1
|
Demissie H, Lu S, Jiao R, Liu L, Xiang Y, Ritigala T, Ajibade FO, Mihiranga HKM, An G, Wang D. Advances in micro interfacial phenomena of adsorptive micellar flocculation: Principles and application for water treatment. WATER RESEARCH 2021; 202:117414. [PMID: 34303165 DOI: 10.1016/j.watres.2021.117414] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Among various aqua remediation technologies, separation aims at cleaning pollutants by isolating them despite their destruction; solutes can also be recovered after the process. Adsorptive micellar flocculation (AMF) has been known as an important surfactant-based technique to separate poorly water-soluble hazardous pollutants from aqua media as an efficient and energy-intensive replacement for other surfactant-based techniques, as such AMF should be known. AMF is based on the partitioning of solutes gradient from bulk solution into the nanosized smart anionic surfactant micelle followed by flocculation. However, unlike coagulation/flocculation or adsorption, AMF is not viable for the production of drinking water in water utilities due to the loss of surfactant monomers. Unfortunately, it can be used as a reservoir or for the recycling/recovery of organic pollutants (intermediates) (ions, organics/bioactive, dyes, etc.), even at high concentrations. The performance of AMF depends on various parameters, and this review briefly summarizes the existing researches on different pollutants removal by AMF and material recovery/recycling. This includes operating condition factors (surfactants, flocculants, surfactant-flocculant or surfactant-pollutant concentration ratio, and water conditions chemistry). Because varieties of micro interfacial phenomena other than physical interactions occur in a versatile micellar environment in the AMF process, emphases are given to adsorptive oxidation, micellar catalysis, selectivity. Furthermore, for the first time, this review gives an overview of understanding the state-of-the-art multifunctional nano amphiphile-based AMF that behaves mimetic to aquatic organisms in the process of pollutant removal. The efficiency of AMF, including recycling concentrated solution without noticeable deterioration, as an auxiliary resource/income for the next cycle, signifies economic viability, versatility, and manifold applications in aqua remediation. Significance, ways to achieve enhanced process efficiency, as well as challenges and future opportunities in wastewater treatment, are also highlighted.
Collapse
Affiliation(s)
- Hailu Demissie
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Science, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Science, Beijing 100049, China; Department of Chemistry, Arba Minch University 1000, Ethiopia
| | - Sen Lu
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Ruyuan Jiao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
| | - Libing Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Yu Xiang
- University of Chinese Academy of Science, Beijing 100049, China
| | | | | | - H K M Mihiranga
- University of Chinese Academy of Science, Beijing 100049, China
| | - Guangyu An
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Science, Chinese Academy of Sciences, Beijing 100085, China.
| | - Dongsheng Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Science, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Science, Beijing 100049, China.
| |
Collapse
|