1
|
Jiang X, Zhang D, Wang Y, Wang R, Kong XZ, Zhu X, Li S, Gu X. Facile Preparation of Raspberry-Like SiO 2@Polyurea Microspheres with Tunable Wettability and Their Application for Oil-Water Separation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57672-57686. [PMID: 39380485 DOI: 10.1021/acsami.4c12378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Raspberry-like microspheres have been widely used as superhydrophobic materials, photonic crystals, drug carriers, etc. Nevertheless, their preparation methods, usually consisting of multiple steps, are generally time- and energy-consuming. Herein raspberry-like SiO2@polyurea microspheres (SiO2@PUM) are readily prepared via a one-step precipitation polymerization of isophorone diisocyanate in a H2O/acetone mixture with the presence of SiO2 particles. The sphere size, surface roughness, and SiO2 content of SiO2@PUM are easily adjustable by varying the experimental conditions. TEM and SEM observations reveal that the final SiO2@PUM exhibits a core-shell structure, with polyurea (PU) in the core and SiO2 particles as the shell. In the process, the SiO2 particles were initially located on the PUM surface as a monolayer. With the reaction proceeding, the monolayer of SiO2 particles became thicker, forming a thicker layer of SiO2 particles on PUM due to the accumulation of SiO2 particles, leading to a multilayer structure of SiO2 particles on the shell of SiO2@PUM. The formation mechanism of the raspberry-like SiO2@PUM was thoroughly discussed and ascribed to electrostatic attraction between the positively charged PU and negatively charged SiO2 particles. Once dried, SiO2@PUM was superhydrophobic and turned hydrophilic if water-wetted. Using a layer of SiO2@PUM, effective separation with good reusability for a variety of oil-water mixtures was achieved regardless of the oil density and types of oil-water emulsions. This work presents a novel protocol for the preparation of raspberry-like microspheres with tunable wettability via a rapid and green process, and the resulting microspheres are highly effective for the separation of diverse types of oil-water mixtures.
Collapse
Affiliation(s)
- Xubao Jiang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Diankai Zhang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yujun Wang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Ruiqing Wang
- Department of Basic Courses, Shandong Shenghan Finance and Trade Vocational College, Jinan 250316, China
| | - Xiang Zheng Kong
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiaoli Zhu
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Shusheng Li
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiangling Gu
- Shandong Provincial Engineering Research Center of Novel Pharmaceutical Excipients and Controlled Release Preparations, College of Health and Medicine, Dezhou University, Dezhou 253023, China
| |
Collapse
|
2
|
Synthesis of inorganic/organic raspberry-like composite particles for superhydrophobic and superlipophilic coatings. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
3
|
Naruhashi T, Chikazawa T, Kohri M, Taniguchi T, Kishikawa K, Karatsu T. Construction of insulating layers on conductive nickel-plated core particles by thermal fusion of heterocoagulated polymer shell particles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Mai C, Yang L, Lv C, Tian J, Gu Q, Hu J, Jiang Y, Zhang H. Simple preparation and study of superhydrophobic surface of triple‐scale raspberry‐like composite particles. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chongyang Mai
- School of Material Science and Engineering Changzhou University Changzhou China
| | - Li Yang
- School of Material Science and Engineering Changzhou University Changzhou China
| | - Chengcheng Lv
- School of Material Science and Engineering Changzhou University Changzhou China
| | - Junwen Tian
- School of Material Science and Engineering Changzhou University Changzhou China
| | - Qintian Gu
- School of Material Science and Engineering Changzhou University Changzhou China
| | - Jian Hu
- School of Material Science and Engineering Changzhou University Changzhou China
| | - Yan Jiang
- School of Material Science and Engineering Changzhou University Changzhou China
- Jiangsu Chenguang Paint Co., Ltd Changzhou China
| | - Hongwen Zhang
- School of Material Science and Engineering Changzhou University Changzhou China
| |
Collapse
|
5
|
Behme N, Hintersatz H, Tegenkamp C, Goedel WA. Preparation of microsieves with a hierarchical structure via float-casting, using raspberry particles. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Zhang X, Chen J, Chen Y, Lin X, Wang B, Liu Y, Jiang Y, Zhang H. Studies on Hydrophobic Silica/Silicone Rubber Composite Microspheres with Dual-Size Microstructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14668-14678. [PMID: 34877859 DOI: 10.1021/acs.langmuir.1c02398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, a series of microsphere composites were prepared by the hydrosilylation of nanospherical SiO2 and silicon rubber microspheres. The influence of different host-guest size ratios on the wettability of the SiO2/silicone rubber composite microspheres was explored. The structures and performance of the composite microspheres were investigated using scanning electron microscopy and contact angle testing. The results showed that the prepared SiO2/silicone rubber composite microspheres had a raspberry-like structure and exhibited a rose petal effect. When the SiO2 content was 30%, the water contact angle of the SiO2/silicone rubber composite microspheres reached a maximum, and 30% was used as the optimal ratio for compounding SiO2 having different particle diameters with silicone rubber microspheres. Wettability calculations and analyses were performed for the surface with the composite microspheres. The results indicated that the structure with dual-size roughness could significantly improve surface hydrophobicity. As the ratio of the host-guest size increased, the contact angle of the water phase also increased. However, the surface structures of the composite microspheres were not uniform because of the surface chemical composition and the uncontrollable distribution of the small spheres on the surface of the large spheres during compounding. As a result, water droplets appeared in the Cassie-impregnated state on the composite microsphere particle coating, resulting in the phenomenon of high hydrophobicity and high adhesion.
Collapse
Affiliation(s)
- Xiaomei Zhang
- National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Juan Chen
- National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Yuying Chen
- National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Xing Lin
- National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Bodong Wang
- National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Yifan Liu
- National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Yan Jiang
- National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Hongwen Zhang
- National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| |
Collapse
|
7
|
Martins TD, Ribeiro T, Farinha JPS. Overview of Silica-Polymer Nanostructures for Waterborne High-Performance Coatings. Polymers (Basel) 2021; 13:1003. [PMID: 33805231 PMCID: PMC8037112 DOI: 10.3390/polym13071003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/26/2022] Open
Abstract
Combining organic and inorganic components at a nanoscale is an effective way to obtain high performance coating materials with excellent chemical and physical properties. This review focuses on recent approaches to prepare hybrid nanostructured waterborne coating materials combining the mechanical properties and versatility of silica as the inorganic filler, with the flexural properties and ease of processing of the polymer matrix. We cover silica-polymer coupling agents used to link the organic and inorganic components, the formation of hybrid films from these silica-polymer nanostructures, and their different applications. These hybrid nanostructures can be used to prepare high performance functional coatings with different properties from optical transparency, to resistance to temperature, hydrophobicity, anti-corrosion, resistance to scratch, and antimicrobial activity.
Collapse
Affiliation(s)
| | | | - José Paulo S. Farinha
- Centro de Química Estrutural, Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (T.D.M.); (T.R.)
| |
Collapse
|
8
|
Abdollahi A, Herizchi A, Roghani-Mamaqani H, Alidaei-Sharif H. Interaction of photoswitchable nanoparticles with cellulosic materials for anticounterfeiting and authentication security documents. Carbohydr Polym 2020; 230:115603. [DOI: 10.1016/j.carbpol.2019.115603] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/18/2019] [Accepted: 11/09/2019] [Indexed: 01/20/2023]
|
9
|
Morita S, Iijima M, Tatami J. Hetero-assembly of colloidal particles in concentrated non-aqueous suspensions by polymer dispersant design. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2019.11.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Abstract
The strategies used for the preparation of raspberry-like polymer composite particles are summarized comprehensively.
Collapse
Affiliation(s)
- Hua Zou
- School of Materials Science and Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Shuxia Zhai
- School of Materials Science and Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| |
Collapse
|
11
|
Abdollahi A, Roghani-Mamaqani H, Herizchi A, Alidaei-Sharif H, Enayati A, Sajedi-Amin S. Light-induced spherical to dumbbell-like morphology transition of coumarin-functionalized latex nanoparticles by a [2π + 2π] cycloaddition reaction: a fast and facile strategy to anisotropic geometry. Polym Chem 2020. [DOI: 10.1039/d0py00078g] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Light-induced morphology transition of the functionalized spherical nanoparticles to anisotropic structures was achieved by dimerization of the surface coumarin molecules, which resulted in decreasing fluorescence intensities of coumarin moieties.
Collapse
Affiliation(s)
- Amin Abdollahi
- Faculty of Polymer Engineering
- Sahand University of Technology
- Tabriz
- Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering
- Sahand University of Technology
- Tabriz
- Iran
- Institute of Polymeric Materials
| | - Ata Herizchi
- Faculty of Chemical Engineering
- Sahand University of Technology
- Tabriz
- Iran
| | | | | | - Sanaz Sajedi-Amin
- Department of Analytical Chemistry
- Faculty of Chemistry
- University of Tabriz
- Tabriz
- Iran
| |
Collapse
|
12
|
Sun J, Zhang X, Bai L, Li Z, Jia Z, Gu J. Effect of Shell Growth on the Morphology of Polyvinyl Acetate/Polystyrene Inverted Core-Shell Latex Fabricated by Acrylonitrile Grafting. MATERIALS 2018; 11:ma11122482. [PMID: 30563282 PMCID: PMC6317000 DOI: 10.3390/ma11122482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/11/2018] [Accepted: 12/04/2018] [Indexed: 11/16/2022]
Abstract
A novel strategy for fabricating inverted core-shell structured latex particles was implemented to investigate the morphology and properties of polyvinyl acetate (PVAc)-based latex. In this study, active grafting points were synthesized onto the surface of PVAc latex cores via grafting acrylonitrile (AN) to obtain a controllable coating growth of the shell monomer, styrene (St). The effect of shell growth on the morphological evolvement was explored by tuning the time of shell monomer polymerization. Unique particle morphologies, transferring from "hawthorn" type, over "peeled pomegranate" type, to final "strawberry-like" type, were observed and verified by electron microscopy. The morphological structure of latex particles exerted a significant effect on the particle size, phase structure, and mechanical properties of the obtained emulsions. The water-resistance of PVAc-based latex was also evaluated by the water absorption of latex films. More importantly, the experimental results provided a reasonable support for the controlled growth of St monomer, that is, the self-nucleation of dispersive St monomer can be transformed to in-situ coating growth on the PVAc core surface depending on the AN-active grafting points. This fabricating approach provides a reference for dynamical design and control of the latex particle morphology.
Collapse
Affiliation(s)
- Jiaxing Sun
- College of Materials Science and Engineering, Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Harbin 150040, China.
| | - Xiao Zhang
- College of Materials Science and Engineering, Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Harbin 150040, China.
| | - Long Bai
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 163000, FIN-00076 Aalto, 02150 Espoo, Finland.
| | - Zhiguo Li
- College of Materials Science and Engineering, Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Harbin 150040, China.
| | - Zhao Jia
- College of Materials Science and Engineering, Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Harbin 150040, China.
| | - Jiyou Gu
- College of Materials Science and Engineering, Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Harbin 150040, China.
| |
Collapse
|
13
|
Zanini M, Hsu CP, Magrini T, Marini E, Isa L. Fabrication of rough colloids by heteroaggregation. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.05.084] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Guo Y, van Ravensteijn BGP, Evers CHJ, Kegel WK. pH Reversible Encapsulation of Oppositely Charged Colloids Mediated by Polyelectrolytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4551-4558. [PMID: 28419800 PMCID: PMC5427486 DOI: 10.1021/acs.langmuir.7b00845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/18/2017] [Indexed: 05/30/2023]
Abstract
We report the first example of reversible encapsulation of micron-sized particles by oppositely charged submicron smaller colloids. The reversibility of this encapsulation process is regulated by pH-responsive poly(acrylic acid) (PAA) present in solution. The competitive adsorption between the small colloids and the poly(acrylic acid) on the surface of the large colloids plays a key role in the encapsulation behavior of the system. pH offers an experimental knob to tune the electrostatic interactions between the two oppositely charged particle species via regulation of the charge density of the poly(acrylic acid). This results in an increased surface coverage of the large colloids by the smaller colloids when decreasing pH. Furthermore, the poly(acrylic acid) also acts as a steric barrier limiting the strength of the attractive forces between the oppositely charged particle species, thereby enabling detachment of the smaller colloids. Finally, based on the pH tunability of the encapsulation behavior and the ability of the small colloids to detach, reversible encapsulation is achieved by cycling pH in the presence of the PAA polyelectrolytes. The role of polyelectrolytes revealed in this work provides a new and facile strategy to control heteroaggregation behavior between oppositely charged colloids, paving the way to prepare sophisticated hierarchical assemblies.
Collapse
|
15
|
Bai L, Huan S, Zhang X, Jia Z, Gu J, Li Z. Rational design and synthesis of transition layer-mediated structured latex particles with poly(vinyl acetate) cores and poly(styrene) shells. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-016-4008-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Meester V, Kraft DJ. Spherical, Dimpled, and Crumpled Hybrid Colloids with Tunable Surface Morphology. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10668-10677. [PMID: 27676187 DOI: 10.1021/acs.langmuir.6b02952] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Surface morphology is a tool to tune physical properties of colloidal suspensions such as the wettability, viscoelasticity, and depletion attractions. Existing synthesis methods to obtain colloids with a rough surface morphology often result in colloids with nontunable surface properties. Here, we developed a synthetic approach to obtain both spherical and shape-anisotropic hybrid colloids with tunable surface morphology. With our approach, monodisperse linear polystyrene colloids, obtained in large quantities using a dispersion polymerization method, are swollen and cross-linked with styrene and 3-(trimethoxysilyl)propyl methacrylate (TPM) in the presence of the polymerization inhibitor hydroquinone. We show that, by varying only two experimental parameters, the concentration of the inhibitor and of TPM during swelling linear polystyrene colloids, three different types of particles can be synthesized. At low TPM concentrations, spherical colloids are obtained where the surface roughness can be tuned by varying the hydroquinone concentration. At intermediate TPM concentrations, single-dimpled colloids are formed with tunable dimple size. High TPM concentrations yield crumpled colloids of various shapes. Additionally, we demonstrate that all particles can be used as templates for silica coating, resulting in electrostatically stabilized silica-coated hybrid colloids or silica shells with rough, smooth, dimpled, or crumpled surface morphology.
Collapse
Affiliation(s)
- Vera Meester
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University , PO Box 9504, 2300 RA Leiden, The Netherlands
| | - Daniela J Kraft
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University , PO Box 9504, 2300 RA Leiden, The Netherlands
| |
Collapse
|