamichhane S, Bal Krishna KC, Sarukkalige R. Surfactant-enhanced remediation of polycyclic aromatic hydrocarbons: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 199:46-61. [PMID: 28527375 DOI: 10.1016/j.jenvman.2017.05.037] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are toxic, mutagenic and carcinogenic organic compounds that are widely present in the environment. The bioremediation of PAHs is an economical and environmentally friendly remediation technique, but it is limited because PAHs have low water solubility and fewer bioavailable properties. The solubility and bioavailability of PAHs can be increased by using surfactants to reduce surface tension and interfacial tension; this method is called surfactant-enhanced remediation (SER). The SER of PAHs is influenced by many factors such as the type and concentration of surfactants, PAH hydrophobicity, temperature, pH, salinity, dissolved organic matter and microbial community. Furthermore, as mixed micelles have a synergistic effect on PAH solubilisation, selecting the optimum ratio of mixed surfactants leads to effective PAH remediation. Although the use of surfactants inhibits microbial activities in some cases, this could be avoided by choosing an optimum combination of surfactants and a proper microbial community for the targeted PAH(s), resulting in up to 99.99% PAH removal. This article reviews the literature on SER of PAHs, including surfactant types, the synergistic effect of mixed micelles on PAH removal, the impact of surfactants on the PAH biodegradation process, factors affecting the SER process, and the mechanisms of surfactant-enhanced solubilisation of PAHs.
Collapse
Affiliation(s)
- Shanti Lamichhane
- Department of Civil Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - K C Bal Krishna
- School of Computing Engineering and Mathematics, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Ranjan Sarukkalige
- Department of Civil Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| |
Collapse
|
16
|
Panda M, Kamil M. Polymer-Amphiphile Interactions: An Overview. EURASIAN CHEMICO-TECHNOLOGICAL JOURNAL 2017. [DOI: 10.18321/ectj643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Interactions between the polymers and amphiphiles in aqueous solutions have generated considerable interest among researchers because of the widespread applications, relatively complex behavior and improved physicochemical properties of the mixtures. Numerous studies on the surfactant-polymer systems have been carried out in recent years and the number of scientific reports has considerably increased. Various applications of polymers in different areas and many works concerning the amphiphiles are being published every year. Usually, the mixed systems containing polymers and amphiphiles show solution properties different from those of individual solutions due to interaction between the components. The present review article mainly focuses on the behaviour of polymers in aqueous solutions, in the absence or presence of amphiphiles, such as surfactants, drugs, etc. It also summarizes effect of the nature of amphiphiles on aggregation properties of polymers in aqueous solution, and interaction of conventional as well as gemini surfactants with polymers.
Collapse
|
17
|
Yadav SK, Parikh K, Kumar S. Mixed micelle formation of cationic gemini surfactant with anionic bile salt: a PAH solubilization study. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.02.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Yadav SK, Parikh K, Kumar S. Solubilization potentials of single and mixed oppositely charged gemini surfactants: A case of polycyclic aromatic hydrocarbons. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.11.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Surface activity, micellization and solubilization of cationic gemini surfactant-conventional surfactants mixed systems. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.11.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Interfacial dynamic properties and dilational rheology of mixed anionic and cationic Gemini surfactant systems at air–water interface. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.09.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Solution behaviour of an ester-functionalized gemini surfactant, ethane-1,2-diyl bis(N,N-dimethyl-N-dodecylammoniumacetoxy) dichloride in the presence of inorganic and organic salts. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2016.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Biophysical perspective of the binding of ester-functionalized gemini surfactants with catalase. Int J Biol Macromol 2016; 88:614-23. [DOI: 10.1016/j.ijbiomac.2016.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/02/2016] [Accepted: 04/05/2016] [Indexed: 12/11/2022]
|
23
|
Synthesis and Surface Active Properties of a Gemini Imidazoline Amphoteric Surfactant. J SURFACTANTS DETERG 2016. [DOI: 10.1007/s11743-016-1841-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Effect of salt counterions on the physicochemical characteristics of novel green surfactant, ethane-1,2-diyl bis(N,N-dimethyl-N-tetradecylammoniumacetoxy) dichloride. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Martín VI, Sarrión B, López-López M, López-Cornejo P, Robina I, Moyá ML. Reversibility of the interactions between a novel surfactant derived from lysine and biomolecules. Colloids Surf B Biointerfaces 2015; 135:346-356. [PMID: 26263220 DOI: 10.1016/j.colsurfb.2015.07.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/20/2015] [Accepted: 07/28/2015] [Indexed: 11/26/2022]
Abstract
In this work the novel cationic surfactant derived from lysine (S)-5-acetamido-6-(dodecylamino)-N,N,N-trimethyl-6-oxohexan-1-ammonium chloride, LYCl, was prepared and the physicochemical characterization of its aqueous solutions was carried out. The binding of LYCl to bovine serum albumin, BSA, and to double stranded calf thymus DNA, ctDNA, was investigated using several techniques. Results show that LYCl binding to BSA is followed by a decrease in the α-helix content caused by the unfolding of the protein. LYCl association to ctDNA mainly occurs through groove binding and electrostatic interactions. These interactions cause morphological changes in the polynucleotide from an elongated coil structure to a more compact globular structure, resulting in the compaction of ctDNA. Addition of β-cyclodextrin, β-CD, to the BSA-LYCl and ctDNA-LYCl complexes is followed by the refolding of BSA and the decompaction of ctDNA. This can be explained by the ability of β-CD to hinder BSA-LYCl and ctDNA-LYCl interactions due to the stronger and more specific β-CD-LYCl hydrophobic interactions. The stoichiometry of the β-CD:LYCl inclusion complex and its formation equilibrium constant were determined in this work. The reported procedure using β-CD is an efficient way to refold proteins and to decompact DNA, after the morphological changes caused in the biomolecules by their interaction with cationic surfactants.
Collapse
Affiliation(s)
- Victoria Isabel Martín
- Department of Physical Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain
| | - Beatriz Sarrión
- Department of Physical Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain
| | - Manuel López-López
- Department of Chemical Engineering, Physical Chemistry and Organic Chemistry, University of Huelva, Campo de El Carmen, 21071 Huelva, Spain
| | - Pilar López-Cornejo
- Department of Physical Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain
| | - Inmaculada Robina
- Department of Organic Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain
| | - María Luisa Moyá
- Department of Physical Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain.
| |
Collapse
|
26
|
Interaction of a green ester-bonded gemini surfactant with xanthine oxidase: Biophysical perspective. Int J Biol Macromol 2015; 78:62-71. [DOI: 10.1016/j.ijbiomac.2015.03.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/20/2015] [Accepted: 03/22/2015] [Indexed: 11/22/2022]
|
27
|
Mixed aggregates based on tetronic-fluorinated surfactants for selective oils capture. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.02.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Song L, Tian H, Pei X, Zhang Z, Zhang W, Qian J. Colorimetric and fluorescent detection of GSH with the assistance of CTAB micelles. RSC Adv 2015. [DOI: 10.1039/c5ra07777j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two fluorescent probes STP1–2 for GSH and mercapto-containing proteins were designed. Both probes have potential application in fluorescence imaging of GSH within living cells.
Collapse
Affiliation(s)
- Lun Song
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Haiyu Tian
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Xiaoliang Pei
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Ziyou Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Junhong Qian
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| |
Collapse
|
29
|
Akram M, Bhat IA, Bhat WF. Conformational alterations induced by novel green 16-E2-16 gemini surfactant in xanthine oxidase: Biophysical insights from tensiometry, spectroscopy, microscopy and molecular modeling. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 150:440-50. [PMID: 26057098 DOI: 10.1016/j.saa.2015.05.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 05/07/2015] [Accepted: 05/12/2015] [Indexed: 05/07/2023]
Abstract
Herein we report the interaction of a biodegradable gemini surfactant, ethane-1,2-diyl bis(N,N-dimethyl-N-hexadecylammoniumacetoxy) dichloride (16-E2-16) with bovine milk xanthine oxidase (XO), employing tensiometry, fluorescence spectroscopy, UV spectroscopy, far-UV circular dichroism spectroscopy (CD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and computational molecular modeling. Surface tension results depict substantial changes in the micellar as well as interfacial parameters (CMC, ΠCMC, γCMC, Γmax, Amin, ΔGmic° and ΔGads°) of 16-E2-16 gemini surfactant upon XO combination, deciphering the interaction of XO with the gemini surfactant. Fluorescence measurements reveal that 16-E2-16 gemini surfactant causes quenching in the xanthine oxidase (XO) fluorescence spectra via static procedure and the values of various evaluated binding parameters (KSV, Kb, kq, ΔGb° and n) describe that 16-E2-16 effectively binds to XO. Three dimensional fluorescence, 8-anilino-1-naphthalene sulfonic acid (ANS) binding, F1F3 ratio, UV, CD, FTIR, SEM and TEM results delineate changes in the secondary structure of xanthine oxidase. Molecular docking results provide complement to the steady-state fluorescence findings and support the view that quenching occurs due to non-polar environment experienced by aromatic residues of the enzyme. The results of this study can help scientists to tune the conformation of an enzyme (XO) with biocompatible amphiphilic microstructures, which will help to unfold further understanding in the treatment modes of various diseases like gout, hyperuricemia, liver and brain necrosis.
Collapse
Affiliation(s)
- Mohd Akram
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Imtiyaz Ahmad Bhat
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Waseem Feeroze Bhat
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|