1
|
Wang J, He W, Tan WS, Cai H. The chitosan/carboxymethyl cellulose/montmorillonite scaffolds incorporated with epigallocatechin-3-gallate-loaded chitosan microspheres for promoting osteogenesis of human umbilical cord-derived mesenchymal stem cell. BIORESOUR BIOPROCESS 2022; 9:36. [PMID: 38647806 PMCID: PMC10991275 DOI: 10.1186/s40643-022-00513-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/27/2022] [Indexed: 12/23/2022] Open
Abstract
Epigallocatechin-3-gallate (EGCG) is a plant-derived flavonoid compound with the ability to promote the differentiation of human bone marrow-derived mesenchymal stem cells (MSCs) into osteoblasts. However, the effect of EGCG on the osteogenic differentiation of the human umbilical cord-derived mesenchymal stem cells (HUMSCs) is rarely studied. Therefore, in this study, the osteogenic effects of EGCG are studied in the HUMSCs by detecting cell proliferation, alkaline phosphatase (ALP) activity, calcium deposition and the expression of relevant osteogenic markers. The results showed that EGCG can promote the proliferation and osteogenic differentiation of the HUMSCs in vitro at a concentration of 2.5-5.0 μM. Unfortunately, the EGCG is easily metabolized by cells during cell culture, which reduces its bioavailability. Therefore, in this paper, EGCG-loaded microspheres (ECM) were prepared and embedded in chitosan/carboxymethyl cellulose/montmorillonite (CS/CMC/MMT) scaffolds to form CS/CMC/MMT-ECM scaffolds for improving the bioavailability of EGCG. The HUMSCs were cultured on CS/CMC/MMT-ECM scaffolds to induce osteogenic differentiation. The results showed that the CS/CMC/MMT-ECM scaffold continuously released EGCG for up to 22 days. In addition, CS/CMC/MMT-ECM scaffolds can promote osteoblast differentiation. Taken together, the present study suggested that entrainment of ECM into CS/CMC/MMT scaffolds was a prospective scheme for promotion osteogenic differentiation of the HUMSCs.
Collapse
Affiliation(s)
- Jin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Wubo He
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
2
|
He J, Hu X, Xing L, Chen D, Peng L, Liang G, Xiong C, Zhang X, Zhang L. Enhanced bone regeneration using poly(trimethylene carbonate)/vancomycin hydrochloride porous microsphere scaffolds in presence of the silane coupling agent modified hydroxyapatite nanoparticles. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
3
|
Dental Applications of Systems Based on Hydroxyapatite Nanoparticles—An Evidence-Based Update. CRYSTALS 2021. [DOI: 10.3390/cryst11060674] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydroxyapatite is one of the most studied biomaterials in the medical and dental field, because of its biocompatibility; it is the main constituent of the mineral part of teeth and bones. In dental science, hydroxyapatite nanoparticles (HAnps) or nano-hydroxyapatite (nano-HA) have been studied, over the last decade, in terms of oral implantology and bone reconstruction, as well in restorative and preventive dentistry. Hydroxyapatite nanoparticles have significant remineralizing effects on initial enamel lesions, and they have also been used as an additive material in order to improve existing and widely used dental materials, mainly in preventive fields, but also in restorative and regenerative fields. This paper investigates the role of HAnps in dentistry, including recent advances in the field of its use, as well as their advantages of using it as a component in other dental materials, whether experimental or commercially available. Based on the literature, HAnps have outstanding physical, chemical, mechanical and biological properties that make them suitable for multiple interventions, in different domains of dental science. Further well-designed randomized controlled trials should be conducted in order to confirm all the achievements revealed by the in vitro or in vivo studies published until now.
Collapse
|
4
|
Qi J, Xiao J, Zhang T, Zhang Y, Xiong C. Investigation of the nano-hydroxyapatite with different surface modifications on the properties of poly(lactide-co-glycolide acid)/poly(trimethylene carbonate)/nano-hydroxyapatite composites. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-020-04783-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
He J, Hu X, Cao J, Zhang Y, Xiao J, Peng L, Chen D, Xiong C, Zhang L. Chitosan-coated hydroxyapatite and drug-loaded polytrimethylene carbonate/polylactic acid scaffold for enhancing bone regeneration. Carbohydr Polym 2020; 253:117198. [PMID: 33278972 DOI: 10.1016/j.carbpol.2020.117198] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/23/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022]
Abstract
Biocompatible polymers and drug-delivery scaffolds have driven development in bone regeneration. In this study, we fabricated a chitosan (CS)-coated polytrimethylene carbonate (PTMC)/polylactic acid (PLLA)/oleic acid-modified hydroxyapatite (OA-HA)/vancomycin hydrochloride (VH) microsphere scaffold for drug release with excellent biocompatibility. The incorporation of PLLA, OA-HA, and VH into PTMC microspheres not only slowed the biodegradability of the scaffold but also enhanced its mechanical properties and surface properties. Moreover, the CS coating stimulated extensive adhesion of osteoblasts before OA-HA incorporation, which facilitated the controlled release of OA-HA. The scaffolds were characterized via scanning electron microscopy, in vitro comprehensive performance testing, cell culturing, and microcomputer tomography scanning. The results indicated that the surface of the composite microsphere scaffold was suitable for osteoblast adhesion. Additionally, the release of OA-HA stimulated osteogenic proliferation. Our findings suggest that the CS-PTMC/PLLA/OA-HA/VH microsphere scaffold is promising for bone tissue engineering applications.
Collapse
Affiliation(s)
- Jian He
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xulin Hu
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianfei Cao
- School of Materials and Environmental Engineering, Chengdu Technology University, Chengdu 610041, China
| | - Yu Zhang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianping Xiao
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - liJun Peng
- Changzhou Institude of Chemistry, Changzhou, Jiangsu 213000, China
| | - Dongliang Chen
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengdong Xiong
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lifang Zhang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
A composite polytrimethylene carbonate microsphere-reinforced porous scaffold for osteoblast regeneration. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Preparation of biomimetic composites of hydroxyapatite and star-shaped poly(2,2-dimethyl trimethylene carbonate)s terminated with carboxyl end-groups. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Hou J, Wang Y, Xue H, Dou Y. Biomimetic Growth of Hydroxyapatite on Electrospun CA/PVP Core⁻Shell Nanofiber Membranes. Polymers (Basel) 2018; 10:E1032. [PMID: 30960957 PMCID: PMC6403539 DOI: 10.3390/polym10091032] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 11/16/2022] Open
Abstract
In this study, cellulose acetate (CA)/polyvinylpyrrolidone (PVP) core⁻shell nanofibers were successfully fabricated by electrospinning their homogeneous blending solution. Uniform and cylindrical nanofibers were obtained when the PVP content increased from 0 to 2 wt %. Because of the concentration gradient associated with the solvent volatilization, the composite fibers flattened when the PVP increased to 5 wt %. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) results confirmed the existence of a hydrogen bond between the CA and PVP molecules, which enhanced the thermodynamic properties of the CA/PVP nanofibers, as shown by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) results. To analyze the interior structure of the CA/PVP fibers, the water-soluble PVP was selectively removed by immersing the fiber membranes in deionized water. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicated that the PVP component, which has a low surface tension, was driven to the exterior of the fiber to form a discontinuous phase, whereas the high-content CA component inclined to form the internal continuous phase, thereby generating a core⁻shell structure. After the water-treatment, the CA/PVP composite fibers provided more favorable conditions for mineral crystal deposition and growth. Energy-dispersive spectroscopy (EDS) and FTIR proved that the crystal was hydroxyapatite (HAP) and that the calcium to phosphorus ratio was 1.47, which was close to the theoretical value of 1.67 in HAP. Such nanofiber membranes could be potentially applicable in bone tissue engineering.
Collapse
Affiliation(s)
- Jiazi Hou
- Key laboratory of Automobile Materials of Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130025, China.
| | - Yihuan Wang
- Key laboratory of Automobile Materials of Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130025, China.
| | - Hailong Xue
- Key laboratory of Automobile Materials of Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130025, China.
| | - Yanli Dou
- Key laboratory of Automobile Materials of Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130025, China.
| |
Collapse
|
9
|
Biodegradable and Biocompatible Systems Based on Hydroxyapatite Nanoparticles. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7010060] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|