1
|
Mote N, Kubik S, Polacheck WJ, Baker BM, Trappmann B. A nanoporous hydrogel-based model to study chemokine gradient-driven angiogenesis under luminal flow. LAB ON A CHIP 2024; 24:4892-4906. [PMID: 39308400 DOI: 10.1039/d4lc00460d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The growth of new blood vessels through angiogenesis is a highly coordinated process, which is initiated by chemokine gradients that activate endothelial cells within a perfused parent vessel to sprout into the surrounding 3D tissue matrix. While both biochemical signals from pro-angiogenic factors, as well as mechanical cues originating from luminal fluid flow that exerts shear stress on the vessel wall, have individually been identified as major regulators of endothelial cell sprouting, it remains unclear whether and how both types of cues synergize. To fill this knowledge gap, here, we created a 3D biomimetic model of chemokine gradient-driven angiogenic sprouting, in which a micromolded tube inside a hydrogel matrix is seeded with endothelial cells and connected to a perfusion system to control fluid flow rates and resulting shear forces on the vessel wall. To allow for the formation of chemokine gradients despite the presence of luminal flow, a nanoporous synthetic hydrogel that supports angiogenesis but limits the interstitial flow proved crucial. Using this system, we find that luminal flow and resulting shear stress is a major regulator of the speed and morphogenesis of angiogenic sprouting, whose action is mediated through changes in vascular permeability.
Collapse
Affiliation(s)
- Nidhi Mote
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Sarah Kubik
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27514 USA
| | - William J Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27514 USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, 2174 Lurie BME Building, 1101 Beal Avenue, Ann Arbor, MI, 48109 USA
| | - Britta Trappmann
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany.
| |
Collapse
|
2
|
Antonsson J, Hamngren Blomqvist C, Olsson E, Gebäck T, Särkkä A. Modeling Colloidal Particle Aggregation Using Cluster Aggregation with Multiple Particle Interactions. J Phys Chem B 2024; 128:4513-4524. [PMID: 38686494 PMCID: PMC11089502 DOI: 10.1021/acs.jpcb.3c07992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
In this study, we investigate the aggregation dynamics of colloidal silica by generating simulated structures and comparing them to experimental data gathered through scanning transmission electron microscopy (STEM). More specifically, diffusion-limited cluster aggregation and reaction-limited cluster aggregation models with different functions for the probability of particles sticking upon contact were used. Aside from using a constant sticking probability, the sticking probability was allowed to depend on the masses of the colliding clusters and on the number of particles close to the collision between clusters. The different models of the sticking probability were evaluated based on the goodness-of-fit of spatial summary statistics. Furthermore, the models were compared to the experimental data by calculating the structures' fractal dimension and mass transport properties from simulations of flow and diffusion. The sticking probability, depending on the interaction with multiple particles close to the collision site, led to structures most similar to the STEM data.
Collapse
Affiliation(s)
- Jakob Antonsson
- Department
of Mathematical Sciences, Chalmers University
of Technology and University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | | | - Eva Olsson
- Department
of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Tobias Gebäck
- Department
of Mathematical Sciences, Chalmers University
of Technology and University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Aila Särkkä
- Department
of Mathematical Sciences, Chalmers University
of Technology and University of Gothenburg, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
3
|
Bezrukov A, Galyametdinov Y. Characterizing properties of polymers and colloids by their reaction-diffusion behavior in microfluidic channels. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
du Toit JP, Pott RWM. Transparent polyvinyl-alcohol cryogel as immobilisation matrix for continuous biohydrogen production by phototrophic bacteria. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:105. [PMID: 32536970 PMCID: PMC7285740 DOI: 10.1186/s13068-020-01743-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/01/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND Phototrophic purple non-sulfur bacteria (PNSB) have gained attention for their ability to produce a valuable clean energy source in the form biohydrogen via photofermentation of a wide variety of organic wastes. For maturation of these phototrophic bioprocesses towards commercial feasibility, development of suitable immobilisation materials is required to allow continuous production from a stable pool of catalytic biomass in which energy is not diverted towards biomass accumulation, and optimal hydrogen production rates are realised. Here, the application of transparent polyvinyl-alcohol (PVA) cryogel beads to immobilisation of Rhodopseudomonas palustris for long-term hydrogen production is described. PVA cryogel properties are characterised and demonstrated to be well suited to the purpose of continuous photofermentation. Finally, analysis of the long-term biocompatibility of the material is illustrated. RESULTS The addition of glycerol co-solvent induces favourable light transmission properties in normally opaque PVA cryogels, especially well-suited to the near-infrared light requirements of PNSB. Material characterisation showed high mechanical resilience, low resistance to diffusion of substrates and high biocompatibility of the material and immobilisation process. The glycerol co-solvent in transparent cryogels offered additional benefit by reinforcing physical interactions to the extent that only a single freeze-thaw cycle was required to form durable cryogels, extending utility beyond only phototrophic bioprocesses. In contrast, conventional PVA cryogels require multiple cycles which compromise viability of entrapped organisms. Hydrogen production studies of immobilised Rhodopseudomonas palustris in batch photobioreactors showed higher specific hydrogen production rates which continued longer than planktonic cultures. Continuous cultivation yielded hydrogen production for at least 67 days from immobilised bacteria, demonstrating the suitability of PVA cryogel immobilisation for long-term phototrophic bioprocesses. Imaged organisms immobilised in cryogels showed a monolithic structure to PVA cryogels, and demonstrated a living, stable, photofermentative population after long-term immobilisation. CONCLUSION Transparent PVA cryogels offer ideal properties as an immobilisation matrix for phototrophic bacteria and present a low-cost photobioreactor technology for the further advancement of biohydrogen from waste as a sustainable energy source, as well as development of alternative photo-bioprocesses exploiting the unique capabilities of purple non-sulfur bacteria.
Collapse
Affiliation(s)
- Jan-Pierre du Toit
- Department of Process Engineering, Stellenbosch University, Banghoek Road, Stellenbosch, South Africa
| | - Robert W. M. Pott
- Department of Process Engineering, Stellenbosch University, Banghoek Road, Stellenbosch, South Africa
| |
Collapse
|
5
|
Häbel H, Särkkä A, Rudemo M, Blomqvist CH, Olsson E, Nordin M. Colloidal particle aggregation in three dimensions. J Microsc 2019; 275:149-158. [PMID: 31268556 DOI: 10.1111/jmi.12823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/30/2019] [Indexed: 11/26/2022]
Abstract
Colloidal systems are of importance not only for everyday products, but also for the development of new advanced materials. In many applications, it is crucial to understand and control colloidal interaction. In this paper, we study colloidal particle aggregation of silica nanoparticles, where the data are given in a three-dimensional micrograph obtained by high-angle annular dark field scanning transmission electron microscopy tomography. We investigate whether dynamic models for particle aggregation, namely the diffusion limited cluster aggregation and the reaction limited cluster aggregation models, can be used to construct structures present in the scanning transmission electron microscopy data. We compare the experimentally obtained silica aggregate to the simulated postaggregated structures obtained by the dynamic models. In addition, we fit static Gibbs point process models, which are commonly used models for point patterns with interactions, to the silica data. We were able to simulate structures similar to the silica structures by using Gibbs point process models. By fitting Gibbs models to the simulated cluster aggregation patterns, we saw that a smaller probability of aggregation would be needed to construct structures similar to the observed silica particle structure.
Collapse
Affiliation(s)
- Henrike Häbel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,SuMo BIOMATERIALS, VINN Excellence Center, Chalmers University of Technology Sweden, Gothenburg, Sweden
| | - Aila Särkkä
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden.,SuMo BIOMATERIALS, VINN Excellence Center, Chalmers University of Technology Sweden, Gothenburg, Sweden
| | - Mats Rudemo
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden.,SuMo BIOMATERIALS, VINN Excellence Center, Chalmers University of Technology Sweden, Gothenburg, Sweden
| | - Charlotte Hamngren Blomqvist
- Centre for Cellular Imaging, University of Gothenburg, Gothenburg, Sweden.,SuMo BIOMATERIALS, VINN Excellence Center, Chalmers University of Technology Sweden, Gothenburg, Sweden
| | - Eva Olsson
- Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden.,SuMo BIOMATERIALS, VINN Excellence Center, Chalmers University of Technology Sweden, Gothenburg, Sweden
| | - Matias Nordin
- Department of Civil and Environmental Engineering, Chalmers University of Technology, Gothenburg, Sweden.,SuMo BIOMATERIALS, VINN Excellence Center, Chalmers University of Technology Sweden, Gothenburg, Sweden
| |
Collapse
|
6
|
Acri TM, Shin K, Seol D, Laird NZ, Song I, Geary SM, Chakka JL, Martin JA, Salem AK. Tissue Engineering for the Temporomandibular Joint. Adv Healthc Mater 2019; 8:e1801236. [PMID: 30556348 DOI: 10.1002/adhm.201801236] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/17/2018] [Indexed: 12/24/2022]
Abstract
Tissue engineering potentially offers new treatments for disorders of the temporomandibular joint which frequently afflict patients. Damage or disease in this area adversely affects masticatory function and speaking, reducing patients' quality of life. Effective treatment options for patients suffering from severe temporomandibular joint disorders are in high demand because surgical options are restricted to removal of damaged tissue or complete replacement of the joint with prosthetics. Tissue engineering approaches for the temporomandibular joint are a promising alternative to the limited clinical treatment options. However, tissue engineering is still a developing field and only in its formative years for the temporomandibular joint. This review outlines the anatomical and physiological characteristics of the temporomandibular joint, clinical management of temporomandibular joint disorder, and current perspectives in the tissue engineering approach for the temporomandibular joint disorder. The tissue engineering perspectives have been categorized according to the primary structures of the temporomandibular joint: the disc, the mandibular condyle, and the glenoid fossa. In each section, contemporary approaches in cellularization, growth factor selection, and scaffold fabrication strategies are reviewed in detail along with their achievements and challenges.
Collapse
Affiliation(s)
- Timothy M. Acri
- Department of Pharmaceutical Sciences and Experimental Therapeutics; College of Pharmacy; University of Iowa; Iowa City, Iowa 52242 USA
| | - Kyungsup Shin
- Department of Orthodontics; College of Dentistry and Dental Clinics; University of Iowa; Iowa City, Iowa 52242 USA
| | - Dongrim Seol
- Department of Orthopedics and Rehabilitation; Carver College of Medicine; University of Iowa; Iowa City, Iowa 52242 USA
| | - Noah Z. Laird
- Department of Pharmaceutical Sciences and Experimental Therapeutics; College of Pharmacy; University of Iowa; Iowa City, Iowa 52242 USA
| | - Ino Song
- Department of Orthopedics and Rehabilitation; Carver College of Medicine; University of Iowa; Iowa City, Iowa 52242 USA
| | - Sean M. Geary
- Department of Pharmaceutical Sciences and Experimental Therapeutics; College of Pharmacy; University of Iowa; Iowa City, Iowa 52242 USA
| | - Jaidev L. Chakka
- Department of Pharmaceutical Sciences and Experimental Therapeutics; College of Pharmacy; University of Iowa; Iowa City, Iowa 52242 USA
| | - James A. Martin
- Department of Orthopedics and Rehabilitation; Carver College of Medicine; University of Iowa; Iowa City, Iowa 52242 USA
| | - Aliasger K. Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics; College of Pharmacy; University of Iowa; Iowa City, Iowa 52242 USA
| |
Collapse
|
7
|
|
8
|
Hamngren Blomqvist C, Gebäck T, Altskär A, Hermansson AM, Gustafsson S, Lorén N, Olsson E. Interconnectivity imaged in three dimensions: Nano-particulate silica-hydrogel structure revealed using electron tomography. Micron 2017; 100:91-105. [PMID: 28558343 DOI: 10.1016/j.micron.2017.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 11/29/2022]
Abstract
We have used Electron Tomography (ET) to reveal the detailed three-dimensional structure of particulate hydrogels, a material category common in e.g. controlled release, food science, battery and biomedical applications. A full understanding of the transport properties of these gels requires knowledge about the pore structure and in particular the interconnectivity in three dimensions, since the transport takes the path of lowest resistance. The image series for ET were recorded using High-Angle Annular Dark Field Scanning Transmission Electron Microscopy (HAADF-STEM). We have studied three different particulate silica hydrogels based on primary particles with sizes ranging from 3.6nm to 22nm and with pore-size averages from 18nm to 310nm. Here, we highlight the nanostructure of the particle network and the interpenetrating pore network in two and three dimensions. The interconnectivity and distribution of width of the porous channels were obtained from the three-dimensional tomography studies while they cannot unambiguously be obtained from the two-dimensional data. Using ET, we compared the interconnectivity and accessible pore volume fraction as a function of pore size, based on direct images on the nanoscale of three different hydrogels. From this comparison, it was clear that the finest of the gels differentiated from the other two. Despite the almost identical flow properties of the two finer gels, they showed large differences concerning the accessible pore volume fraction for probes corresponding to their (two-dimensional) mean pore size. Using 2D pore size data, the finest gel provided an accessible pore volume fraction of over 90%, but for the other two gels the equivalent was only 10-20%. However, all the gels provided an accessible pore volume fraction of 30-40% when taking the third dimension into account.
Collapse
Affiliation(s)
- C Hamngren Blomqvist
- Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden; SuMo Biomaterials, VINN Excellence Centre, Chalmers University of Technology, S-412 96 Göteborg, Sweden
| | - T Gebäck
- SuMo Biomaterials, VINN Excellence Centre, Chalmers University of Technology, S-412 96 Göteborg, Sweden; Mathematical Sciences, Chalmers University of Technology, S-412 96 Göteborg, Sweden
| | - A Altskär
- SuMo Biomaterials, VINN Excellence Centre, Chalmers University of Technology, S-412 96 Göteborg, Sweden; Product Design and Perception, RISE Agrifood and Bioscience, Frans Perssons väg 6, S-402 29 Göteborg, Sweden
| | - A-M Hermansson
- SuMo Biomaterials, VINN Excellence Centre, Chalmers University of Technology, S-412 96 Göteborg, Sweden; Chemical and Biological Engineering, Chalmers University of Technology, S-412 96 Göteborg, Sweden
| | - S Gustafsson
- Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
| | - N Lorén
- Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden; SuMo Biomaterials, VINN Excellence Centre, Chalmers University of Technology, S-412 96 Göteborg, Sweden; Product Design and Perception, RISE Agrifood and Bioscience, Frans Perssons väg 6, S-402 29 Göteborg, Sweden
| | - E Olsson
- Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden; SuMo Biomaterials, VINN Excellence Centre, Chalmers University of Technology, S-412 96 Göteborg, Sweden.
| |
Collapse
|
9
|
Marshall LE, Koomullil R, Frost AR, Berry JL. Computational and Experimental Analysis of Fluid Transport Through Three-Dimensional Collagen-Matrigel Hydrogels. Ann Biomed Eng 2016; 45:1027-1038. [PMID: 27770219 DOI: 10.1007/s10439-016-1748-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/12/2016] [Indexed: 11/30/2022]
Abstract
A preclinical testing model for cancer therapeutics that replicates in vivo physiology is needed to accurately describe drug delivery and efficacy prior to clinical trials. To develop an in vitro model of breast cancer that mimics in vivo drug/nutrient delivery as well as physiological size and bio-composition, it is essential to describe the mass transport quantitatively. The objective of the present study was to develop in vitro and computational models to measure mass transport from a perfusion system into a 3D extracellular matrix (ECM). A perfusion-flow bioreactor system was used to control and quantify the mass transport of a macromolecule within an ECM hydrogel with embedded through-channels. The material properties, fluid mechanics, and structure of the construct quantified in the in vitro model were input into, and served as validation of, the computational fluid dynamics (CFD) simulation. Results showed that advection and diffusion played a complementary role in mass transport. As the CFD simulation becomes more complex with embedded blood vessels and cancer cells, it will become more recapitulative of in vivo breast cancers. This study is a step toward development of a preclinical testing platform that will be more predictive of patient response to therapeutics than two-dimensional cell culture.
Collapse
Affiliation(s)
- Lauren E Marshall
- Department of Biomedical Engineering, University of Alabama at Birmingham, Shelby Biomedical Research Bldg. Rm. 802, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Roy Koomullil
- Department of Biomedical Engineering, University of Alabama at Birmingham, Shelby Biomedical Research Bldg. Rm. 802, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Andra R Frost
- Department of Biomedical Engineering, University of Alabama at Birmingham, Shelby Biomedical Research Bldg. Rm. 802, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Joel L Berry
- Department of Biomedical Engineering, University of Alabama at Birmingham, Shelby Biomedical Research Bldg. Rm. 802, 1825 University Blvd, Birmingham, AL, 35294, USA.
| |
Collapse
|